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1. Introduction, definitions and results

In this paper by meromorphic functions we will always mean meromor-
phic functions in the complex plane. We shall use the standard notations of
value distribution theory :

T (r, f), m(r, f), N(r,∞; f), N(r,∞; f), . . .

(see [10]). It will be convenient to let E denote any set of positive real
numbers of finite linear measure, not necessarily the same at each occurrence.
For any non-constant meromorphic function h(z) we denote by S(r, h) any
quantity satisfying

S(r, h) = o(T (r, h)) as r −→∞, r 6∈ E.

For any constant a, we define

Θ(a, f) = 1− lim sup
r−→∞

N(r, a; f)

T (r, f)
.

If for some a ∈ C∪{∞}, f and g have the same set of a-points with same
multiplicities then we say that f and g share the value a CM (counting
multiplicities). If we do not take the multiplicities into account, f and g are
said to share the value a IM (ignoring multiplicities).
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Let S be a set of distinct elements of C ∪ {∞} and Ef (S) =
⋃

a∈S{z :
f(z)−a = 0}, where each a-point of f is counted according to its multiplicity.
Denote by Ef (S) the reduced form of Ef (S). If Ef (S) = Eg(S) we say that
f and g share the set S CM. On the other hand if Ef (S) = Eg(S), we say
that f and g share the set S IM.

The following question is due to F. Gross [8] which is a very interesting
question.

Question A. Can one find two finite sets Sj (j = 1, 2) such that any
two non-constant entire functions f and g satisfying Ef (Sj) = Eg(Sj) for
j = 1, 2 must be identical ?

In [8] Gross wrote If the answer to Question A is affirmative it would be
interesting to know how large both sets would have to be ?

Corresponding to the Gross’ question the following question [20] is a
natural one.

Question B. Can one find two finite sets Sj (j = 1, 2) such that any two
non-constant meromorphic functions f and g satisfying Ef (Sj) = Eg(Sj) for
j = 1, 2 must be identical ?

The shared set problems relative to a meromorphic function has been
studied by many authors. {see [1]-[7], [9], [11], [15], [17]-[18], [20]-[27]}.

In [6] Fang and Lahiri exhibited the following range set S with smaller
cardinalities than that obtained by the previous authors, where some re-
strictions on the poles of f and g are imposed.

Theorem A ([6]). Let S = {z : zn + azn−1 + b = 0} where n(≥ 7) be an
integer and a and b be two nonzero constants such that zn+azn−1+b = 0 has
no multiple root. If f and g are two non-constant meromorphic functions
having no simple poles such that Ef (S) = Eg(S) and Ef ({∞}) = Eg({∞})
then f ≡ g.

In 2001 an idea of gradation of sharing of values and sets known as
weighted sharing has been introduced in {[13], [14]} which measure how
close a shared value is to being shared CM or to being shared IM. Below we
are giving the notion.

Definition 1 ([13, 14]). Let k be a nonnegative integer or infinity. For
a ∈ C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f , where an
a-point of multiplicity m is counted m times if m ≤ k and k + 1 times if
m > k. If Ek(a; f) = Ek(a; g), we say that f, g share the value a with
weight k.

The definition implies that if f , g share a value a with weight k then z0
is an a-point of f with multiplicity m (≤ k) if and only if it is an a-point
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of g with multiplicity m (≤ k) and z0 is an a-point of f with multiplicity
m (> k) if and only if it is an a-point of g with multiplicity n (> k), where
m is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with
weight k. Clearly if f , g share (a, k) then f, g share (a, p) for any integer p,
0 ≤ p < k. Also we note that f , g share a value a IM or CM if and only if
f , g share (a, 0) or (a,∞) respectively.

Definition 2 ([13]). Let S be a set of distinct elements of C∪{∞} and k
be a nonnegative integer or∞. We denote by Ef (S, k) the set

⋃
a∈S Ek(a; f).

With the notion of weighted sharing of sets Lahiri [15] improved Theorem
A as follows.

