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1. Introduction

Consider the fourth order nonlinear neutral delay differential equations
of the form

(H) (r(t)(y(t) + p(t)y(t− τ))′′)′′ + q(t)G(y(t− α))

− h(t)H(y(t− β)) = 0

and its associated forced equations

(NH) (r(t)(y(t) + p(t)y(t− τ))′′)′′ + q(t)G(y(t− α))

− h(t)H(y(t− β)) = f(t),

where r, q ∈ C([0,∞), (0,∞)), p ∈ C([0,∞),R), h ∈ C([0,∞), [0,∞)), f ∈
C([0,∞),R), G and H ∈ C(R,R) with uG(u) > 0, vH(v) > 0, for u, v 6= 0,
H is bounded, G is non decreasing, τ > 0, α > 0 and β > 0.

The objective of this work is to study oscillatory and asymptotic behavior
of the functional differential equations (H) and (NH) under the assumption

(H0)

∫ ∞
0

t

r(t)
dt =∞.

Because (H) and (NH) are highly nonlinear, it is interesting to study the
both equations under (H0). If h(t) ≡ 0, then (H) and (NH) reduce to

(r(t)(y(t) + p(t)y(t− τ))′′)′′ + q(t)G(y(t− α)) = 0(1)

and

(r(t)(y(t) + p(t)y(t− τ))′′)′′ + q(t)G(y(t− α)) = f(t)(2)

respectively.
In [9], Parhi and Tripathy have studied the oscillatory and asymptotic

behaviour of solutions of (1) and (2) under the assumption (H0). Their
work showed that, if q(t) < 0, then it would be possible to obtain analogous
results for oscillation and asymptotic behaviour of solutions of (1) and (2).
The problem remains open as to what happens if q(t) changes sign. In
particular, if q(t) = q+(t)− q−(t), where q+(t) = max{0, q(t)} and q−(t) =
max{0,−q(t)}, then (1) and (2) can be viewed as

(r(t)(y(t) + p(t)y(t− τ))′′)′′ + q+(t)G(y(t− α))(3)

− q−(t)G(y(t− α)) = 0

and

(r(t)(y(t) + p(t)y(t− τ))′′)′′ + q+(t)G(y(t− α))(4)

− q−(t)G(y(t− α)) = f(t)
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respectively. Clearly, (3) and (4) are particular case of (H) and (NH) re-
spectively. Hence to enclose our prediction, the present work is devoted to
study the more general equations of the type (H) and (NH) rather than (3)
and (4). On the other hand, (1) and (2) are special cases of (H) and (NH)
respectively and hence study of (H) and (NH) are more illustrative in view
of (H0).

Keeping in view of the above fact, the motivation of the present work has
come from the work of Parhi and Tripathy [9]. Since last decade, the study
of the behaviour of the solutions of functional differential and difference
equations with positive and negative coefficients of first, second and higher
order is a major area of research. Most of the work dealt with the existence
of positive solutions of the functional equations. However, much attention
has not given to oscillation results. This fact is well understood due to the
technical difficulties arising in the analysis. We refer the reader to some of
the works [1, 3-8, 10]. To the best of our knowledge there are no papers
to date on forth order nonlinear differential equations with positive and
negative coefficients. The results in this papers are new and generalize the
earlier work of [9].

By a solution of (H) (or (NH)) we understand a function y ∈ C([−ρ,∞),
R) such that (y(t)+p(t)y(t−τ)) is twice continuously differentiable, (r(t)(y(t)
+p(t)y(t − τ))) is twice continuously differentiable and (H) (or (NH)) is
satisfied for t ≥ 0, where ρ = max{τ, α, β}, and sup{|y(t)|; t ≥ t0} > 0 for
every t ≥ t0. A solution of (H) (or (NH)) is said to be oscillatory if it has
arbitrarily large zeros; otherwise, it is called nonoscillatory.

The organization of the paper is as follows. Section 2 deals with the oscil-
latory and asymptotic behaviour of solutions of (H) under the assumption
(H0) for all ranges of p(t). Section 3, deals with the oscillatory and asymp-
totic behaviour of solutions of (NH). Using Schauder’s fixed point theorem,
sufficient conditions have been obtained for the existence of bounded positive
solutions of (NH). Finally, Section 4 illustrate the examples to establish the
validity of the results obtained in the earlier sections.

2. Oscillation Properties of (H)

In this section, sufficient conditions are obtained for oscillatory and asymp-
totic behaviour of all solutions or bounded solutions of (H) under the as-
sumption (H0). We need the following lemmas for our use in the sequel.

Lemma 1 ([9], Lemma 2.1). Let (H0) hold. Let u be a twice continuously
differentiable function on [0,∞) such that r(t)u′′(t) is twice continuously
differentiable and (r(t)u′′(t))′′ ≤ 0 for large t. If u(t) > 0 ultimately, then
one of the cases (a) or (b) holds for large t, and if u(t) < 0 ultimately, then
one of the cases (b), (c), (d) or (e) holds for large t, where
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(a) u′(t) > 0, u′′(t) > 0 and (r(t)u′′(t))′ > 0,
(b) u′(t) > 0, u′′(t) < 0 and (r(t)u′′(t))′ > 0,
(c) u′(t) < 0, u′′(t) < 0 and (r(t)u′′(t))′ > 0,
(d) u′(t) < 0, u′′(t) < 0 and (r(t)u′′(t))′ < 0,
(e) u′(t) < 0, u′′(t) > 0 and (r(t)u′′(t))′ > 0.

