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GLOBAL BEHAVIOR OF HIGHER ORDER

A RATIONAL DIFFERENCE EQUATION

Abstract. The main objective of this paper is to study the global
asymptotic stability and the periodic character of the rational
difference equation

yn+1 =
αyn−2r−1

β + γypn−2ly
q
n−2k

, n = 0, 1, . . . ,

where the parameters α, β, γ, p, q are nonnegative real num-
bers and initial conditions are nonnegative real numbers, l, r, k
are nonnegative integers, such that l ≤ k and r ≤ k. Also, we
give some numerical simulations to the equation to illustrate our
results.
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1. Introduction

In this paper we investigate the global asymptotic stability and the peri-
odic character of the rational difference equation

(1) yn+1 =
αyn−2r−1

β + γypn−2ly
q
n−2k

, n = 0, 1, ...,

where the parameters α, β, γ, p, q and initial conditions are nonnegative
real numbers, l, r, k are nonnegative integers, such that l ≤ k, r ≤ k and
β+ γypn−2ly

q
n−2k > 0. Some numerical simulations to the equation are given

to illustrate our results. Here, we recall some notations and results which
will be useful in our investigation [14, 15, 16] .

Let I be some interval of real numbers and let

f : Ik+1 → I,

be a continuously differentiable function. Then for every set of initial con-
ditions x−k, x−k+1, . . . , x0 ∈ I, the difference equation

(2) xn+1 = f(xn, xn−1, ...xn−k), n = 0, 1, . . . ,
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has a unique solution {xn}∞n=−k.

Definition 1 (Equilibrium Point). A point x̄ ∈ I is called an equilibrium
point of equation (2) if

x̄ = f(x̄, x̄, . . . , x̄).

That is, xn = x̄ for n ≥ 0, is a solution of (2), or equivalently, x̄ is a fixed
point of f .

Definition 2 (Periodicity). A sequence {xn}∞n=−k is said to be periodic
with period p if xn+p = xn for all n ≥ −k.

Definition 3 (Semicycle). (i) A positive semicycle of {xn}∞n=−kof equa-
tion (2) consists of a ”string” of terms {xs, xs+1, . . . , xm}, all terms greater
than or equal to the equilibrium x̄, with s ≥ −k and m ≤ ∞ and such that

either s = −k, or s > −k and xs−1 < x̄,

and

either m =∞, or m <∞ and xm+1 < x̄.

(ii) A negative semicycle of {xn}∞n=−kof equation (2) consists of a ”string”
of terms {xs, xs+1, . . . , xm}, all terms less than the equilibrium x̄, with s ≥
−k and m ≤ ∞ and such that

either s = −k, or s > −k and xs−1 ≥ x̄,

and

either m =∞, or m <∞ and xm+1 ≥ x̄.

Definition 4 (Stability). (i) The equilibrium point x̄ of (2) is called
locally stable if for every ε > 0, there exists δ > 0 such that for all
x−k, x−k+1, . . . , x−1, x0 ∈ I with

|x−k − x̄|+ |x−k+1 − x̄|+ . . .+ |x0 − x̄| < δ,

we have |xn − x̄| < ε for all n ≥ −k.
(ii) The equilibrium point x̄ of (2) is called locally asymptotically stable

if x̄ is locally stable solution of (2), and there exists γ > 0 such that for all
x−k, x−k+1, . . . , x−1, x0 ∈ I with

|x−k − x̄|+ |x−k+1 − x̄|+ . . .+ |x0 − x̄| < γ,

we have lim
n→∞

xn = x̄.

(iii) The equilibrium point x̄ of (2) is called a global attractor if for all
x−k, x−k+1, . . . , x−1, x0 ∈ I we have lim

n→∞
xn = x̄.
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(iv) The equilibrium point x̄ of (2) is called globally asymptotically stable
if x̄ is locally stable and x̄ is also global attractor.

(v) The equilibrium point x̄ of (2) is called unstable if x̄ is not locally
stable.

Definition 5. A solution {xn}∞n=−k of equation (2) is called nonoscilla-
tory if there exists N ≥ −k such that either

xn > x̄, for all n ≥ N,

or

xn < x̄, for all n ≥ N,

and it is called oscillatory if it is not nonoscillatory.

The linearized equation of equation (2) about the equilibrium x̄ is the
linear difference equation

(3) zn+1 =

k∑
i=0

∂f(x̄, x̄, . . . , x̄)

∂xn−i
zn−i, n = 0, 1, . . .

