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Abstract. In this paper, we introduce the notation of a-local

function and study its properties in ideal topological space. We

construct a topology τa
∗

for X by using a-open set and an I
on X. We defined a-compatible of τ with ideal and show that

τ is a-compatible with I then τa
∗

= β(I, τ), where β(I, τ) =

{V -I : V ∈ τa(x), I ∈ I} is a basis of τa
∗

Also, The relationships

other local functions such as local function [12, 6] and semi-local

function [7] are introduced.
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1. Introduction

The subject of ideals in topological spaces has been studied by Kura-
towski [8] and Vaidyanathaswamy [13]. Jankovic and Hamlett [6] investi-
gated further properties of ideal space. In this paper, we introduce the no-
tation of a-local function and study its properties in ideal topological space.
We construct a topology τa

∗
for X by using a-open set and an I on X. We

defined a-compatible of τ with ideal and show that τ is a-compatible with
I then τa

∗
= β(I, τ), where β(I, τ) = {V -I : V ∈ τa(x), I ∈ I} is a basis of

τa
∗

(Theorem 4). Also, The relationships other local functions such as local
function [12, 6] and semi-local function [7] are introduced.

2. Preliminaries

A subset A of a space (X, τ) is said to be regular open (resp. regular
closed) [10] if A = int(cl(A)) (resp.A = cl(int(A))). A is called δ-open [11]
if for each x ∈ A, there exist a regular open set G such that x ∈ G ⊂ A.
The complement of δ-open set is called δ-closed. A point x ∈ X is called a
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δ-cluster point of A if int(cl(U)) ∩ A 6= Ø for each open set U containing
x. The set of all δ-cluster points of A is called the δ-closure of A and is
denoted by clδ(A) [11]. The set δ-interior of A [11] is the union of all regular
open sets of X contained in A and its denoted by intδ(A). A is δ-open if
intδ(A) = A. δ-open sets forms a topology τ δ. The collection of all δ-open
sets in X is denoted by δO(X). A subset A of a space (X, τ) is said to
be semi-open [9] if A ⊂ cl(int(A)). The complement of semi-open is said
to be semi-closed. The collection of all semi-open sets in X is denoted by
SO(X). The semi-closure of A in (X, τ) is defined by the intersection of all
semi-closed sets containing A and is denoted by scl(A) [1].
A subset A of a space (X, τ) is said to be a-open (resp. a-closed) [2, 3]

if A ⊂ int(cl(intδ(A))) (resp. cl(int(clδ(A))) ⊂ A. For a topological space
(X, τ), the family of all a-open sets of X forms a topology [2, 3], denoted
by τa, for X. The collection of all a-open sets containing x in X is denoted
by τa(x). Let A be a subset of a space X. The intersection of all a-closed
sets containing A is called a-closure of A [3] and is denoted by aCl(A). The
a-interior of A, denoted by aInt(A), is defined by the union of all a-open
sets contained in A [3].

An ideal I on a topological space (X, τ) is a nonempty collection of
subsets of X which satisfies the following conditions:

(1) A ∈ I and B ⊂ A implies B ∈ I;
(2) A ∈ I and B ∈ I implies A ∪B ∈ I.
An ideal topological space is a topological space (X, τ) with an ideal I

on X and if P (X) is the set of all subsets of X, a set operator (.)∗ : P (X)→
P (X), called a local function [12, 6] of A with respect to τ and I is defined
as follows: for A ⊆ X,

