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ABSTRACT. The main objective of this paper is to study the global
asymptotic stability and the periodic character of the rational
difference equation

QYp—2r—1
B+ 79:;721?!2721@,

Yn4+1 = n:O,l,...,

where the parameters «, 3, v, p, ¢ are nonnegative real num-
bers and initial conditions are nonnegative real numbers, [, r, k
are nonnegative integers, such that | < k and r < k. Also, we
give some numerical simulations to the equation to illustrate our
results.
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1. Introduction

In this paper we investigate the global asymptotic stability and the peri-
odic character of the rational difference equation
(1) Y1 = Il =01,

B+ Y oYn—ak

where the parameters «, 3, v, p, ¢ and initial conditions are nonnegative
real numbers, [, r, k are nonnegative integers, such that [ < k, » < k and
B+ 'yyﬁ_QlyZ_Qk > (. Some numerical simulations to the equation are given
to illustrate our results. Here, we recall some notations and results which
will be useful in our investigation [14, 15, 16] .

Let I be some interval of real numbers and let

el

be a continuously differentiable function. Then for every set of initial con-
ditions _g, T_k+1, ..., %o € I, the difference equation

(2) Tn+1 :f(xnal'n—lw--xn—k)a T'L:O,].,...,
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has a unique solution {z,}>° ,.

Definition 1 (Equilibrium Point). A point T € I is called an equilibrium
point of equation (2) if

z=f(z,z,...,%).

That is, x, = T for n >0, is a solution of (2), or equivalently, T is a fized
point of f.

Definition 2 (Periodicity). A sequence {xn} ., is said to be periodic
with period p if Tpip = Ty for alln > —k.

Definition 3 (Semicycle). (i) A positive semicycle of {xn},- _, of equa-
tion (2) consists of a "string” of terms {xs, xsy1,...,Tm}, all terms greater
than or equal to the equilibrium x, with s > —k and m < co and such that

either s = —k, or s> —k and zs_1 <z,

and
either m =00, or m<oo and Tm+1 < ZT.

(it) A negative semicycle of {xyn}oo . of equation (2) consists of a ”string”

of terms {Ts, Ts41,...,Tm}, all terms less than the equilibrium T, with s >
—k and m < oo and such that

either s = —k, or s> —k and xs_1 > T,

and
either m =00, or m<oo and Tpymyl > T.
Definition 4 (Stability). (i) The equilibrium point T of (2) is called
locally stable if for every € > 0, there exists 6 > 0 such that for all
Tfy g1y, T—1,T0 € I with

v —Z| + |2_pr1 — T+ ...+ |z0 — T| <0,

we have |z, — | < e for all n > —k.

(i) The equilibrium point T of (2) is called locally asymptotically stable
if T is locally stable solution of (2), and there exists vy > 0 such that for all
Ty Tftly - -, 1,0 € 1 with

|z_p —Z| + |2 g1 — 2|+ ...+ |zo — 2] <,

we have lim x, = T.

n—oo
(7i1) The equilibrium point T of (2) is called a global attractor if for all
T fyX_ft1y--- 21,20 € I we have lim z, = .

n—oo
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(iv) The equilibrium point T of (2) is called globally asymptotically stable
if T is locally stable and T is also global attractor.

(v) The equilibrium point T of (2) is called unstable if T is not locally
stable.

Definition 5. A solution {x,}>° . of equation (2) is called nonoscilla-
tory if there exists N > —k such that either

Tn > T, forall n> N,

or
Tp < T, forall n> N,

and it is called oscillatory if it is not nonoscillatory.

The linearized equation of equation (2) about the equilibrium Z is the
linear difference equation

k _ _

of(z,z,....x
(3) zn+1:E f(—')zn,i, n=0,1,...
i=0

The characteristic equation of equation(2) is

(4) g Z M)\k—i =0.

=0

Theorem 1. (i) If all roots of equation (4) have absolute values less than
one, then the equilibrium point T of equation (2) is locally asymptotically
stable.

(ii) If at least one of the roots of equation (4) has absolute value greater
than one, then the equilibrium point T of equation (2) is unstable. The
equilibrium point T of equation (2) is called a saddle point if equation (4)
has roots both inside and outside the unit disk.

The study of the nonlinear rational difference equations of a higher order
is quite challenging and rewarding, and the results about these equations
offer prototypes towards the development of the basic theory of the global
behavior of nonlinear difference equations of a big order, recently, many
researchers have investigated the behavior of the solution of difference equa-
tions for example: Hamza et al. [13] studied the global asymptotic stability
of the difference equation

o Axn g
B+ Cxp_gyp—_ok .