The characteristic equation of equation(2) is

(4) λk+1 −
k∑
i=0

∂f(x̄, x̄, . . . , x̄)

∂xn−i
λk−i = 0.

Theorem 1. (i) If all roots of equation (4) have absolute values less than
one, then the equilibrium point x̄ of equation (2) is locally asymptotically
stable.

(ii) If at least one of the roots of equation (4) has absolute value greater
than one, then the equilibrium point x̄ of equation (2) is unstable. The
equilibrium point x̄ of equation (2) is called a saddle point if equation (4)
has roots both inside and outside the unit disk.

The study of the nonlinear rational difference equations of a higher order
is quite challenging and rewarding, and the results about these equations
offer prototypes towards the development of the basic theory of the global
behavior of nonlinear difference equations of a big order, recently, many
researchers have investigated the behavior of the solution of difference equa-
tions for example: Hamza et al. [13] studied the global asymptotic stability
of the difference equation

xn+1 =
Axn−1

B + Cxn−2lxn−2k
.
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In [10], El-Owaidy et al. studied the dynamics of the recursive sequence

xn+1 =
αxn−1

β + γxpn−2
.

Also in [3], Battaloglu et al. studied the global behavior of the difference
equation

xn+1 =
αxn−k

β + γxpn−(k+1)

.

Ahmed [1] studied the global asymptotic behavior and the periodic character
of solutions of the third-order rational difference equation

xn+1 =
bxn−1

A+Bxpnx
q
n−2

.

Other related results on rational difference equations can be found in refs.
[2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 17, 18, 19, 20, 21].

2. Main results

The change of variables yn = (βγ )
1

p+q xn reduces equation (1) to the dif-
ference equation

(5) xn+1 =
axn−2r−1

1 + xpn−2lx
q
n−2k

, n = 0, 1, . . .

where a = α
β > 0. Note that x̄1 = 0 is always an equilibrium point of

equation (5). When a > 1, equation (5) also possesses the unique positive

equilibrium x̄2 = (a− 1)
1

p+q .

3. Local and global stability

Theorem 2. Assume that r < k for equation (5), then the following
statements are true:

(i) If a < 1, then the equilibrium point x̄1 = 0 of equation (5) is locally
asymptotically stable.

(ii) If a > 1, then the equilibrium point x̄1 = 0 of equation (5) is a saddle
point.

(iii) If a > 1, then the equilibrium point x̄2 = (a− 1)
1

p+q of equation (5)
is unstable.

Proof. The linearized equation of equation (5) about the equilibrium
point x̄1 = 0 is

zn+1 − azn−2r−1 = 0, n = 0, 1, . . . ,
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so the associated characteristic equation about x̄1 is

λ2k+1 − aλ2k−2r−1 = 0,

so
λ2k−2r−1(λ2r+2 − a) = 0,

then λ = 0, λ = ± 2r+2
√
a. Then the proof of (i) and (ii) follows from The-

orem 1. Now the linearized equation of equation (5) about the equilibrium

point x̄2 = (a− 1)
1

p+q is

zn+1 − zn−2r−1 +
p(a− 1)

a
zn−2l +

q(a− 1)

a
zn−2k = 0 n = 0, 1, . . . ,

and the associated characteristic equation about x̄2 is

λ2k+1 − λ2k−2r−1 +
p(a− 1)

a
λ2k−2l +

q(a− 1)

a
= 0.

Let

G(λ) = λ2k+1 − λ2k−2r−1 +
p(a− 1)

a
λ2k−2l +

q(a− 1)

a
,

then G(−1) = (p+q)(a−1)
a > 0, and lim

λ→−∞
G(λ) = −∞, so G(λ) has at least

a real root in (−∞,−1). Consequently, x̄2 is unstable. This completes the
proof. �

Theorem 3. Assume that r < k and a < 1, then the equilibrium point
x̄1 = 0 of equation (5) is globally asymptotically stable.

Proof. It was shown by Theorem 2 that the equilibrium point x̄1 = 0 of
equation (5) is locally asymptotically stable when a < 1. So, it is suffices to
show that

lim
n→∞

xn = 0.

Let {xn}∞n=−2k be a solution of equation (5). We have

xn+1 =
axn−2r−1

1 + xpn−2lx
q
n−2k

≤ axn−2r−1.

Then it can be written for η = 0, 1, . . .

x2η(r+1)+1 ≤ aη+1x−2r−1,

x2η(r+1)+2 ≤ aη+1x−2r,

...

x2η(r+1)+2r+2 ≤ aη+1x0.