A∗(I, τ) = {x ∈ X | U ∩A /∈ I, for every U ∈ τ(x)}

where τ(x) = {U ∈ τ | x ∈ U}. A Kuratowski closure operator Cl∗(x) =
A ∪ A∗(I, τ). When there is no chance for confusion, we will simply write
A∗ for A∗(I, τ) and τ∗ for τ∗(I, τ). X∗ is often a proper subset of X. The
hypothesis X = X∗ [5] is equivalent to hypothesis τ ∩ I = Ø. For every
ideal topological space there exits a topology τ∗(I) finer than τ generated
by β(I, τ) = {U -A | U ∈ τ andA ∈ I}, but in general β(I, τ) is not always
topology [6]. Let (X, τ, I) be an ideal topological space and A be a subset
of of X. Then A∗(I, τ) = {x ∈ X : U ∩A /∈ I for every U ∈ SO(X,x)} is
called semi local function of A with respect to I and τ [7]. Let (X, I, τ) ba
an ideal topological space. We say that the topology τ is compatible with
the I, denoted τ ∼ I, if the following hold for every A ⊂ X, if for every
x ∈ A there exists a U ∈ τ such that U ∩A ∈ I, then A ∈ I [6].
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Lemma 1 ([4]). Let (X, τ, I) be an ideal topological space, and A, B

subsets of X. Then the following properties hold:

(1) If A ⊆ B, then A∗ ⊆ B∗;

(2) If U ∈ τ, then U ∩A∗ ⊂ (U ∩A)∗;

(3) A∗ = cl(A∗) ⊂ cl(A);

(4) (A ∪B)∗ = A∗ ∪B∗;

(5) (A ∩B)∗ ⊂ A∗ ∪B∗.

3. a-local function

Definition 1. Let (X, τ, I) be an ideal in topological space and A be a

subset of X. Then Aa
∗
(I, τ) = {x ∈ X : U ∩A /∈ I, for every U ∈ τa(x)} is

called a-local function of A with respect to I and τ . We denote simply Aa
∗

for Aa
∗
(I, τ).

Remark 1. The notation of the local function, semi local function are

independent with a-local function notation as the following example.

Example 1. Let X = {x, y, w, z} with a topology τ = {Ø, X, {x, y}} and

I = {Ø, {x} , {y} , {x, y}}. Take A = {w, z}. Then A∗ = {Ø}, A∗ = {z},
Aa

∗
= X.

Remark 2. (1) The minimal ideal is {Ø} in any ideal topological space

(X, τ, I) and the maximal ideal is P (X). It can be deduce that Aa
∗
({Ø})

= aCl(A) 6= cl(A) and Aa
∗
(P (X)) = Ø for every A ⊂ X.

(2) If A ∈ I, then Aa
∗

= Ø.

(3) Neither A ⊂ Aa∗ nor Aa
∗ ⊂ A in general.

Theorem 1. Let (X, τ, I) an ideal in topological space and A, B subsets

of X. Then for a-local functions the following properties hold:

(1) (Ø)a
∗

= Ø,

(2) If A ⊂ B, then Aa
∗ ⊂ Ba∗,

(3) For another ideal J ⊃ I on X, Aa
∗
(J) ⊂ Aa∗(I),

(4) Aa
∗ ⊂ aCl(A),

(5) Aa
∗
(I) = aCl(Aa

∗
) ⊂ aCl(A) (i.e Aa

∗
is an a-closed subset of aCl(A)),
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(6) (Aa
∗
)a

∗ ⊂ Aa∗,

(7) (A ∪B)a
∗

= Aa
∗ ∪Ba∗,

(8) Aa
∗
-Ba∗ = (A-B)a

∗
-Ba∗ ⊂ (A-B)a

∗
,

(9) If U ∈ τa, then U ∩Aa∗ = U ∩ (U ∩A)a
∗ ⊂ (U ∩A)a

∗
,

(10) If U ∈ I, then (A-U)a
∗ ⊂ Aa∗ = (A ∪ U)a

∗
,

Proof. (1) This prove is obvious.

(2) Let x ∈ Aa∗ , then U∩A /∈ I for every U ∈ τa(x). Therefore U∩B /∈ I
for each U ∈ τa(x). Since A ⊂ B implies that U ∩A ⊂ U ∩B. If U ∩B ∈ I
then, U ∩A ∈ I. Hence x ∈ Ba∗ and Aa

∗ ⊂ Ba∗ .

(3) Let x ∈ Aa∗(J). Then for every τa(x), U ∩ A /∈ J . This implies that
U ∩A /∈ I, so x ∈ Aa∗(I). Hence Aa

∗
(J) ⊂ Aa∗(I).