Lemma 2 ([9], Lemma 2.2). Let the conditions of Lemma 1 hold. If
u(t) > 0 ultimately, then u(t) > RT (t)(r(t)u′′(t))′ for t ≥ T ≥ 0, where

RT (t) =
∫ t
T

(t−s)(s−T )
r(s) ds.

Remark 1. Notice that RT (t) is increasing function.

Lemma 3 ([3]). Let F, G, P : [t0,∞) → R and c ∈ R be such that
F (t) = G(t) +P (t)G(t− c), for t ≥ t0 + max{0, c}. Assume that there exists
numbers P1, P2, P3, P4 ∈ R such that P (t) is in one of the following ranges:

(i) P1 ≤ P (t) ≤ 0,
(ii) 0 ≤ P (t) ≤ P2 < 1,
(iii) 1 < P3 ≤ P (t) ≤ P4.
Suppose that G(t) > 0 for t ≥ t0, lim inft→∞G(t) = 0 and that limt→∞ F (t) =

L ∈ R exists. Then L = 0.

Lemma 4 ([3]). If q ∈ C([0,∞), [0,∞)) and

lim inf
t→∞

∫ t

t−τ
q(s)ds >

1

e
,

then x′(t) + q(t)x(t − τ) ≤ 0, t ≥ 0 cannot have an eventually positive
solution.

The results in our paper will make use of the following conditions on the
functions in equations (H) and (NH):

(H1)
∫∞
0

s
r(s)

∫∞
s th(t)dtds <∞;

(H2) there exists λ > 0 such that G(u)+G(v) ≥ λG(u+v), u > 0, v > 0;

(H3) G(u)G(v) = G(uv) for u, v ∈ R and H(−u) = −H(u) for u ∈ R;

(H4) G is sublinear and
∫ c
0

du
G(u) <∞ for all c > 0;

(H5)
∫∞
τ Q(t)dt =∞, Q(t) = min{q(t), q(t− τ)} for t ≥ τ .

Theorem 1. Assume that conditions (H0)−(H5) hold, τ ≤ α, and p1, p2
and p3 are positive real numbers. If (i) 0 ≤ p(t) ≤ p1 < 1 or 1 < p2 ≤ p(t) ≤
p3 < ∞ holds, then every solution of (H) either oscillatory or converges to
zero as t→∞.
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Proof. Assume that (H) has a nonoscillatory solution on [t0,∞), t0 ≥ 0
and let it be y(t). Hence, y(t) > 0 or < 0 for t ≥ t0. Suppose that y(t) > 0
for t ≥ t0. Define the functions

(5) z(t) = y(t) + p(t)y(t− τ),

(6) k(t) =

∫ ∞
t

s− t
r(s)

∫ ∞
s

(θ − s)h(θ)H(y(θ − β))dθds.

Notice that condition (H1) and the fact that H is bounded function implies
that k(t) exists for all t. Now if

(7) w(t) = z(t)− k(t) = y(t) + p(t)y(t− τ)− k(t),

then a calculation shows

(8) (r(t)w′′(t))′′ = −q(t)G(y(t− α)) ≤ 0, ( 6≡ 0)

for t ≥ t0 + ρ. Clearly, w(t), w′(t), (r(t)w′′(t)), (r(t)w′′(t))′ are monotonic
functions on [t1,∞), t1 ≥ t0 + ρ. In view of Lemma 1, we have two cases
to consider, namely w(t) > 0 or w(t) < 0 for t ≥ t1. Suppose the former
holds. By the Lemma 1, any one of the cases (a) or (b) holds. Using (H2)
and (H3), gives

0 = (r(t)w′′(t))′′ + q(t)G(y(t− α))(9)

+ G(p1)(r(t− τ)w′′(t− τ))′′

+ G(p1)q(t− τ)G(y(t− τ − α))

≥ (r(t)w′′(t))′′ +G(p1)(r(t− τ)w′′(t− τ))′′

+ λQ(t)G(y(t− α) + p1y(t− α− τ))

≥ (r(t)w′′(t))′′ +G(p1)(r(t− τ)w′′(t− τ))′′

+ λQ(t)G(z(t− α))

for t ≥ t2 > t1. From (6), it follows that k(t) > 0 and k′(t) < 0, and so
w(t) > 0 for t ≥ t1 implies w(t) < z(t) for t ≥ t2. Therefore, (9) yields

(10) (r(t)w′′(t))′′ +G(p1)(r(t− τ)w′′(t− τ))′′ + λQ(t)G(w(t− α)) ≤ 0,

for t ≥ t2, that is

0 ≥ (r(t)w′′(t))′′ +G(p1)(r(t− τ)w′′(t− τ))′′

+ λQ(t)G(RT (t− α)(r(t− α)w′′(t− α))′)
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due to Lemma 2, for t ≥ T + ρ > t2. Hence

0 ≥ (r(t)w′′(t))′′ +G(p1)(r(t− τ)w′′(t− τ))′′

+ λQ(t)G(RT (t− α))G((r(t− α)w′′(t− α))′),

that is,

λQ(t)G(RT (t− α)) ≤ −[G((r(t− α)w′′(t− α))′)]−1(r(t)w′′(t))′′

− G(p1)[G((r(t− α)w′′(t− α))′)]−1

× (r(t− τ)w′′(t− τ))′′

≤ −[G((r(t)w′′(t))′)]−1(r(t)w′′(t))′′

− G(p1)[G((r(t− τ)w′′(t− τ))′)]−1

× (r(t− τ)w′′(t− τ))′′.