Tn+1
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In [10], El-Owaidy et al. studied the dynamics of the recursive sequence

Ap—1

Tpil = = —5—.
" B+rab_,

Also in [3], Battaloglu et al. studied the global behavior of the difference

equation
ATn—k

Tpil= 57— -
B+ VL~ (k+1)

Ahmed [1] studied the global asymptotic behavior and the periodic character
of solutions of the third-order rational difference equation

Tp41 =

Other related results on rational difference equations can be found in refs.
[2,4,5,6,7,8,9,11, 12, 13, 17, 18, 19, 20, 21].

2. Main results

1
The change of variables y,, = (%)mxn reduces equation (1) to the dif-
ference equation

ATp—2r—1
(5) "B’I’L-"-l:l D q 5 n:O,].,...
+ Lp—oa¥p—2k

where a = % > 0. Note that z; = 0 is always an equilibrium point of

equation (5). When a > 1, equation (5) also possesses the unique positive

equilibrium Zy = (a — l)ﬁ
3. Local and global stability

Theorem 2. Assume that r < k for equation (5), then the following
statements are true:

(1) If a < 1, then the equilibrium point 1 = 0 of equation (5) is locally
asymptotically stable.

(ii) If a > 1, then the equilibrium point 1 = 0 of equation (5) is a saddle
point.

(791) If a > 1, then the equilibrium point To = (a — 1)ﬁ of equation (5)
s unstable.

Proof. The linearized equation of equation (5) about the equilibrium
point £ =0 is
Zn+1 — AQZpn—2r—1 :O) n:0717"'7
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so the associated characteristic equation about z is

)\2k‘+1 _ a)\?k‘—Q'/‘—l =0

)

SO

)\2]6727‘71()\27‘4*2 _ a) =0
then A = 0, A = £ ?*¥a. Then the proof of (i) and (ii) follows from The-
orem 1. Now the linearized equation of equation (5) about the equilibrium

1

point Ty = (a — 1)7+a is

pla—1 qla—1
Zn+1_zn—2r—l+(a)zn—2l+(azn—QkZO n=0,1,...,

and the associated characteristic equation about Z is

AZEHL _ \2h—2r—1 pla— 1))\2k—2l + qg(a—1) —0.
a a
Let

G(N) = AZRF1 _ p2k=2r1 pla — 1))\21@721 n qla—1)
a a

Y

then G(—1) = Wlﬁ > 0, and /\lim G(A\) = —o0, so G(A) has at least

——00
a real root in (—oo,—1). Consequently, T is unstable. This completes the
proof. |

Theorem 3. Assume that r < k and a < 1, then the equilibrium point
Z1 =0 of equation (5) is globally asymptotically stable.

Proof. It was shown by Theorem 2 that the equilibrium point z; = 0 of
equation (5) is locally asymptotically stable when a < 1. So, it is suffices to
show that

lim z, = 0.
n—oo

Let {x,}5° o, be a solution of equation (5). We have
ALpn—2r—1

—— < aZp_9r—
D q =~ n—2r—1-
1+ Lpo¥p_ok

Ipt1 =

Then it can be written for n =0,1,...

an+1

IN

Lon(r+1)+1 T—2r—1,

+1
a" T—2r,

IN

Lon(r+1)+2

+1
Lon(r+1)+2r+2 < " .

If a < 1, then lim "' =0, and lim x, = 0. This completes the proof. B

n—00 n—00
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Theorem 4. Assume that r = k for equation (5), then the following
statements are true:
(1) If a < 1, then the equilibrium point &1 = 0 of equation (5) is locally
asymptotically stable.
(ii) If a > 1, then the equilibrium point £1 = 0 of equation (5) is unstable.
(791) If a > 1, then the equilibrium point To = (a — 1)ﬁ of equation (5)
is a saddle point.
Proof. The linearized equation of equation (5) about the equilibrium
point 1 = 0 is
Zntl — AZpn—2k—1 =0, n=01,...,

so the associated characteristic equation about z is
A2 _ g —
)

then A = 4 ?*¥a. Then the proof of (i) and (i7) follows from Theorem 1.
Now the linearized equation of equation (5) about the equilibrium point

1
To = (a—l)m is

pla—1 qla—1
Znt1 + (a)anI + (a)znzk —2Zp—2k-1=0, n=0,1,...,

and the associated characteristic equation about Zo is

AZH+2 pla—1) yop—orp1 cale=Dy
a a
Let G(\) = AZ+2 4 placb) \ok-2i41 4 ale=l) ) 1 we have G(0) = —1 < 0,

G(1) = % > 0, then there exists a real root in (0,1). Also G(—1) =

—(pt+g)(a—1)

o < 0, and )\lim G(X) = 00, so G(\) has at least another root in
——00

(—o00, —1). Consequently, Z5 is a saddle point. This completes the proof. B

Theorem 5. Assume that r = k and a < 1, then the equilibrium point
1 = 0 of equation (5) is globally asymptotically stable.