(4) Let x ∈ Aa∗ . Then for every a-open set containing x, Ux ∩ A /∈ I.
This implies that Ux ∩A 6= Ø. Hence x ∈ a-cl(A).

(5) Aa
∗ ⊂ aCl(Aa∗) hold in general. Let x ∈ aCl(Aa∗). Then Aa

∗∩U 6= Ø
for every U ∈ τa(x). Therefore, there exist some y ∈ Aa∗ ∩U and U ∈ τa(x)
since y ∈ Aa∗ , A ∩ U /∈ I and hence x ∈ Aa∗ . Thus aCl(Aa

∗
) ⊂ Aa

∗
. Now,

Let aCl(Aa
∗
) = Aa

∗
, Then A ∩ U /∈ I for every U ∈ τa(x). This implies

that A ∩ U 6= Ø for every U ∈ τa(x) and so, x ∈ aCl(X,x). Consequently,
Aa

∗
= aCl(Aa

∗
) ⊂ aCl(A) and Aa

∗
is an a-closed.

(6) Let x ∈ (Aa
∗
)a

∗
. Then, for every U ∈ τa(x), Aa

∗ ∩ U /∈ I and hence
Aa

∗ ∩ U 6= Ø for every U ∈ τa(x). Thus we have A ∩ U /∈ I and x ∈ Aa∗ .
(7) A ⊂ A ∪ B , and B ⊂ A ∪ B and Aa

∗ ∪ Ba∗ ⊂ (A ∪ B)a
∗

by (1).
Conversely, let x ∈ (A∪B)a

∗
. Then for every U ∩ (A∪B) /∈ I = (U ∩A)∪

(U ∩ B) /∈ I. Therefore, (U ∩ A) /∈ I or (U ∩ B) /∈ I. This implies that
x ∈ Aa∗ or x ∈ Ba∗ , that is, x ∈ Aa∗ ∪Ba∗ . So we obtain the equality.

(8) Since A-B ⊂ A, by (1), (A-B)a
∗ ⊂ Aa

∗
and hence (A-B)a

∗
-Ba∗ ⊂

Aa
∗
-Ba∗ . Conversely A ⊂ (A-B)∪B, by (7), Aa

∗ ⊂ (A-B)a
∗∪Ba∗ and hence

Aa
∗
-Ba∗ ⊂ (A-B)a

∗ ∪Ba∗)-Ba∗ . Therefore, Aa
∗
-Ba∗ ⊂ (A-B)a

∗
-(Ba∗ ∪Ba∗)

and so, Aa
∗
-Ba∗ ⊂ (A-B)a

∗
-Ba∗ .

(9) Assume U ∈ τa(x) and x ∈ U ∩ Aa∗ . Then x ∈ U and x ∈ Aa∗ . For
V ∈ τa(x), U ∩ V ∈ τa(x) [3]. Thus V ∩ (U ∩ A) = (U ∩ V ) ∩ A /∈ I. So
x ∈ (U∩A)a

∗
. Therefore U∩Aa∗ ⊂ (U∩A)a

∗
. Also U∩Aa∗ ⊂ U∩(U∩A)a

∗
,

since A∩U ⊂ A. Then by (1), (A∩U)a
∗ ⊂ Aa∗ and U∩(A∩U)a

∗ ⊂ U∩Aa∗ .
So we get the result.

(10) By (7) and Remark 2(2) (A ∪ U)a
∗

= Aa
∗ ∪ Ua∗ = Aa

∗ ∪ Ø = Aa
∗
,

since A-U ⊂ A by (1), (A-U)a
∗ ⊂ (A)a

∗
. So, we get the result. �
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Theorem 2. Let (X, τ) a topological space, I1 and I2 be ideals on X

and let A be a subset of X. Then the following properties hold:

(1) If I1 ⊂ I2, then Aa
∗
(I2) ⊂ Aa

∗
(I1);

(2) Aa
∗
(I1 ∩ I2) = Aa

∗
(I1) ∪Aa

∗
(I2).