Theorem B ([15]). Let S be defined as in Theorem A and n(≥ 7) be an
integer. If for two non-constant meromorphic functions f and g, Θ(∞, f) +
Θ(∞, g) > 1, Ef (S, 2) = Eg(S, 2) and Ef ({∞},∞) = Eg({∞},∞) then
f ≡ g.

Suppose that the polynomial (see [9]) P (w) is defined by

(1) P (w) = awn − n(n− 1)w2 + 2n(n− 2)bw − (n− 1)(n− 2)b2

where n ≥ 3 is an integer and a and b are two nonzero complex numbers
satisfying abn−2 6= 2. We consider

(2) R(w) =
awn

n(n− 1)(w − α1)(w − α2)
,

where α1 and α2 are two distinct roots of

n(n− 1)w2 − 2n(n− 2)bw + (n− 1)(n− 2)b2 = 0.

So we observe that

(3) R(w)− 1 =
P (w)

n(n− 1)(w − α1)(w − α2)
.

We have from (1)

P
′
(w) = nawn−1 − 2n(n− 1)w + 2n(n− 2)b(4)

=
n

w
[awn − 2(n− 1)w2 + 2(n− 2)bw].

Noting that P
′
(0) 6= 0, we can get from (4) and P

′
(w) = 0 that

awn − 2(n− 1)w2 + 2(n− 2)bw = 0.
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Now at each root of P
′
(w) = 0 we get

P (w) = awn − n(n− 1)w2 + 2n(n− 2)bw − (n− 1)(n− 2)b2

= 2(n− 1)w2 − 2(n− 2)bw − n(n− 1)w2

+ 2n(n− 2)bw − (n− 1)(n− 2)b2

= −(n− 1)(n− 2)(w − b)2

So only w = b can make P (b) = P
′
(b) = 0. But P

′
(b) = nb(abn−2 − 2) 6= 0,

which implies that a zero of P
′
(w) is not a zero of P (w). In other words

each zero of P (w) is simple.
Recently the present first author has ascertained the fact that replacing

the range set in Theorem B by the zero sets of P (w) better results can be
achieved. Below we are stating Banerjee’s [2] result.

Theorem C. ([2]). Let S = {w | P (w) = 0}, where P (w) is given by
(1) and n ≥ 6. Suppose that f and g are two non-constant meromorphic
functions satisfying Ef (S, 2) = Eg(S, 2) and Ef ({∞},∞) = Eg({∞},∞)
and Θ∗f + Θ∗g + min{Θ(b, f),Θ(b, g)} > 8 − n, where Θ∗f = 2 Θ(0, f) +
Θ(∞, f), Θ(b, f) and Θ∗g is defined similarly. Then f ≡ g

Now it is quite natural to ask the following questions:

(i) What can be said about the relationship between f and g, if Ef ({∞},
∞) = Eg({∞},∞) in Theorem C is replaced with Ef ({∞}, k) = Eg({∞}, k),
where k is a non-negative integer?

(ii) Can the deficiency condition in Theorem C be further relaxed?

In this paper we pay our attention to give some affirmative answers to the
above questions. In this direction, we carry out our investigations and give
some partial solutions of the above questions imposing some restrictions. In
this regards we improve the Theorem C.

The following theorem is the main result of the paper.

Theorem 1. Let S = {w | P (w) = 0}, where P (w) is given as (1), where
n (≥ 6) is an integer. Let c, d ∈ C be such that c, d /∈ S∪{0, b}. Suppose that
f and g are two non-constant meromorphic functions satisfying Ef (S,m) =
Eg(S,m) and Ef ({∞}, k) = Eg({∞}, k) and that f and g have respectively
c-point and d-point of multiplicity ≥ p + 1 where p, k are non-negative
integers or infinity such that p∗ + 1