Since limt→∞(r(t)w′′(t))′ < ∞, then using (H4) the above inequality be-
comes ∫ ∞

T+ρ
Q(t)G(RT (t− α))dt <∞,

which contradicts (H5) since RT (t) is monotonic increasing function.
Next, we suppose that w(t) < 0 for t ≥ t1. Then z(t)− k(t) < 0 implies

y(t) ≤ z(t) = y(t) + p(t)y(t− τ) < k(t). Thus, y(t) is bounded since k(t) is
bounded and monotonic. By the Lemma 1, any one of the cases (b), (c), (d)
or (e) holds.

Consider the case (b). Since limt→∞ k(t) exists, limt→∞w(t) exists, and
so limt→∞ z(t) exists. Furthermore, limt→∞(r(t)w′′(t))′ exists, and an inte-
gration of (8) implies ∫ ∞

t1

Q(t)G(y(t− α))dt <∞.

Hence, it is easy to verify that lim inft→∞ y(t) = 0 due to (H5). It then
follows from Lemma 3 that limt→∞ z(t) = 0. Thus, limt→∞ y(t) = 0 since
z(t) ≥ y(t).

To see that cases (c) and (d) are not possible, first note that w(t) < 0,
y(t) is bounded, limt→∞ k(t) exists and hence limt→∞w(t) exists. On the
otherhand, integrating successively, w′′(t) < 0 from t1 to t ≥ t1, yields
limt→∞w(t) = −∞, which is a contradiction.

Consider the case (e). In this case r(t)w′′(t) is nondecreasing on [t1,∞).
Hence for t ≥ t1, r(t)w′′(t) ≥ r(t1)w′′(t1), that is,

(11) tw′′(t) ≥ t

r(t)
r(t1)w

′′(t1).



Oscillatory and asymptotic behavior . . . 161

Integrating (11) from t1 to t, we obtain

tw′(t) ≥ w(t)− w(t1) + t1w
′(t1) + r(t1)w

′′(t1)

∫ t

t1

s

r(s)
ds,

that is, tw′(t) > 0 for large t due to (H0), a contradiction.
Finally, we suppose that y(t) < 0 for t ≥ t0. From (H3), we note that

G(−u) = −G(u), u ∈ R and H(−u) = −H(u), u ∈ R. Indeed, G(1)G(1) =
G(1) and G(−1)G(−1) = G(1) implies that G(−1) = −1 and G(1) = 1.
Hence putting x(t) = −y(t) for t ≥ t0, we obtain x(t) > 0 and

(r(t)(x(t) + p(t)x(t− τ))′′)′′ + q(t)G(x(t− α))− h(t)H(x(t− β)) = 0.

Proceeding as above, we can show that every solution of (H) either oscillates
or converges to zero as t→∞. This completes the proof of the theorem. �

The following corollary is immediate.

Corollary 1. Under the conditions of Theorem 1, every unbounded so-
lution of (H) oscillates.

Theorem 2. Let 0 ≤ p(t) ≤ p1 < 1. Assume that conditions (H0), (H1),
(H3), and

(H6) lim inf
|x|→0

G(x)
x ≥ γ > 0;

(H7) lim inf
t→∞

∫ t
t−αG(RT (s− α))q(s)ds > (eγG(1− p1))−1;

and

(H8)
∫∞
0 q(t)dt =∞

hold, then every solution of (H) either oscillates or converges to zero as
t→∞.

Remark 2. (H7) implies that

(H9)

∫ ∞
T+α

G(RT (s− α))q(s)ds =∞.

Indeed, if ∫ ∞
T+α

G(RT (s− α))q(s)ds = b <∞,

then for t > T + 2α,∫ t

t−α
G(RT (s− α))q(s)ds =

(∫ t

T+α
−
∫ t−α

T+α

)
G(RT (s− α))q(s)ds.
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implies that

lim inf
t→∞

∫ t

t−α
G(RT (s− α))q(s)ds ≤ b− b = 0,

which contradicts (H7).

Proof. (Theorem 2.) Let y(t) be a nonoscillatory solution of (H) such
that y(t) > 0 for t ≥ t0. The case y(t) < 0 for t ≥ t0 is similar. Using
(5), (6) and (7) we obtain (8). In view of Lemma 1, we have two cases to
consider, namely w(t) > 0 and w(t) < 0 for for t ≥ t1 > t0 +ρ. Let w(t) > 0
on [t1,∞). Then any one of the cases (a) or (b) of Lemma 1 holds. In each
case, w(t) is nondecreasing. We note that k(t) > 0 and k′(t) < 0. Hence

0 < w′(t) = z′(t)− k′(t),

implies that, z′(t) > 0 or z′(t) < 0 for t ≥ t2 > t1. If z′(t) > 0, then z(t) is
nondecreasing and

(1− p(t))z(t) < z(t)− p(t)z(t− τ)

= y(t)− p(t)p(t− τ)y(t− 2τ) < y(t)

for t ≥ t2, that is,

y(t) > (1− p1)z(t) > (1− p1)w(t).

Thus (8) yields

G((1− p1)w(t− α))q(t) ≤ −(r(t)w′′(t))′′.