Proof. (1) Let I1 ⊂ I2 and x ∈ Aa∗(I2). Then A ∩ U /∈ I2 for every
U ∈ τa(x) and hence A ∩ U /∈ I1,Then x ∈ Aa

∗
(I1). This shows that

Aa
∗
(I2) ⊂ Aa

∗
(I1).

(2) Since I1 ∩ I2 ⊂ I1 and I1 ∩ I2 ⊂ I2, by Theorem 2 (1) we have.
Aa

∗
(I1) ⊂ Aa

∗
(I1∩I2) and Aa

∗
(I2) ⊂ Aa

∗
(I1∩I2). Hence we have Aa

∗
(I1)∪

Aa
∗
(I2) ⊂ Aa

∗
(I1 ∩ I2). Conversely let x ∈ Aa∗(I1 ∩ I2). Then for every

U ∈ τa(x), U ∩ A /∈ I1 ∩ I2 hence U ∩ A /∈ I1 or U ∩ A /∈ I2. This shows
that x ∈ Aa∗(I1) or x ∈ Aa∗(I2) and x ∈ Aa∗(I1) ∪Aa

∗
(I2). So, we get the

result. �

Lemma 2. Let (X, τ, I) be an ideal ideal topological space. If U ∈ τa(x),

then U ∩Aa∗ = U ∩ (U ∩A)a
∗ ⊆ (U ∩A)a

∗
for any subset A of X.

Proof. Suppose that U ∈ τa(x) and x ∈ U ∩ Aa∗ . Then x ∈ U and
x ∈ Aa∗ . Let V be any a-open set containing x. Then V ∩ U ∈ τa(x) and
V ∩ (U ∩ A) = (V ∩ U) ∩ A /∈ I. This shows that x ∈ (U ∩ A)a

∗
and hence

we obtain U ∩ Aa∗ ⊆ (U ∩ A)a
∗
. Moreover, U ∩ Aa∗ ⊆ U ∩ (U ∩ A)a

∗
and

by Theorem 1 (U ∩ A)a
∗ ⊆ Aa

∗
and U ∩ (U ∩ A)a

∗ ⊆ U ∩ Aa∗ . Therefore,
U ∩Aa∗ = U ∩ (U ∩A)a

∗
. �

4. The open sets of τa
∗

In this section we have investigated τa
∗

finer than τa in the term of the
closure operator aCl∗(A) = A∪Aa∗ . A basis β(I, τ) for τa

∗
can be described

as follows: A subset A of an ideal space (X, I, τ) is said to be τa
∗
-closed if

Aa
∗ ⊂ A. Thus we have U ∈ τa∗ if and only if X-U is τa

∗
- closed which

implies (X-U)a
∗ ⊂ (X-U) and hence U ⊂ X-(X-U)a

∗
. Thus if x ∈ U ,

x /∈ (X-U)a
∗
, then there exist V ∈ τa(x) such that V ∩ (X-U) ∈ I. Hence,

let I = V ∩ (X-U) and we have x ∈ V -I ⊂ U where V ∈ τa(x) and I ∈ I.
So the basis for τa

∗
is β(I, τ) = {V -I : V ∈ τa(x), I ∈ I} and β is not, in

general, a topology. See Theorem 4.

Theorem 3. Let (X, τ, I) be an ideal topological space, aCl∗(A) = Aa
∗∪

A and A, B be subsets of X. Then

(1) aCl∗(Ø) = Ø.

(2) A ⊆ aCl∗(A).



10 W. F. Al-Omeri, Mohd. Salmi Md. Noorani and A. Al-omari

(3) aCl∗(A ∪B) = aCl∗(A) ∪ aCl∗(B).

(4) aCl∗(A) = aCl∗(aCl∗(A)).

Proof. By Theorem 1, we obtain
(1) aCl∗(Ø) = (Ø)a

∗ ∪Ø = Ø.

(2) A ⊆ A ∪Aa∗ = aCl∗(A).

(3) aCl∗(A ∪ B) = (A ∪ B)a
∗ ∪ (A ∪ B) = (Aa

∗ ∪ Ba∗) ∪ (A ∪ B) =
aCl∗(A) ∪ aCl∗(B).