k+1 ≤ 1, where p∗ = 1, if p = 0 and

p∗ = 2
p+1 , if p ≥ 1. If

(i) m ≥ 2 and
Θf + Θg + min{δf , δg}+ p∗min{δ(c, f), δ(d, g)} > 7 + p∗ + 1

k+1 − n
(ii) or if m = 1 and

Θf +Θg+ 1
2 min{Θ(0, f)+Θ(b, f)+Θ(∞, f)+δf ,Θ(0, g)+Θ(b, g)+Θ(∞, g)+

δg}+ min{δf , δg}+ p∗min{δ(c, f), δ(d, g)} > 8 + p∗ + 1
k+1 − n
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(iii) or if m = 0 and
Θf+Θg+Θ(0; f)+Θ(b, f)+Θ(∞, f)+2δf+Θ(0, g)+Θ(b, g)+Θ(∞, g)+2δg+
min{Θ(0, f)+Θ(b, f)+Θ(∞, f),Θ(0, g)+Θ(b, g)+Θ(∞, g)}+p∗min{δ(c, f),
δ(d, g)} > 13 + p∗ + 1

k+1 − n
then f ≡ g, where Θf = 2Θ(0, f) + 2Θ(b, f) + Θ(∞, f) + 1

2(k+1)δ(k+1(∞, f)

and δf =
∑
w∈S

δ(w, f), Θg and δg can be similarly defined.

Corollary 1. Let S be given as in Theorem 1 where n (≥ 6) is an
integer. If for two non-constant meromorphic functions f and g Ef (S, 2) =
Eg(S, 2) and Ef ({∞},∞) = Eg({∞},∞) and Θf + Θg + min{δf , δg} +
p∗min{δ(c, f), δ(d, g)} > 7 + p∗ − n, where p∗ ≤ 1 then f ≡ g, where
Θf = 2Θ(0; f) + 2Θ(b; f) + Θ(∞; f) and Θg have the same meaning.

It is assumed that the readers are familiar with the standard definitions
and notations of value distribution theory which can be found,e.g.,in [10].
We are still going to explain the following two notations used in the paper.

Definition 3 ([12]). For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1)
the counting function of simple a-points of f . For a positive integer m we
denote by N(r, a; f |≤ m)(N(r, a; f |≥ m)) the counting function of those
a-points of f whose multiplicities are not greater (not less) than m where
each a-point is counted according to its multiplicity.
N(r, a; f |≤ m) (N(r, a; f |≥ m)) are defined similarly, where in counting

the a-points of f we ignore the multiplicities.
Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |>

m) are defined analogously.

Definition 4. Let f and g be two non-constant meromorphic functions
such that f and g share (1, 0). Let z0 be a 1-point of f with multiplicity
p, a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the reduced

counting function of those 1-points of f and g where p > q, by N
1)
E (r, 1; f)

the counting function of those 1-points of f and g where p = q = 1, by

N
(2
E (r, 1; f) the reduced counting function of those 1-points of f and g where

p = q ≥ 2. In the same way we can define NL(r, 1; g), N
1)
E (r, 1; g), N

(2
E (r, 1; g).

In a similar manner we can define NL(r, a; f) and NL(r, a; g) for a ∈ C ∪
{∞}. When f and g share (1,m), m ≥ 1 then N

1)
E (r, 1; f) = N(r, 1; f |= 1).

Definition 5 ([13, 14]). Let f , g share (a, 0). We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities
differ from the multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) = N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) +
NL(r, a; g).
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2. Lemmas

In this section we present some lemmas which will be needed in the
sequel. Let F and G be two non-constant meromorphic functions defined in
C. Henceforth we shall denote by H the following function.

H =

(
F

′′

F ′ −
2F

′

F − 1

)
−

(
G

′′

G′ −
2G

′

G− 1

)
.

Let f and g be two non-constant meromorphic functions and

(5) F = R(f), G = R(g),

where R(w) is given as (2). From (2) and (5) it is clear that

(6) T (r, f) =
1

n
T (r, F ) + S(r, f), T (r, g) =

1

n
T (r,G) + S(r, g)

Lemma 1 (Lemma 2.18 in [3]). Let F , G be given as (5) and H 6≡ 0. If
F , G share (1,m) and f , g share (∞, k). Then

N
1)
E (r, 1;F ) ≤ NL(r, 1;F ) +NL(r, 1;G) +N(r, 0; f)

+ N(r, b; f) +N∗(r,∞; f, g)

+ N(r, 0; g) +N(r.b; g) +N0(r, 0; f
′
) +N0(r, 0; g

′
),

where N0(r, 0; f
′
) denotes the reduced counting function corresponding to

the zeros of f
′

which are not the zeros of f(f − b) and F − 1. Of course
N0(r, 0; g

′
) is defined similarly.