If a < 1, then lim
η→∞

aη+1 = 0, and lim
n→∞

xn = 0. This completes the proof. �
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Theorem 4. Assume that r = k for equation (5), then the following
statements are true:

(i) If a < 1, then the equilibrium point x̄1 = 0 of equation (5) is locally
asymptotically stable.

(ii) If a > 1, then the equilibrium point x̄1 = 0 of equation (5) is unstable.

(iii) If a > 1, then the equilibrium point x̄2 = (a− 1)
1

p+q of equation (5)
is a saddle point.

Proof. The linearized equation of equation (5) about the equilibrium
point x̄1 = 0 is

zn+1 − azn−2k−1 = 0, n = 0, 1, . . . ,

so the associated characteristic equation about x̄1 is

λ2k+2 − a = 0,

then λ = ± 2r+2
√
a. Then the proof of (i) and (ii) follows from Theorem 1.

Now the linearized equation of equation (5) about the equilibrium point

x̄2 = (a− 1)
1

p+q is

zn+1 +
p(a− 1)

a
zn−2l +

q(a− 1)

a
zn−2k − zn−2k−1 = 0, n = 0, 1, . . . ,

and the associated characteristic equation about x̄2 is

λ2k+2 +
p(a− 1)

a
λ2k−2l+1 +

q(a− 1)

a
λ− 1 = 0.

Let G(λ) = λ2k+2 + p(a−1)
a λ2k−2l+1 + q(a−1)

a λ − 1, we have G(0) = −1 < 0,

G(1) = (p+q)(a−1)
a > 0, then there exists a real root in (0, 1). Also G(−1) =

−(p+q)(a−1)
a < 0, and lim

λ→−∞
G(λ) =∞, so G(λ) has at least another root in

(−∞,−1). Consequently, x̄2 is a saddle point. This completes the proof. �

Theorem 5. Assume that r = k and a < 1, then the equilibrium point
x̄1 = 0 of equation (5) is globally asymptotically stable.

Proof. As the proof of Theorem 3. �

4. Semicycle analysis

Theorem 6. Assume that r < k, a > 1 and let {xn}∞n=−2k be a solution
of equation (5) such that either

(6) x−2k, x−2k+2, . . . , x0 > x̄2 and x−2k+1, x−2k+3, . . . , x−1 < x̄2,
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or

(7) x−2k, x−2k+2, . . . , x0 < x̄2 and x−2k+1, x−2k+3, . . . , x−1 > x̄2.

Then {xn}∞n=−2k oscillates about x̄2 = (a − 1)
1

p+q with semicycles of length
one.

Proof. Assume that (6) holds. Then,

x1 =
ax−2r−1

1 + xp−2lx
q
−2k

<
ax̄2

1 + x̄p+q2

= x̄2,

and

x2 =
ax−2r

1 + xp−2l+1x
q
−2k+1

>
ax̄2

1 + x̄p+q2

= x̄2.

The proof follows by induction. The case where (7) holds is similar and will
be omitted. This completes the proof. �

Theorem 7. Assume that r = k, a > 1 and let {xn}∞n=−2k−1 be a solution
of equation (5) such that either

(8) x−2k, x−2k+2, . . . , x0 > x̄2 and x−2k−1, x−2k+1, ..., x−1 < x̄2,

or

(9) x−2k, x−2k+2, . . . , x0 < x̄2 and x−2k−1, x−2k+1, ..., x−1 > x̄2.

Then {xn}∞n=−2k−1 oscillates about x̄2 = (a−1)
1

p+q with semicycles of length
one.

Proof. As the proof of Theorem 6. �

5. Existence of periodic solutions

Theorem 8. Assume that r = k and a = 1. Then every solution of
equation (5) converges to a periodic solution of equation (5) with period
2(k+ 1) and there exist periodic solutions of equation (5) with prime period
2(k + 1).

Proof. Let {xn}∞n=−2k−1 be a solution of equation (5). For n ≥ 0, we
have

0 ≤ xn+1 =
xn−2k−1

1 + xpn−2lx
q
n−2k

≤ xn−2k−1, n = 0, 1, . . . ,
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hence the subsequence {x2n(k+1)+m}∞n=−1 are decreasing for each 1 ≤ m ≤
2k + 2. Let

lim
n→∞

x2n(k+1)+m = ρm, m = 1, 2, . . . , 2k + 2.

It is clear that {. . . , ρ1, ρ2, . . . , ρ2k+2, ρ1, ρ2, . . . , ρ2k+2, . . .} is a 2(k + 1) pe-
riodic solution of equation (5).