(4) aCl∗(aCl∗(A)) = aCl∗(Aa
∗∪A) = (Aa

∗∪A)a
∗∪(Aa

∗∪A) = ((Aa
∗
)a

∗∪
Aa

∗
) ∪ (Aa

∗ ∪A) = Aa
∗ ∪A = aCl∗(A). �

Lemma 3. Let (X, τ, I) be an ideal topological space and A,B be subsets

of X. Then Aa
∗ −Ba∗ = (A−B)a

∗ −Ba∗.

Proof. We have by Theorem 1 Aa
∗

= [(A − B) ∪ (A ∩ B)]a
∗

= (A −
B)a

∗ ∪ (A ∩ B)a
∗ ⊆ (A− B)a

∗ ∪ Ba∗ . Thus Aa
∗ − Ba∗ ⊆ (A− B)a

∗ − Ba∗ .
By Theorem 1, (A− B)a

∗ ⊆ Aa
∗

and hence (A− B)a
∗ − Ba∗ ⊆ Aa

∗ − Ba∗ .
Hence Aa

∗ −Ba∗ = (A−B)a
∗ −Ba∗ . �

Lemma 4. Let (X, τ, I) be an ideal ideal topological space and A, B be

subsets of X. Then

(1) If A ⊆ B, then aCl∗(A) ⊆ aCl∗(B).

(2) aCl∗(A ∩B) ⊆ aCl∗(A) ∩ aCl∗(B).

(3) If U is a-open, then U ∩ aCl∗(A) ⊆ aCl∗(U ∩A).

Proof. (1) Since A ⊆ B, by Theorem 1 we have aCl∗(A) = A ∪ Aa∗ ⊆
B ∪Ba∗ = aCla

∗
(B).

(2) This is obvious by (1).

(3) Since U is a-open, by Lemma 2 we have U∩aCla∗(A) = U∩(A∪Aa∗) =
(U ∩A) ∪ (U ∩Aa∗) ⊆ (U ∩A) ∪ (U ∩A)a

∗
= aCl∗(U ∩A). �

Theorem 4. Let (X, I, τ) be an ideal topological space. Then β(I, τ) is

a basis for τa
∗
.

Proof. Since Ø ∈ I, Then V -Ø = V ∈ τa(x) and τa(x) ⊂ β from
which it follows that X = ∪β (recall that a - open sets is forms a topology).
Also β1, β2 ∈ β, and I1, I2 ∈ I, we have β1 = V1-I1 and β2 = V2-I2, where
V1, V2 ∈ τa(x). Then β1 ∩ β2 = (V1-I1) ∩ (V2-I2) = (V1 ∩ (X-I1)) ∩ (V2 ∩
(X-I2)) = (V1 ∩ V2)-(I1 ∪ I2) ∈ β, where V1 ∩ V2 ∈ τa(x), I1 ∪ I2 ∈ I. �

Remark 3. The topology τa
∗

finer than τa. See the following example.
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Example 2. Let X = {a, b, c, d}, τ = {Ø, X, {a}, {c}, {a, b}, {a, c},
{a, b, c}, {a, c, d}}, I = {Ø, {b}}. Set A = {a, c}. Then A ∈ τa

∗
, but A

it is not a-open. So A /∈ τa(x).

Example 3. Let X = {a, b, c, d}, τ = {Ø, X, {a}, {c}, {a, b}, {a, c},
{a, b, c} , {a, c, d}}, I = {Ø, {b}}. Set A = {a, c, d}. Then A ∈ τa

∗
, but

A /∈ τa(x).

The following examples show that β(I, τ) is not a topology in general.

Example 4. Let X = {a, b, c, d}, τ = {Ø, X, {c}, {d}, {c, d}, {a, c, d}},
I = {Ø, {c}, {d}, {c, d}} be ideal in X, where Intδ(A) = {c, d} is the union

of all regular open set of X contained in A and {Ø, X, {c, d}} ∈ τa. Consider

the collection of subsets of X defined as β(I, τ) = {V -I : V ∈ τa(x), I ∈ I}
= {Ø, X, {c}, {d}, {a, b}, {a, b, c}, {a, b, d}}. Thus β(I, τ) is not open under

union of any collection of open sets (i.e {c} ∪ {d} /∈ β(I, τ)) and hence it is

not a topology.