Lemma 2. Let f be a non-constant meromorphic function and ai, i =
1, 2, . . . , k be finite distinct complex numbers, where k ≥ 2. Then

N(r, 0; f
′
) ≤ T (r, f) +N(r,∞; f)−

k∑
i=1

m(r, ai; f) + S(r, f)

Proof. Let F =
k∑

i=1

1
f−ai . Then

k∑
i
m(r, ai; f) = m(r, F ) + O(1). Note

that

m(r, F ) ≤ m(r, 0; f
′
) +m(r,

k∑
i=1

f
′

f − ai
)

= T (r, f
′
)−N(r, 0; f

′
) + S(r, f).
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Also we observe that

T (r, f
′
) = m(r, f

′
) +N(r, f

′
)

≤ m(r, f) +m(r,
f

′

f
) +N(r, f) +N(r, f)

= T (r, f) +N(r, f) + S(r, f).

Hence the Lemma follows. �

Lemma 3 ([19]). Let f be a non-constant meromorphic function and
P (f) = a0 + a1f + a2f

2 + . . . + anf
n, where a0, a1, a2 . . . , an are constants

and an 6= 0. Then T (r, P (f)) = nT (r, f) +O(1).

Lemma 4. Let f , g be two non-constant meromorphic functions sharing
(∞, 0) and suppose α1 and α2 are two distinct roots of the equation n(n −
1)w2 − 2n(n− 2)bw + (n− 1)(n− 2)b2 = 0. Then

fn

(f − α1)(f − α2)

gn

(g − α1)(g − α2)
6≡ n2(n− 1)2

a2
,

where n (≥ 3) is an integer.

Proof. We omit the proof since the proof can be found out in the proof
of Theorem 3 [9] (second half of page 26). �

Lemma 5. Let F , G be given as (5), where n ≥ 6 is an integer. If
F ≡ G, then f ≡ g.

Proof. We omit the proof since the proof can be found out in [9] (page
27). �

Lemma 6. Let F , G be given as (5). Also let S be given as in Theorem
1, where n ≥ 3 is an integer. If Ef (S, 0) = Eg(S, 0) then S(r, f) = S(r, g).

Proof. Since Ef (S, 0) = Eg(S, 0), it follows that F and G share (1, 0).
We denote the distinct elements of S by wj , j = 1, 2, . . . n. Since F , G share
(1, 0) from the second fundamental theorem we have

(n− 2)T (r, g) ≤
n∑

j=1

N (r, wj ; g) + S(r, g)

=

n∑
j=1

N (r, wj ; f) + S(r, g)

≤ nT (r, f) + S(r, g).
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Similarly we can deduce

(n− 2)T (r, f) ≤ nT (r, g) + S(r, f).

The last inequalities imply T (r, f) = O (T (r, g)) and T (r, g) = O (T (r, f))
and so we have S(r, f) = S(r, g). �

3. Proof of the theorem

Proof. [Proof of Theorem 1] Let F , G be given as (5). Since Ef (S,m) =
Eg(S,m), it follows that F , G share (1,m).

Case 1. Suppose that H 6≡ 0.