By Lemma 2 and (H3), the above inequality becomes

G(1− p1)q(t)G(RT (t− α))G((r(t− α)w′′(t− α))′)(12)

≤ −(r(t)w′′(t))′′

for t ≥ T + α > t2. Let limt→∞(r(t)w′′(t))′ = c, c ∈ [0,∞). If 0 < c < ∞,
then there exists c1 > 0 such that (r(t)w′′(t))′ > c1 for t ≥ t3 > T +α. From
(12), it follows that

G(1− p1)q(t)G(RT (t− α))G(c1) ≤ −(r(t)w′′(t))′′

for t ≥ t4 > t3 + α. Integrating the above inequality from t4 to ∞, we get∫ ∞
t4

q(t)G(RT (t− α))dt <∞,
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a contradiction to (H9). Hence c = 0. Consequently, (H6) implies that
G((r(t)w′′(t))′) ≥ γ(r(t)w′′(t))′ for t ≥ t3. Therefore, (12) yields

(r(t)w′′(t))′′ + γG(1− p1)q(t)G(RT (t− α))(r(t− α)w′′(t− α))′ ≤ 0,

for t ≥ t3 + α. From Lemma 4, it follows that

u′(t) + γG(1− p1)q(t)G(RT (t− α))u(t− α) ≤ 0

admits a positive solution (r(t)w′′(t))′, which is a contradiction due to (H7).
If z′(t) < 0, then limt→∞ z(t) exists. Using the same type of reasoning as

in Theorem 1, it is easy to verify that lim inft→∞ y(t) = 0 by using (H8). It
then follows from Lemma 3 that limt→∞ z(t) = 0. Thus, limt→∞ y(t) = 0.

The remaining part of the proof follows from the proof of the Theorem 1.
Hence the proof of the theorem is completed. �

Corollary 2. Under the conditions of Theorem 2, every unbounded so-
lutions of (H) oscillates.

Theorem 3. Assume that conditions (H0) − (H3), (H5), τ ≤ α hold,
and

(H10)
G(x1)
xσ1
≥ G(x2)

xσ2
for x1 ≥ x2 > 0 and σ ≥ 1.

If (i) 0 ≤ p(t) ≤ p1 < 1 or (ii) 1 < p2 ≤ p(t) ≤ p3 <∞ holds, then every
solution of (H) is either oscillatory or tends to zero as t→∞.

Proof. Proceeding as in the proof of Theorem 1, we obtain

(r(t)w′′(t))′′ +G(p1)(r(t− τ)w′′(t− τ))′′(13)

+ λQ(t)G(z(t− α)) ≤ 0

for t ≥ t2. In view of (8) and Lemma 1, w(t) is nondecreasing, there exists
k > 0 and t3 > 0 such that w(t) > k for t ≥ t3. Hence use of (H10) along
with Lemma 2, we obtain

G(w(t− α)) = (G(w(t− α))/wσ(t− α))wσ(t− α)

≥ (G(k)/kσ)(wσ(t− α))

> (G(k)/kσ)RσT (t− α)((r(t− α)w′′(t− α))′)σ

for t ≥ T + α > t3 + α. Thus (13) yields,

λ(G(k)/kσ)RσT (t− α)Q(t)((r(t− α)w′′(t− α))′)σ

< λQ(t)G(w(t− α)) ≤ λQ(t)G(z(t− α))

≤ −(r(t)w′′(t))′′ −G(p1)(r(t− τ)w′′(t− τ))′′,
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that is,

λ(G(k)/kσ)RσT (t− α)Q(t) < −[(r(t− α)w′′(t− α))′]−σ[(r(t)w′′(t))′′

+ G(p1)(r(t− τ)w′′(t− τ))′′]

< −((r(t)w′′(t))′)−σ(r(t)w′′(t))′′

− G(p1)((r(t− τ)w′′(t− τ))′)−σ(r(t− τ)w′′(t− τ))′′

for t ≥ T + α. Since limt→∞(r(t)w′′(t))′ exists and RT (t) is nondecreasing,
then proceeding as in the proof of Theorem 1 we obtain∫ ∞

T+α
RσT (t− α)Q(t)dt <∞,

which contradict (H5). The proof in case w(t) < 0 is same as in Theorem 1.
Thus the theorem is proved. �

Corollary 3. Under the conditions of Theorem 3, every unbounded so-
lution of (H) oscillates.

In our next theorem we are able to replace conditions (H3) and (H4) in
Theorem 1 with conditions (H11) and (H12) below.

Theorem 4. Assume that conditions (H0) − (H2), (H5), τ ≤ α hold,
and

(H11) G(u)G(v) ≥ G(uv) for u > 0, v > 0;

(H12) G(−u) = −G(u), H(−u) = −H(u), u ∈ R.

If (i) 0 ≤ p(t) < p1 < 1 or (ii) 1 < p2 ≤ p(t) ≤ p3 <∞ holds, then every
solution of (H) either oscillates or converges to zero as t→∞.

Proof. Proceeding as in the proof of the Theorem 3, in case w(t) > 0
we again have (13) for t ≥ t2. Since w(t) is nondecreasing, then there exist
k > 0 and t3 > t2 such that w(t) > k for t ≥ t3, that is, z(t) ≥ w(t) > k for
t ≥ t3. Consequently, inequality (13) yields

λG(k)

∫ ∞
t3

Q(t)dt <∞,

a contradiction to (H5). The rest of the proof is similar to the Theorem 1.
This completes the proof of the theorem. �

Corollary 4. Under the conditions of Theorem 4, every unbounded so-
lutions of (H) oscillates.
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Remark 3. In Theorems 1 and Corollary 1, G is sublinear only, whereas
in Theorem 3 and Corollary 3, G is superlinear. But in Theorem 4, G could
be linear, sublinear or superlinear.