5. a-compatible topology with an ideal

Definition 2. Let (X, τ, I) be an ideal topological space. Then τ is said

to be a-compatible with respect to I, denoted by τ ∼a I if and only if, for

every x ∈ A there exist U ∈ τa(x) such that U ∩A ∈ I, then A ∈ I.

Theorem 5. Let (X, τ, I) be an ideal topological space and A subset of

X. Then the following are equivalent:

(1) τ ∼a I,

(2) If a subset A of X has a cover a- open sets of whose intersection with

A is in I, then A is in I, in other words Aa
∗

= Ø, then A ∈ I ,

(3) For every A ⊂ X, if A ∩Aa∗ = Ø, A ∈ I,

(4) For every A ⊂ X, A-Aa
∗ ∈ I,

(5) For every A ⊂ X, if A contains no nonempty subset B with B ⊂ Ba∗,

then A ∈ I.

Proof. (1)⇒ (2) The proof is obvious.

(2) ⇒ (3) Let A ⊂ X and let x ∈ A. Then x /∈ Aa
∗

and there exists
Ux ∈ τa(x) such that Ux ∩ A ∈ I. Since A has a cover A ⊂ ∪{Ux : x ∈ A}
and Ux ∈ τa(x) by (2), A ∈ I.
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(3) ⇒ (4) For any A ⊂ X, since A ∩ Aa∗ = Ø, then A-Aa
∗ ⊂ A and by

Theorem 1(1) (A-Aa
∗
)a

∗ ⊂ Aa∗ and (A-Aa
∗
)a

∗∩(A−Aa∗) ⊂ (A-Aa
∗
)∩Aa∗ =

Ø. Then by (3) we have A-Aa
∗ ∈ I.

(4)⇒ (5) By (4), for any A ⊂ X, A-Aa
∗ ∈ I. A = (A-Aa

∗
)∪(A∩Aa∗) and

by Theorem 1(4), Aa
∗

= (A-Aa
∗
)a

∗ ∪ (A∩Aa∗)a
∗

= (A∩Aa∗)a
∗
. Therefore,

we have Aa
∗ ∩ A = (A ∩ Aa∗)a

∗ ∩ A, then Aa
∗ ∩ A ⊂ (A ∩ Aa∗)a

∗
, and

(A∩Aa∗) ⊂ A. By assumption (A∩Aa∗) = Ø. So A contains no nonempty
subset. Hence A-Aa

∗
= A by (4) A ∈ I.

(5)⇒ (1) Let A ⊂ X and assume that for every x ∈ A, there exists U ∈
τa(x) such that U ∩A ∈ I. Then A∩Aa∗ = Ø. Since (A-Aa

∗
)a

∗ ∩ (A-Aa
∗
) ⊂

(A-Aa
∗
)∩Aa∗ = Ø. So, A-Aa

∗
contains no nonempty subset B with B ⊂ Ba∗ .

By (5), A-Aa
∗ ∈ I and hence A = A ∩ (X-Aa

∗
) = A-Aa

∗ ∈ I. �

Theorem 6. Let (X, τ, I) be an ideal ideal topological space. If τ is

a-compatible with I, then the following properties are equivalent:

(1) For every A ⊆ X, A ∩Aa∗ = Ø implies that Aa
∗

= Ø;

(2) For every A ⊆ X, (A−Aa∗)a
∗

= Ø;

(3) For every A ⊆ X, (A ∩Aa∗)a
∗

= Aa
∗
.

Proof. First, we show that (1) holds if τ is a-compatible with I. Let
A be any subset of X and A ∩ Aa∗ = Ø. By Theorem 5, A ∈ I and by
Remark 2(3) Aa

∗
= Ø.