Subcase 1.1. m ≥ 1. While m ≥ 2, using Lemma 2 with k = n + 2,
a1 = 0, a2 = b and ai, i = 3, . . . , n + 2, where a3, . . . , an+2 are the distinct
zeros of P (w) we note that

N0(r, 0; g
′
) +N(r, 1;G |≥ 2) +N∗(r, 1;F,G)(7)

≤ N0(r, 0; g
′
) +N(r, 1;G |≥ 2) +N(r, 1;G |≥ 3)

≤ N0(r, 0; g
′
) +

n∑
j=1

{N(r, ωj ; g |= 2) + 2N(r, ωj ; g |≥ 3)}

≤ N(r, 0; g
′ | g 6= 0, b)

≤ N(r, 0; g
′
)−N(r, 0; g) +N(r, 0; g)−N(r, b; g) +N(r, b; g)

≤ N(r, 0; g) +N(r,∞; g) +N(r, b; g) + T (r, g)−N(r, 0; g)

− N(r, b; g)−m(r, 0; g)−m(r, b; g)−
∑
w∈S

m(r, w; g) + S(r, g)

≤ N(r, 0; g) +N(r,∞; g) +N(r, b; g)− T (r, g)

−
∑
w∈S

m(r, w; g) + S(r, g).

From second fundamental theorem we get

(n+ 2) T (r, f) ≤ N(r, 0; f) +N(r, b; f) +N(r, c; f) +N(r,∞; f)(8)

+ N(r, 1;F |= 1) +N(r, 1;F |≥ 2)−Nc(r, 0; f
′
) + S(r, f),

where Nc(r, 0; f
′
) is the counting function of those zeros of f

′
which are not

the zeros of f(f − b)(f − c) and F − 1. Also we note that N0(r, 0; f
′
) =
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N(r, c; f |≥ 2) +N c(r, 0; f
′
). Hence using (7), Lemmas 1 and 2 we get from

(8) for ε > 0 that

(n+ 2) T (r, f)(9)

≤ 2N(r, 0; f) + 2N(r, b; f) +N(r,∞; f) +N(r, c; f) +N(r, 0; g)

+ N(r, b; g) +N(r, 1;F |≥ 2)−Nc(r, 0; f
′
) +N∗(r, 1;F,G)

+ N0(r, 0; f
′
) +N0(r, 0; g

′
) + N∗(r,∞; f, g) + S(r, f)

≤ 2N(r, 0; f) + 2N(r, b; f) +N(r,∞; f) +N(r, 0; g) +N(r, b; g)

+ N(r, 1;G |≥ 2) +N∗(r, 1;F,G) +N0(r, 0; g
′
) +N(r, c; f |≥ 2)

+ N(r, c; f) +
1

2(k + 1)
{N(r,∞; f |≥ k + 1) +N(r,∞; g |≥ k + 1)}

+ S(r, f) + S(r, g)

≤ 2
{
N(r, 0; f) +N(r, 0; g) +N(r, b; f) +N(r, b; g)

}
+ N(r,∞; f) +N(r,∞; g) + p∗N(r, c; f)

+
1

2(k + 1)
{N(r,∞; f |≥ k + 1) +N(r,∞; g |≥ k + 1)}

− T (r, g)−
∑
w∈S

m(r, w; g) + S(r, f) + S(r, g))

≤
(

5 + p∗ +
1

2(k + 1)
−Θf − p∗δ(c; f) +

1

2
ε

)
T (r, f)

+

(
4 +

1

2(k + 1)
−Θg − δg +

1

2
ε

)
T (r, g) + S(r, f) + S(r, g)

≤
(

9 + p∗ +
1

k + 1
−Θf −Θg − δg − p∗δ(c; f) + ε

)
T (r) + S(r),

where T (r) = max {T (r, f), T (r, g)}.
Also from second fundamental theorem for g we get

(n+ 2) T (r, g) ≤ N(r, 0; g) +N(r, b; g) +N(r, d; g) +N(r,∞; g)(10)

+ N(r, 1;G |= 1) +N(r, 1;G |≥ 2)−Nd(r, 0; g
′
) + S(r, g),

where Nd(r, 0; g
′
) is the counting function of those zeros of g

′
which are not

the zeros of g(g − b)(g − d) and G − 1. Also we note that N0(r, 0; g
′
) =

N(r, d; g |≥ 2) +Nd(r, o; g
′
).