Proof. As the proof of Theorem 3. |
4. Semicycle analysis

Theorem 6. Assume that r < k, a > 1 and let {x,}>° ., be a solution
of equation (5) such that either

(6) Z_ok,T_ogq2,...,20 > T2 and T_opi1,T_2k43,...,2T_1 < T2,
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or
(7) 2ok, T_opt2,...,20 < T2 and T_opi1,T_ok43,...,T_1 > Ta.

1
Then {xn}2° o, oscillates about o = (a — 1)p+a with semicycles of length
one.

Proof. Assume that (6) holds. Then,

ar_or—1 aTs _
Trl = = x9
p q _ )
L+aP g aly, ~ 14 75
and _
ar_op aZs _
9 = To.

= p q —ptq
Ltalo 2ok 1475

The proof follows by induction. The case where (7) holds is similar and will
be omitted. This completes the proof. |

Theorem 7. Assume thatr =k, a > 1 and let {x,}72 5, be a solution
of equation (5) such that either

(8)  T_ok,T_okt2,...,T0 > T2 and T_op_1,T_9k41,..-, To1 < T2,
or
9) v ok, T_ok42,...,T0 < Tz and T_op_1,T_2k41,..., T_1 > To.

1
Then {xn}o2 o, oscillates about To = (a—1)r+a with semicycles of length
one.

Proof. As the proof of Theorem 6. |

5. Existence of periodic solutions

Theorem 8. Assume that ¥ = k and a = 1. Then every solution of
equation (5) converges to a periodic solution of equation (5) with period
2(k+ 1) and there exist periodic solutions of equation (5) with prime period
2(k+1).

Proof. Let {x,}7° ,. ; be a solution of equation (5). For n > 0, we
have
Ln—2k—1

Tr 27 20 < Zp-gk-1, n=0,1,...,
n—21""n—2k

0<zp41=



46 E. M. ELABBASY AND S. M. ELEISSAWY

hence the subsequence {%a;,(411)1m}ne_1 are decreasing for each 1 < m <
2k + 2. Let

TEL)HOIO x2n(k+1)+m = Pm; m = 17 27 o 72k + 2.

It is clear that {..., p1,p2, ..., P2k+2,P1, P2, - -, P2k+2,-- -} is @ 2(k + 1) pe-
riodic solution of equation (5).

Now let ¢, ¢1,...,pr be distinct positive real numbers. It follows that
the sequence

0y 90,0,01,0, ..., 0k,0,00,0,01,0,..., 0k, ...

is periodic solution of equation (5) with prime period 2(k + 1). [

Theorem 9. Assume that r < k and a = 1. Then every solution of
equation (5) converges to a periodic solution of equation (5) with period
2(r + 1) and there exist periodic solutions of equation (5) with prime period
2(r+1).

Proof. As the proof of Theorem 8. |

6. Boundedness of solutions of equation (5)

Theorem 10. Assume that r < k and a = 1, then every solution of
equation (5) is bounded.

Proof. Let {z,}>° ., be a solution of equation (5). It follows from
equation (5) that

Tp—2r—1

— < Ty_9r_
D q = 4n—2r—1-
1+ Ty o1Tn ok

Tpt+1 =

Then in view of the proof of Theorem 3, we have for n =0,1,...

Zonr+1)+1 < T—2r—1,
<

Lon(r+1)+2 T—2r,

Top(r+1)+2r+2 < T0-

so every solution of equation (5) is bounded from above by A = max{x_o,_1,
:IZ_QT,...,:IZ()}. |
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Theorem 11. Assume that r = k and a > 1. Then equation (5) pos-
sesses unbounded solutions. In particular, every solution of equation (5)

1
which oscillates about the equilibrium To = (a — 1)P+a with semicycles of
length one is unbounded.