(1) ⇒ (2) Assume that for every A ⊆ X, A ∩ Aa∗ = Ø implies that
Aa

∗
= Ø. Let B = A−Aa∗ , then

B ∩Ba∗ = (A−Aa∗) ∩ (A−Aa∗)a
∗

= (A ∩ (X −Aa∗)) ∩ (A ∩ (X −Aa∗))a
∗

⊆ [A ∩ (X −Aa∗)] ∩ [Aa
∗ ∩ (X −Aa∗)a

∗
] = Ø.

By (1), we have Ba∗ = Ø. Hence (A−Aa∗)a
∗

= Ø.

(2)⇒ (3) Assume for every A ⊆ X, (A−Aa∗)a
∗

= Ø.

A = (A−Aa∗) ∪ (A ∩Aa∗)

Aa
∗

= [(A−Aa∗) ∪ (A ∩Aa∗)]a
∗

= (A−Aa∗)a
∗ ∪ (A ∩Aa∗)a

∗

= (A ∩Aa∗)a
∗
.

(3)⇒ (1) Assume for every A ⊆ X, A∩Aa∗ = Ø and (A∩Aa∗)a
∗

= Aa
∗
.

This implies that Ø = Øa∗ = Aa
∗
. �
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Theorem 7. Let (X, τ, I) be an ideal topological space, then the following

properties are equivalent:

(1) τa ∩ I = Ø;

(2) If I ∈ I, then aInt(I) = Ø;

(3) For every G ∈ τa, G ⊆ Ga∗ ;

(4) X = Xa∗.

Proof. (1)⇒ (2) Let τa ∩ I = Ø and I ∈ I. Suppose that x ∈ aInt(I).
Then there exists U ∈ τa such that x ∈ U ⊆ I. Since I ∈ I and hence
Ø 6= {x} ⊆ U ∈ τa ∩ I. This is contrary that τa ∩ I = Ø. Therefore,
aInt(I) = Ø.

(2)⇒ (3) Let x ∈ G. Assume x /∈ Ga∗ then there exists Ux ∈ τa(x) such
that G ∩ Ux ∈ I. By (2), x ∈ G ∩ Ux = aInt(G ∩ Ux) = Ø. Hence x ∈ Ga∗

and G ⊆ Ga∗ .

(3)⇒ (4) Since X is a-open, then X = X∗.

(4) ⇒ (1) X = Xa∗ = {x ∈ X : U ∩X = U /∈ I for each a-open set U
containing x}. Hence τa ∩ I = Ø. �

Theorem 8. Let (X, τ, I) be an ideal topological space and τ be a-compatible

with I. Then for every G ∈ τa and any subset A of X, (G ∩ A)a
∗

=

(G ∩Aa∗)a
∗

= aCl(G ∩Aa∗).

Proof. (1) Let G ∈ τa. Then by Lemma 2, G ∩ Aa∗ = G ∩ (G ∩ A)a
∗ ⊆

(G∩A)a
∗

and hence (G∩Aa∗)a
∗ ⊆ ((G∩A)a

∗
)a

∗ ⊆ (G∩A)a
∗

by Theorem 1.
(2) Now by using Theorem 1 and Theorem 6, we obtain (G∩ (A−Aa∗))a

∗ ⊆
Ga

∗ ∩ (A − Aa∗)a
∗

= Ga
∗ ∩ Ø = Ø. Moreover, (G ∩ A)a

∗ − (G ∩ Aa∗)a
∗ ⊆

((G ∩ A) − (G ∩ Aa∗))a
∗

= (G ∩ (A − Aa
∗
))a

∗
= Ø, which implies that

(G∩A)a
∗ ⊆ (G∩Aa∗)a

∗
. By (1) and (2), we obtain (G∩A)a

∗
= (G∩Aa∗)a

∗
.

By Theorem 1, (G∩A)a
∗

= (G∩Aa∗)a
∗ ⊆ aCl(G∩Aa∗). Also, in view of

Lemma 2, we have G∩Aa∗ ⊆ (G∩A)a
∗

and hence aCl(G∩Aa∗) ⊆ aCl((G∩
A)a

∗
) = (G ∩ A)a

∗
. Consequently, we obtain (G ∩ Aa∗)a

∗
= (G ∩ A)a

∗
=

aCl(G ∩Aa∗). �
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