Next, we consider the case where p(t) is negative. Here p4, p5 and p6 are
negative and real numbers.

Theorem 5. Let −1 < p4 ≤ p(t) ≤ 0 and conditions (H0), (H1), (H3),
(H4), (H8) hold, then every solution of (H) either oscillates or tends to zero
as t→∞.

Proof. Let y(t) be a nonoscillatory solution of (H). Because of (H3),
without loss of generality we may suppose that y(t) > 0 for t ≥ t0 > 0.
Setting as in (5), (6) and (7) we obtain (8) for t ≥ t0 +ρ. By Lemma 1, w(t)
is monotonic on [t1,∞), t1 ≥ t0+ρ. If w(t) > 0 for t ≥ t1, then any one of the
cases (a) or (b) of Lemma 1 holds. Consequently, w(t) > RT (t)(r(t)w′′(t))′

for t ≥ t2 > t1 by Lemma 2. Moreover, w(t) ≤ y(t) since p(t) ≤ 0 implies
that y(t) > RT (t)(r(t)w′′(t))′ for t ≥ t2 and hence (8) becomes∫ ∞

t2+α
q(t)G(RT (t− α))dt <∞,

which contradict (H8) since G, and RT are increasing functions. Hence,
w(t) < 0 for t ≥ t1, and so any one of the cases (b), (c), (d) or (e) of
Lemma 1 holds.

We claim that y(t) is bounded. If this is not the case, then there is an
increasing sequence {ηn}∞n=1 such that ηn → ∞ and y(ηn) → ∞ as n → ∞
and y(ηn) = max{y(t) : t1 ≤ t ≤ ηn}. We may choose n large enough such
that ηn − τ > t1. Hence

0 ≥ w(ηn) ≥ y(ηn) + p4y(ηn − τ)− k(ηn) ≥ (1 + p4)y(ηn)− k(ηn).

Since k(ηn) is bounded and 1 + p4 > 0, then w(ηn) > 0 for large n which is
a contradiction. Thus, our claim holds.

The proof of the cases (c), (d), and (e) cannot hold are similar to the
corresponding cases in the proof of Theorem 1. If (b) holds, then as in proof
of Theorem 1 we obtain lim inft→∞ y(t) = 0. Hence, limt→∞ z(t) = 0 by
Lemma 3. Consequently,

0 = lim sup
t→∞

z(t) ≥ lim sup
t→∞

(y(t) + p4y(t− τ))

≥ lim sup
t→∞

y(t) + lim inf
t→∞

(p4y(t− τ))

= lim sup
t→∞

y(t) + p4 lim sup
t→∞

y(t− τ)

= (1 + p4) lim sup
t→∞

y(t).



166 A. K. Tripathy, S. Panigrahi and R. Basu

Since 1 + p4 > 0, lim supt→∞ y(t) = 0. Hence, limt→∞ y(t) = 0. This com-
pletes the proof of the theorem. �

Corollary 5. Under the conditions of Theorem 5, every unbounded so-
lution of (H) oscillates.

Theorem 6. Assume that conditions (H0), (H1), (H3), (H4), and (H8)
hold. If −∞ < p5 ≤ p(t) < p6 < −1, then every bounded solution of (H)
either oscillates or tends to zero as t→∞.

Proof. Let y(t) be bounded nonoscillatory solution of (H), on [t0,∞),
t0 ≥ 0. With (5), (6), and (7) as above, we obtain (8) for t ≥ t0 + ρ. Hence
from Lemma 1, w(t) is monotonic on [t1,∞), t1 ≥ t0 + ρ. If w(t) > 0 for
t ≥ t1, then one of the cases (a) or (b) of Lemma 1 holds. Consequently,
w(t) > RT (r(t)w′′(t))′ for t ≥ T > t1 by Lemma 2. Moreover, w(t) > y(t).
Choose t2 ∈ [T,∞) such that t−α ≥ T for all t ∈ [t2,∞). Then, y(t−α) >
RT (t− α)(r(t− α)w′′(t− α))′ for t ≥ t2, and (8) becomes∫ ∞

t2

q(t)G(RT (t− α))dt <∞,

which contradicts (H8) since G, RT are inceasing. Hence, w(t) < 0 for
t ≥ t1, so one of the cases (b), (c), (d) or (e) of Lemma 1 holds.

In case (b), since w(t) < 0, w′(t) > 0, and limt→∞ k(t) exists, we have
limt→∞ z(t) exists. Furthermore, limt→∞(r(t)w′′(t))′ exists. Integrating (8)
from t2 to t, we obtain ∫ ∞

t2

q(t)G(y(t− α))dt <∞,

which implies that lim inft→∞y(t) = 0 = lim inft→∞y(t − α) due to (H8).
Hence, limt→∞ z(t) = 0 by Lemma 3. Therefore,

0 = lim inf
t→∞

z(t) = lim inf
t→∞

(y(t) + p(t)y(t− α))

≤ lim sup
t→∞

y(t) + lim inf
t→∞

(p(t)y(t− α))

= lim sup
t→∞

y(t) + p6 lim sup
t→∞

y(t− α)

= (1 + p6) lim sup
t→∞

y(t).