Proof. We will prove that every solution {z,}°° ., of equation (5)

1
which oscillates about To = (a — 1)r+¢ with semicycles of length one is
unbounded (see Theorem 7). Assume that {z,}°° ,, ; is a solution of
equation (5) such that

T ok, T 2k42y---,T0 > T2 and T _op_1,T_2k41,..., 01 < T2,
is satisfied. It follows that for all # > 0 and 0 < j < k, we have
To(k41)(i+1)+2j > L2k 1)it2; A Togy1)(i+1)+2i41 < T2(kt1)it2j+1-
Hence, for each 0 < j < k
Bm @k 11)i40j = Loj € (Z2,00), and Hm @y 1)ivaj+1 = Loj+1 € [0, Z2)

We will show that for each 0 < j < k, Loji1 = 0. For the sake of con-
tradiction, suppose that there exists j € {0,1,...,k} with Loj 1 € (0,Z2).
Then

LQ' 1 = lim x ; ;
7+ iS00 2(k+1)(i+1)+25+1

, AT (Je41)i+2+1
= lim 157 q
=00 L4 25 1) (i41)+2j — 22 (k4 1)i42j 2
B algj1
- - —
L4 Lo, o lgjig
So as
lim 2o(py1yip2j41 = Loj+1 € (0,Z2),
71— 00
we have

a=1+Ly oL5;,>a,
which is a contradiction. Thus it is true that for each 0 < j <k, Laj11 =0,
and so lim x9,41 = 0.
n—oo
Now we show that for each 0 < j < k, Ly; = oo. For the sake of
contradiction, suppose that there exists j € {0,1,...,k} with Ly; € (Z2,00).
Then

Lo = lim x ; ;
5 = A To(k41) (i41) 425

AL (k+1)i+2;5

= lim

z%ool-i-xg( aL2j,

q
k+1)(i4+1)+2j— 20— 1V 2(k+1)i+2j+1
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so v = 1, which is contradiction. Hence lim x2, = oo, and the proof is
n—oo

complete. |

7. Numerical simulation

In this section, we give some numerical simulations supporting our theo-
retical analysis via the software package Matlab 7.13.

Example 1. Consider the following difference equation

4yn73
(10) Yntl = s 53 >
" 20+ yp U3 4

wherel:rzl,k:2,p:5,q:3,a:%<1. Figure 1 shows that
the zero equilibrium point of equation (10) is globally asymptotically stable
with initial data y_4 = 15, y_3 =3, y_2 = 10, y_1 = 2, yo = 5.

15

10 B

)

Figure 1.

Example 2. Consider the difference equation

5yn73
11 _ s
(11) Il =00 1 05y, ,

where [ =0, 7r=k=1,p=05,g=1,a = % < 1. Figure 2 shows that
the zero equilibrium point of equation (11) is globally asymptotically stable,
with initial data y_3 =5, y_2 =2, y_1 = 2.8, yg = 3.5.



GLOBAL BEHAVIOR OF HIGHER ORDER ... 49

yin)
b

Figure 2.

14

12+

)

04 -

02

Figure 3.
Example 3. Consider the difference equation

126y,

12 Yn+l = 5
( ) i 1 + yn72y72@_4

where l=1,r=1, k=2, p=1,¢=2, a =126 > 1. Figure 3 shows that
the solution of equation (12) oscillates about (a — 1)% = 5 with semicycles
of length one. Where the initial data satisfies condition (6) of Theorem 6
y—4 ="5.01, y_3 =498, y_o =5.1, y_1 =4.97, yo = 5.05. (see Table 1)
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[ 7| Yn [ n | Yn
1 | 4.863789779607879 | 11 2.500160694572724
2 | 5.171498511628885 | 12 12.229466489231854
3 | 4.731527270391876 | 13 1.409074511183059
4 | 5.252600948999005 | 14 29.820705455533090
5 | 4.611748889495370 | 15 0.399724489299515
6 | 5.769965613085051 | 16 | 1.571101831719999¢e+02
7 | 4.213898520842077 | 17 0.039799187249847
8 | 6.348781701777266 | 18 | 2.094840249200388e-+03
9 | 3.627392718413308 | 19 | 3.604856918910693e-04
10 | 8.022493807080705 | 20 | 1.967079451259480e-+04

Example 4. Consider the difference equation

Yn—5
(13) Ynt1 =1 53
" L+ ylys 4
where | =0, r =k =2, p=2,qg=3, a=1. Figure 4 shows that every
solution of equation (13) converges to a periodic solution of equation (13)
with period 6, with initial datay_5 =3, y_4 =1,y_3=5,y_2=2,y_1 =9,
y0::8.

i)

I I I I
] 0 5 10 15 20 25 30 E

Figure 4.
Example 5. Consider the difference equation
Yn—1
(14) Yn+1 = ;
SR e T

wherel=1,r=0,k=3,p=0.5,¢=0.4, a = 1. Figure 5 shows that every
solution of equation (14) is bounded, with initial data y_¢ = 3, y_5 = 5,
Yy—4 =10, y_3 =12, y_o =15, y—1 = 20, yo = 25.
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15 )

v

10 B

_ o

o
-10 5 L 5 10 15 20 25 30
n

Figure 5.
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