In a similar way to (9) we can obtain

(n+ 2) T (r, g)(11)

≤
(

9 + p∗ +
1

k + 1
−Θf −Θg − δf − p∗δ(d; g) + ε

)
T (r) + S(r).
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Combining (9) and (11) we see that

(n+ 2) T (r) ≤
(

9 + p∗ +
1

k + 1
−Θf −Θg −min{δf , δg}

− p∗min{δ(c; f), δ(d; g)}+ ε
)
T (r) + S(r).

That is (
n− 7− p∗ − 1

k + 1
+ Θf + Θg + p∗min{δ(c; f), δ(d; g)}(12)

+ min{δf , δg} − ε
)
T (r) ≤ S(r)

Since ε > 0, (12) leads to a contradiction. While m = 1, using Lemma 3,
(7) changes to

N0(r, 0; g
′
) +N(r, 1;G |≥ 2) +N∗(r, 1;F,G)(13)

≤ N0(r, 0; g
′
) +N(r, 1;G |≥ 2) +NL(r, 1;G) +N(r, 1;F |≥ 3)

≤ N(r, 0; g
′ | g 6= 0, b) +

1

2

n∑
j=1

{N(r, ωj ; f)−N(r, ωj ; f)}

≤ N(r, 0; g
′ | g 6= 0, b) +

1

2
N(r, 0; f

′ | f 6= 0, b)

≤ N(r, 0; g) +N(r, b; g) +N(r,∞; g)− T (r, g)−
∑
w∈S

m(r, w; g)

+
1

2

{
N(r, 0; f) +N(r, b; f) +N(r,∞; f)

}
− 1

2
T (r, f)

− 1

2

∑
w∈S

m(r, w; f) + S(r, f) + S(r, g)

So using (13), Lemmas 1 and 2 and using the same argument as in (8) we
get from second fundamental theorem for ε > 0 that

(n+ 2) T (r, f)(14)

≤
{

5

2
N(r, 0; f) +

5

2
N(r, b; f) +

3

2
N(r,∞; f)

}
+ 2N(r, 0; g) + 2N(r, b; g) +N(r,∞; g) + p∗N(r, c; f)

+
1

2(k + 1)
{N(r,∞; f |≥ k + 1) +N(r,∞; g |≥ k + 1)}

− T (r, g)−
∑
w∈S

m(r, w; g)− 1

2
T (r, f)

− 1

2

∑
w∈S

m(r, w; f) + S(r, f) + S(r, g)
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≤
(

6 + p∗ +
1

2(k + 1)
−Θf −

1

2
{Θ(0; f) + Θ(b; f)

+ Θ(∞; f) + δf} − p∗δ(c; f) +
1

2
ε
)
T (r, f)

+

(
4 +

1

2(k + 1)
−Θg − δg +

1

2
ε

)
T (r, g)

+ S(r, f) + S(r, g)

≤
(

10 + p∗ +
1

k + 1
−Θf −Θg

− 1

2
{Θ(0; f) + Θ(b; f) + Θ(∞; f) + δf}

− p∗δ(c; f)− δg + ε
)
T (r) + S(r).

Similarly we can obtain

(n+ 2) T (r, g) ≤
(

10 + p∗ +
1

k + 1
−Θf −Θg(15)

− 1

2
{Θ(0; g) + Θ(b; g) + Θ(∞; g) + δg}

− p∗δ(d; g)− δf + ε
)
T (r) + S(r).

Combining (14) and (15) we see that(
n− 8− p∗ − 1

k + 1
+ Θf + Θg + min{δf , δg}(16)

+ p∗min{δ(c; f), δ(d; g)}

+
1

2
min{Θ(0; f) + Θ(b; f) + Θ(∞; f) + δf ,

Θ(0; g) + Θ(b; g) + Θ(∞; g) + δg} − ε
)
T (r) ≤ S(r).

Since ε > 0 is arbitrary, we see that (16) leads to a contradiction.