Since (1 + p6) < 0, we have lim supt→∞ y(t) ≤ 0, so limt→∞ y(t) = 0.
Cases (c) and (d) are not possible since w(t) < 0 for t ≥ t1, y(t) is

bounded, and limt→∞ k(t) exists.



Oscillatory and asymptotic behavior . . . 167

If Case (e) holds, we have r(t)w′′(t) is nondecreasing on [t1,∞). Hence
t > t2 ≥ t1, r(t)w′′(t) ≥ r(t2)w′′((t2) > 0, so

tw′′(t) ≥ r(t2)w′′(t)
t

r(t)
.

Integrating the above inequality from t2 to t, we obtain

tw′(t) ≥ w(t)− w(t2) + t2w
′(t2) + r(t2)w

′′(t2)

∫ t

t2

s

r(s)
ds,

that is, tw′(t) > 0 for large t due to (H0), is a contradiction. This completes
the proof of theorem. �

3. Oscillation properties of (NH)

This section is devoted to study the oscillatory and asymptotic behavior
of solutions of forced equations (NH) with suitable forcing functions. Our
attention is restricted to the forcing functions which are eventually change
sign. We have the following hypotheses regarding f(t).

(H13) There exists F ∈ C2([0,∞),R) such that −∞ < lim inft→∞ F (t) <
0 < lim supt→∞ F (t) <∞, rF ′′ ∈ C2([0,∞),R) and (rF ′′)′′ = f .

(H14) There exists F ∈ C2([0,∞),R) such that lim inft→∞ F (t) = −∞,
lim supt→∞ F (t) =∞, rF ′′ ∈ C2([0,∞),R) and (rF ′′)′′ = f .

Theorem 7. Let 0 ≤ p(t) ≤ p1 <∞. Assume that (H0)− (H2), (H11),
(H12), and (H14) hold. If

(H15) lim sup
t→∞

∫ t

α
Q(s)G(F (s− α))ds = +∞ and

lim inf
t→∞

∫ t

α
Q(s)G(F (s− α))ds = −∞,

then equation (NH) is oscillatory.

Proof. Let y(t) be a non oscillatory solution of (NH) such that y(t) > 0
for t ≥ t0 > 0. Defining z(t), k(t), w(t) as in (5), (6) and (7), respectively,
equation (NH) becomes

(14) (r(t)w′′(t))′′ + q(t)G(y(t− α)) = f(t).

Let

(15) v(t) = w(t)− F (t) = z(t)− k(t)− F (t).
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Then, for t ≥ t0 + ρ, equation (NH) becomes

(16) (r(t)v′′(t))′′ = −q(t)G(y(t− α)) ≤ 0.

Thus, v(t) is monotonic on [t1,∞), t1 > t0 + ρ. Suppose v(t) > 0 for t ≥ t1
so that Case (a) or (b) of Lemma 1 holds. Then z(t) > k(t) + F (t) > F (t)
for t ≥ t1. Applying (H2), and (H11) yields

0 = (r(t)v′′(t))′′ + q(t)G(y(t− α)) +G(p1)(r(t− τ)v′′(t− τ))′′(17)

+ G(p1)q(t− τ)G(y(t− α− τ))

≥ (r(t)v′′(t))′′ +G(p1)(r(t− τ)v′′(t− τ))′′

+ λQ(t)G(y(t− α) + p1y(t− α− τ))

≥ (r(t)v′′(t))′′ +G(p1)(r(t− τ)v′′(t− τ))′′

+ λQ(t)G(z(t− α))

≥ (r(t)v′′(t))′′ +G(p1)(r(t− τ)v′′(t− τ))′′

+ λQ(t)G(F (t− α))

for t ≥ t2 > t1. Integrating the inequality (17) from t2 + α to t and taking
lim sup as t→∞, we get

lim sup
t→∞

∫ t

t2+α
Q(s)G(F (s− α))ds <∞,

which is a contradiction to (H15).
Therefore, v(t) < 0 for t ≥ t1. Thus any one of the cases (b), (c), (d) or

(e) of Lemma 1 holds. Since −∞ ≤ limt→∞ v(t) ≤ 0, then for each these
cases z(t) = v(t) + k(t) + F (t) implies that

lim inf
t→∞

z(t) = lim inf
t→∞

[k(t) + v(t) + F (t)]

≤ lim sup
t→∞

k(t) + lim inf
t→∞

[v(t) + F (t)]

≤ lim
t→∞

k(t) + lim sup
t→∞

v(t) + lim inf
t→∞

F (t)→ −∞,

that is, z(t) < 0 for large t, a contradiction. This completes the proof of the
theorem. �

Theorem 8. Let −1 < p(t) ≤ 0. Suppose that (H0), (H1), (H12), and
(H14) hold. If

(H16) lim sup
t→∞

∫ t

α
q(s)G(F (s− α))ds = +∞ and

lim inf
t→∞

∫ t

α
q(s)G(F (s− α))ds = −∞,

then every bounded solution of (NH) oscillates.
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Proof. Proceeding as in the proof of the Theorem 7, we obtain (16) for
t ≥ t1 ≥ t0 + ρ. Thus, v(t) is monotonic, so v(t) > 0 or v(t) < 0 for large
t. If v(t) > 0 for t ≥ t1, then either case (a) or case (b) of Lemma 1 holds
for t ≥ t1. Since v(t) is monotonic, z(t) > z(t) − k(t) > F (t) implies that
z(t) > F (t), so y(t) > z(t) > F (t) for t ≥ t1. Choose t2 ∈ [t1,∞) such that
t−α ≥ t2 for all t ∈ [t2,∞). Hence, for t ≥ t2, y(t−α) > z(t−α) > F (t−α).
From (16), we have

q(t)G(F (t− α)) ≤ q(t)G(y(t− α)) = −(r(t)v′′(t))′′

for t ≥ t2. An integration yields a contradiction to (H16).
Now assume v(t) < 0 for t ≥ t1. Thus, z(t)− k(t) < F (t), and condition