Now let ϕ0, ϕ1, . . . , ϕk be distinct positive real numbers. It follows that
the sequence

. . . , ϕ0, 0, ϕ1, 0, . . . , ϕk, 0, ϕ0, 0, ϕ1, 0, . . . , ϕk, . . .

is periodic solution of equation (5) with prime period 2(k + 1). �

Theorem 9. Assume that r < k and a = 1. Then every solution of
equation (5) converges to a periodic solution of equation (5) with period
2(r+ 1) and there exist periodic solutions of equation (5) with prime period
2(r + 1).

Proof. As the proof of Theorem 8. �

6. Boundedness of solutions of equation (5)

Theorem 10. Assume that r < k and a = 1, then every solution of
equation (5) is bounded.

Proof. Let {xn}∞n=−2k be a solution of equation (5). It follows from
equation (5) that

xn+1 =
xn−2r−1

1 + xpn−2lx
q
n−2k

≤ xn−2r−1.

Then in view of the proof of Theorem 3, we have for η = 0, 1, . . .

x2η(r+1)+1 ≤ x−2r−1,

x2η(r+1)+2 ≤ x−2r,

...

x2η(r+1)+2r+2 < x0.

so every solution of equation (5) is bounded from above by A = max{x−2r−1,
x−2r, . . . , x0}. �
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Theorem 11. Assume that r = k and a > 1. Then equation (5) pos-
sesses unbounded solutions. In particular, every solution of equation (5)

which oscillates about the equilibrium x̄2 = (a − 1)
1

p+q with semicycles of
length one is unbounded.

Proof. We will prove that every solution {xn}∞n=−2k−1 of equation (5)

which oscillates about x̄2 = (a − 1)
1

p+q with semicycles of length one is
unbounded (see Theorem 7). Assume that {xn}∞n=−2k−1 is a solution of
equation (5) such that

x−2k, x−2k+2, . . . , x0 > x̄2 and x−2k−1, x−2k+1, . . . , x−1 < x̄2,

is satisfied. It follows that for all i ≥ 0 and 0 ≤ j ≤ k, we have

x2(k+1)(i+1)+2j > x2(k+1)i+2j and x2(k+1)(i+1)+2j+1 < x2(k+1)i+2j+1.

Hence, for each 0 ≤ j ≤ k

lim
i→∞

x2(k+1)i+2j = L2j ∈ (x̄2,∞), and lim
i→∞

x2(k+1)i+2j+1 = L2j+1 ∈ [0, x̄2)

We will show that for each 0 ≤ j ≤ k, L2j+1 = 0. For the sake of con-
tradiction, suppose that there exists j ∈ {0, 1, . . . , k} with L2j+1 ∈ (0, x̄2).
Then

L2j+1 = lim
i→∞

x2(k+1)(i+1)+2j+1

= lim
i→∞

ax2(k+1)i+2j+1

1 + xp2(k+1)(i+1)+2j−2lx
q
2(k+1)i+2j+2

=
aL2j+1

1 + Lp2j−2lL
q
2j+2

.

So as
lim
i→∞

x2(k+1)i+2j+1 = L2j+1 ∈ (0, x̄2) ,

we have
a = 1 + Lp2j−2lL

q
2j+2 > a,

which is a contradiction. Thus it is true that for each 0 ≤ j ≤ k, L2j+1 = 0,
and so lim

n→∞
x2n+1 = 0.

Now we show that for each 0 ≤ j ≤ k, L2j = ∞. For the sake of
contradiction, suppose that there exists j ∈ {0, 1, . . . , k} with L2j ∈ (x̄2,∞).
Then

L2j = lim
i→∞

x2(k+1)(i+1)+2j

= lim
i→∞

ax2(k+1)i+2j

1 + xp2(k+1)(i+1)+2j−2l−1x
q
2(k+1)i+2j+1

= aL2j ,
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so γ = 1, which is contradiction. Hence lim
n→∞

x2n = ∞, and the proof is

complete. �

7. Numerical simulation

In this section, we give some numerical simulations supporting our theo-
retical analysis via the software package Matlab 7.13.

Example 1. Consider the following difference equation

(10) yn+1 =
4yn−3

20 + y5n−2y
3
n−4

,

where l = r = 1, k = 2, p = 5, q = 3, a = 1
5 < 1. Figure 1 shows that

the zero equilibrium point of equation (10) is globally asymptotically stable
with initial data y−4 = 15, y−3 = 3, y−2 = 10, y−1 = 2, y0 = 5.

Figure 1.