Subcase 1.2. m = 0. Using Lemma 3 we note that

N0(r, 0; g
′
) +N

(2
E (r, 1;F ) + 2NL(r, 1;G) + 2NL(r, 1;F )(17)

≤ N0(r, 0; g
′
) +N

(2
E (r, 1;G) +NL(r, 1;G)

+ NL(r, 1;G) + 2NL(r, 1;F )

≤ N0(r, 0; g
′
) +N(r, 1;G |≥ 2) +NL(r, 1;G) + 2NL(r, 1;F )

≤ N(r, 0; g
′ | g 6= 0, b) +N(r, 1;G |≥ 2) + 2N(r, 1;F |≥ 2)

≤ 2{N(r, 0; g
′ | g 6= 0, b) +N(r, 0; f

′ | f 6= 0, b)}
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≤ 2{N(r, 0; g) +N(r,∞; g) +N(r, b; g)

+ N(r, 0; f) +N(r,∞; f) +N(r, b; f)}
− 2T (r, f)− 2T (r, g)− 2

∑
w∈S

m(r, w; f)

− 2
∑
w∈S

m(r, w; g) + S(r, f) + S(r, g).

Hence using (17), Lemmas 1 and 2 we get from second fundamental
theorem for ε > 0 that

(n+ 2) T (r, f) ≤ N(r, 0; f) +N(r, b; f) +N(r,∞; f)(18)

+ N(r, c; f) +N
1)
E (r, 1;F ) +NL(r, 1;F )

+ NL(r, 1;G) +N
(2
E (r, 1;F )−Nc(r, 0; f

′
) + S(r, f)

≤
{
N(r, 0; f) +N(r, b; f)

}
+N(r,∞; f)

+ N(r, 0; g) +N(r, b; g) +N(r, c; f) +N(r, c; f |≥ 2)

+ N
(2
E (r, 1;F ) + 2NL(r, 1;G) + 2NL(r, 1;F ) +N0(r, 0; g

′
)

+ N∗(r,∞; f, g) + S(r, f) + S(r, g)

≤ N(r, 0; f) + 3N(r,∞; f) + 3N(r, 0; g)

+ 2N(r,∞; g) + 4N(r, b; f) + 3N(r, b; g) + p∗N(r, c; f)

+
1

2(k + 1)
{N(r,∞; f |≥ k + 1) +N(r,∞; g |≥ k + 1)}

− 2T (r, f)− 2T (r, g)

− 2
∑
w∈S

m(r, w; f)− 2
∑
w∈S

m(r, w; g) + S(r, f) + S(r, g)

≤
(

15 + p∗ +
1

k + 1
−Θf −Θg −Θ(0; f)−Θ(b; f)

− Θ(∞; f)− 2δf −Θ(0; g)−Θ(b; g)−Θ(∞; g)− 2δg

− Θ(0; f)−Θ(b; f)−Θ(∞; f)− p∗δ(c; f) + ε
)
T (r) + S(r).

In a similar manner we can obtain

(n+ 2) T (r, g) ≤
(

15 + p∗ +
1

k + 1
−Θf −Θg −Θ(0; f)(19)

− Θ(b; f)−Θ(∞; f)− 2δf −Θ(0; g)−Θ(b; g)

− Θ(∞; g)− 2δg −Θ(0; g)−Θ(b; g)

− Θ(∞; g)− p∗δ(b; g) + ε
)
T (r) + S(r).
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Combining (18) and (19) we see that(
n− 13− p∗ − 1

k + 1
+ Θf + Θg + Θ(0; f) + Θ(b; f)(20)

+ Θ(∞; f) + 2δf + Θ(0; g) + Θ(b; g) + Θ(∞; g) + 2δg

+ min{Θ(0; f) + Θ(b; f) + Θ(∞; f),Θ(0; g) + Θ(b; g)

+ Θ(∞; g)}+ p∗{δ(c; f), δ(d; g)} − ε
)
T (r) ≤ S(r).

Since ε > 0 is arbitrary, we see that (20) leads to a contradiction.

Case 2. Suppose that H ≡ 0. Now proceeding in the same way as done
in [2] we can prove f ≡ g. �
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