(H14) then implies that lim inft→∞ z(t) = −∞. This contradicts the fact
that y(t) is bounded and completes the proof of theorem. �

Theorem 9. Assume that (H0) − (H2), (H11) − (H13), (H15) hold. If
0 ≤ p(t) ≤ p1 <∞ holds, then every unbounded solution of (NH) oscillates.

Proof. Let y(t) be an unbounded nonoscillatory solution of (NH) such
that y(t) > 0 for t ≥ t0. Using (5) - (7) and (14), we obtain, inequality (16)
for t ≥ t0 + ρ. Thus, v(t) is monotonic on [t1,∞), t1 > t0 + ρ. First assume
v(t) > 0 for all t ≥ t1. Proceeding as in the proof of the Theorem 7, we
obtain contradiction. Hence, v(t) < 0 for t ≥ t1. From Lemma 1, it follows
that any one of the cases (b), (c), (d) or (e) holds. In case (b), limt→∞ v(t)
exists and hence z(t) = v(t) + k(t) + F (t), implies that

(18) y(t) ≤ v(t) + k(t) + F (t).

That is, y(t) is bounded, which is a contradiction. For each of the cases (c),
(d) or (e), v(t) is a nonincreasing function on [t1,∞), so let limt→∞ v(t) = l,
l ∈ [−∞, 0). If l = −∞, then (18) yields

lim inf
t→∞

y(t) ≤ lim sup
t→∞

v(t) + lim inf
t→∞

(k(t) + F (t))

≤ lim sup
t→∞

v(t) + lim sup
t→∞

k(t) + lim inf
t→∞

F (t)

= lim
t→∞

v(t) + lim
t→∞

k(t) + lim inf
t→∞

F (t)

that is, lim inft→∞ y(t) = −∞, which is a contradiction.
If −∞ < l < 0, then in cases (c) and (d), v′(t) is decreasing. Successive

integrations of v′′(t) again show that limt→∞ v(t) = −∞. If Case (e) holds,
y(t) ≤ v(t)+k(t)+F (t) ≤ k(t)+F (t), which contradicts the unboundedness
of y(t). This completes the proof of the theorem. �

Our final theorem in this paper gives sufficient conditions for equation
(NH) to have a bounded positive solution.
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Theorem 10. Let 0 ≤ p(t) ≤ p1 < 1, and (H1) and (H13) hold with

−1

8
(1− p1) < lim inf

t→∞
F (t) < 0 < lim sup

t→∞
F (t) <

1

4
(1− p1).

Furthermore, assume that G and H are Lipschitzian on the intervals of the
form [b, c], 0 < b < c <∞. If∫ ∞

0

s

r(s)

∫ ∞
s

tq(t)dtds <∞,

then (NH) admits a positive bounded solution.

Proof. It is possible to choose t0 > 0 large enough such that for t ≥
t0 > 0, ∫ ∞

t0

t

r(t)

∫ ∞
t

sh(s)dsdt <
1− p1

4L

and ∫ ∞
t0

t

r(t)

∫ ∞
t

sq(s)dsdt <
1− p1

4L
,

where L = max{L1, L2, G(1), H(1)} and L1, L2 are Lipschitz constants of
G and H on [18(1− p1), 1] respectively. Let X = BC([t0,∞),R). Then X is
a Banach Space with respect to supremum norm defined by

||x|| = sup
t≥t0
{|x(t)|}.

Let

S =

{
x ∈ X :

1

8
(1− p1) ≤ x(t) ≤ 1, t ≥ t0

}
.

Hence S is a complete metric space. For y ∈ S, we define

Ty(t) =


Ty(t0 + ρ), t ∈ [t0, t0 + ρ]

−p(t)y(t− τ) + 1
2(1 + p1) + F (t) + k(t),

−
∫∞
t ( s−tr(s)

∫∞
s (u− s)q(u)G(y(u− α))du)ds, t ≥ t0 + ρ

Indeed,

k(t) =

∫ ∞
t

s− t
r(s)

∫ ∞
s

(u− s)h(u)H(y(u− β))duds

≤ H(1)

∫ ∞
t

s

r(s)

∫ ∞
s

uh(u)duds <
1

4
(1− p1)

implies that

Ty(t) <
1 + p1

2
+

1− p1
4

+
1− p1

4
= 1.
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On the other hand,∫ ∞
t

s− t
r(s)

∫ ∞
s

(u− s)q(u)G(y(u− α))duds <
1− p1

4

implies that

Ty(t) > −p1 +
1

2
(1 + p1)−

1

8
(1− p1)−

1

4
(1− p1) =

1

8
(1− p1).