Example 2. Consider the difference equation

(11) yn+1 =
5yn−3

10 + y0.5n yn−2
,

where l = 0, r = k = 1, p = 0.5, q = 1, a = 1
2 < 1. Figure 2 shows that

the zero equilibrium point of equation (11) is globally asymptotically stable,
with initial data y−3 = 5, y−2 = 2, y−1 = 2.8, y0 = 3.5.
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Figure 2.

Figure 3.

Example 3. Consider the difference equation

(12) yn+1 =
126yn−3

1 + yn−2y2n−4
,

where l = 1, r = 1, k = 2, p = 1, q = 2, a = 126 > 1. Figure 3 shows that
the solution of equation (12) oscillates about (a − 1)

1
3 = 5 with semicycles

of length one. Where the initial data satisfies condition (6) of Theorem 6
y−4 = 5.01, y−3 = 4.98, y−2 = 5.1, y−1 = 4.97, y0 = 5.05. (see Table 1)
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n yn n yn
1 4.863789779607879 11 2.500160694572724

2 5.171498511628885 12 12.229466489231854

3 4.731527270391876 13 1.409074511183059

4 5.252600948999005 14 29.820705455533090

5 4.611748889495370 15 0.399724489299515

6 5.769965613085051 16 1.571101831719999e+02

7 4.213898520842077 17 0.039799187249847

8 6.348781701777266 18 2.094840249200388e+03

9 3.627392718413308 19 3.604856918910693e-04

10 8.022493807080705 20 1.967079451259480e+04

Example 4. Consider the difference equation

(13) yn+1 =
yn−5

1 + y2ny
3
n−4

,

where l = 0, r = k = 2, p = 2, q = 3, a = 1. Figure 4 shows that every
solution of equation (13) converges to a periodic solution of equation (13)
with period 6, with initial data y−5 = 3, y−4 = 1, y−3 = 5, y−2 = 2, y−1 = 9,
y0 = 8.

Figure 4.

Example 5. Consider the difference equation

(14) yn+1 =
yn−1

1 + y0.5n−2y
0.4
n−6

,

where l = 1, r = 0, k = 3, p = 0.5, q = 0.4, a = 1. Figure 5 shows that every
solution of equation (14) is bounded, with initial data y−6 = 3, y−5 = 5,
y−4 = 10, y−3 = 12, y−2 = 15, y−1 = 20, y0 = 25.
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Figure 5.
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[5] Cunningham K., Kulenović M.R.S., Ladas G., Valicenti S.V., On
the recursive sequence xn+1 = α+βxn

Bxn+Cxn−1
, Nonlinear Analysis, 47(2001),

4603-4614.
[6] Elabbasy E.M., El-Metwally H., Elsayed E.M., On the difference

equation xn+1 = αxn−k

β+γΠk
i=0xn−i

, Journal of Concrete and Applicable Mathe-

matics, 5(2)(2007), 101-113.
[7] Elabbasy E.M., El-Metwally H., Elsayed E.M., Global behavior of

the solutions of some difference equations, Advances in Difference Equations,
(2011), 2011:28 DOI:10.1186/1687-1847-2011-28.

[8] El-Afifi M.M., On the recursive sequence xn+1 = α+βxn+γxn−1

Bxn+Cxn−1
, Applied

Mathematics and Computation, 147(2004), 617-628.
[9] El-Owaidy H.M., Ahmed A.M., Mousa M.S., On asymptotic behavior of

the difference equation xN+1 = α +
xp
N−1

xp
N

, Journal of Applied Mathematics

and Computing, 12(1-2)(2003), 31-37.
[10] El-Owaidy H.M., Ahmed A.M., Mousa M.S., The dynamics of the re-

cursive sequence xn+1 = αxn−1

β+γxp
n−2

, Applied Mathematics Letters, 18(2005),

1013-1018.



52 E. M. Elabbasy and S. M. Eleissawy

[11] Elsayed E.M., Qualitative behavior of difference equation of order two,
Mathematical and Computer Modelling, 50(2009), 1130-1141.

[12] Elsayed E.M., Solution and attractivity for a rational recursive sequence,
Discrete Dynamics in Nature and Society, vol. 2011, Article ID 982309, 17
pages.

[13] Hamaza A.E., Khalaf-Allah R., Global asymptotic stability of a higher
order difference equation, Journal of Mathematics, Bull. Korean Math. Soc.,
44(3)(2007), 439-445.

[14] Kocic V.L., Ladas G., Global Behavior of Nonlinear Difference Equations
of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht,
1993.
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