Hence Ty ∈ S, that is, T : S → S.
Next, we show that T is continuous. Let yk(t) ∈ S such that limk→∞ ||yk(t)−

y(t)|| = 0 for all t ≥ t0. Because S is closed, y(t) ∈ S. Indeed,

|(Tyk)− (Ty)| ≤ p(t)|yk(t− τ)− y(t− τ)|

+ |
∫ ∞
t

s− t
r(s)

∫ ∞
s

(u− s)q(u)[G(yk(u− α))−G(y(u− α))]duds|

+ |
∫ ∞
t

s− t
r(s)

∫ ∞
s

(u− s)h(u)[H(yk(u− β))−H(y(u− β))]duds|

≤ p1|yk(t− τ)− y(t− τ)|

+

∫ ∞
t

s− t
r(s)

∫ ∞
s

(u− s)q(u)|G(yk(u− α))−G(y(u− α))|duds

+

∫ ∞
t

s− t
r(s)

∫ ∞
s

(u− s)h(u)|H(yk(u− β))−H(y(u− β))|duds

≤ p1||yk − y||+ L1||yk − y||
∫ ∞
t

s

r(s)

∫ ∞
s

uq(u)duds

+ L2||yk − y||
∫ ∞
t

s

r(s)

∫ ∞
s

uh(u)duds,

implies that

||(Tyk)− (Ty)|| ≤ ||yk − y||
[
p1 +

1− p1
4

+
1− p1

4

]
→ 0

as k →∞. Hence T is continuous.
In order to apply Schauder’s fixed point theorem [3] we need to show that

Ty is precompact. Let y ∈ S. For t2 ≥ t1,

(Ty)(t2)− (Ty)(t1) = p(t2)y(t2 − τ)− p(t1)y(t1 − τ)

+ k(t2)− k(t1) + F (t2)− F (t1)

+

∫ ∞
t1

s− t1
r(s)

∫ ∞
s

(u− s)q(u)G(y(u− α))duds

−
∫ ∞
t2

s− t2
r(s)

∫ ∞
s

(u− s)q(u)G(y(u− α))duds,
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that is,

|(Ty)(t2)− (Ty)(t1)| ≤ |p(t2)y(t2 − τ)− p(t1)y(t1 − τ)|+ |F (t2)− F (t1)|

+ |
∫ ∞
t2

s− t2
r(s)

∫ ∞
s

(u− s)h(u)H(y(u− β))duds

−
∫ ∞
t1

s− t1
r(s)

∫ ∞
s

(u− s)h(u)H(y(u− β))duds|

+ |
∫ ∞
t2

s− t2
r(s)

∫ ∞
s

(u− s)q(u)G(y(u− α))duds

−
∫ ∞
t1

s− t1
r(s)

∫ ∞
s

(u− s)q(u)G(y(u− α))duds|

≤ |p(t2)y(t2 − τ)− p(t1)y(t1 − τ)|+ |F (t2)− F (t1)|

+ |
∫ ∞
t2

s− t1
r(s)

∫ ∞
s

(u− s)h(u)H(y(u− β))duds

−
∫ ∞
t1

s− t1
r(s)

∫ ∞
s

(u− s)h(u)H(y(u− β))duds|

+ |
∫ ∞
t2

s− t1
r(s)

∫ ∞
s

(u− s)q(u)G(y(u− α))duds

−
∫ ∞
t1

s− t1
r(s)

∫ ∞
s

(u− s)q(u)G(y(u− α))duds|

= |p(t2)y(t2 − τ)− p(t1)y(t1 − τ)|+ |F (t2)− F (t1)|

+ |
∫ t2

t1

s− t1
r(s)

∫ ∞
s

(u− s)h(u)H(y(u− β))duds|

+ |
∫ t2

t1

s− t1
r(s)

∫ ∞
s

(u− s)q(u)G(y(u− α))duds|

→ 0 as t2 → t1.

Thus, Ty is precompact. By Schauder’s fixed point theorem T has a fixed
point, that is, Ty = y. Consequently, y(t) is a solution of (NH) on [18(1 −
p1), 1]. This completes the proof of the theorem. �

Remark 4. Theorems similar to Theorem 10 can be proved in other
ranges of p(t).

4. Examples

Example 1.

(y(t) + (e−4t + 1)y(t− 2π))(iv) + 4e4πy(t− 4π)− 100e−4t+θ1−2π(19)

×(1 + e2t−2θ1 sin2(t− θ1))
y(t− θ1)

1 + y2(t− θ1)
= −4et−2π sin t, t ≥ 74,
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where r(t) = 1, p(t) = e−4t + 1, q(t) = 4e4π, h(t) = 100e−4t+θ1−2π(1 +
e2t−2θ1 sin2(t − θ1)), G(u) = u, H(u) = u

1+u2
and f(t) = −4et−2π sin t. In-

deed, if we choose F (t) = et−2π sin t, then (r(t)F ′′(t))′′ = f(t).
Clearly, (H0)− (H2), (H11), (H12), (H14) and (H15) are satisfied. Hence

Theorem 7 can be applied to (19), that is, every unbounded solution of (19)
oscillates. Indeed, y(t) = et sin t is such a solution of (19).

Example 2. Consider

(y(t) + e−t−2πy(t− 2π))(iv) + (4 + 7e−t)e−2πy(t− 2π)(20)

− 24e−t−
π
2 (1 + e−2t+π cos2 t)

y(t− π
2 )

1 + y2(t− π
2 )

= 0, t ≥ 7.

Clearly, (H0) − (H2), (H5), (H11) and (H12) are satisfied. Hence by Theo-
rem 4 every solution of (20) either oscillates or converges to zero as t→∞.
In particular, y(t) = e−t sin t is such a solution of (20).
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