$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 53} 2014$

E. HATIR, A. AL-OMARI AND S. JAFARI

δ-LOCAL FUNCTION AND ITS PROPERTIES IN IDEAL TOPOLOGICAL SPACES

ABSTRACT. In this paper, we investigated δ -local function and its properties in ideal topological space. Moreover, the relationships other local functions such as local function [1, 3] and semi-local function [2] are investigated.

KEY WORDS: ideal topological space, local function, δ -open set.

AMS Mathematics Subject Classification: 54A05.

1. Introduction and preliminaries

Ideals in topological spaces have been considered since 1930. This topic has won its importance by Vaidyanathaswamy [6]. In [1] Jankovic and Hamlett investigated further properties of ideal topological space. In this paper, we investigated δ -local function and its properties in ideal topological space. Moreover, the relationships other local functions [1, 3, 2] are investigated.

Throughout this paper, spaces (X, τ) and (Y, σ) (or simply X and Y), always mean topological spaces on which no separation axiom is assumed. For a subset A of a topological space (X, τ) , Cl(A) and Int(A) will denote the closure and interior of A in (X, τ) , respectively.

A subset A of a space (X, τ) is said to be regular open (resp. regular closed) [7] if A = Int(Cl(A)) (resp. A = Cl(Int(A))). A is called δ -open [7] if for each $x \in A$, there exists a regular open set G such that $x \in G \subset A$. The complement of a δ -open set is called δ -closed. A point $x \in X$ is called a δ -cluster point of A if $Int(Cl(U)) \cap A \neq \phi$ for each open set V containing x. The set of all δ -cluster points of A is called the δ -closure of A and is denoted by $\delta Cl(A)$. The δ -interior of A is the union of all regular open sets of X contained in A and it is denoted by $\delta Int(A)$. A is δ -open if $\delta Int(A) = A$. δ -open sets forms a topology τ^{δ} . Actually τ^{δ} is the same as the collection of all δ -open set is said to be semi-open [4] if $A \subset Cl(Int(A))$. The complement of a semi-open set is said to be semi-closed. The collection of all semi-open sets in X is denoted by SO(X). The semi-closure of A in (X, τ) is defined by the intersection of all semi-closed sets containing A and is denoted by sCl(A).

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in I$ and $B \subset A$ implies $B \in \mathcal{I}$, (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. An ideal topological space is a topological space (X,τ) with an ideal \mathcal{I} on X and if P(X) is the set of all subsets of X, a set operator $(.)^*: P(X) \to P(X)$ called a local function [1, 3] of A with respect to τ and \mathcal{I} is defined as follows: for $A \subset X$, $A^*(\mathcal{I}, \tau) =$ $\{x \in X : U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau : x \in U\}$. We simply write A^* instead of $A^*(\mathcal{I}, \tau)$. X^* is often a proper subset of X. The hypothesis $X = X^*$ [5] is equivalent to the hypothesis $\tau \cap \mathcal{I} = \phi$. For every ideal topological space, there exists a topology $\tau^*(\mathcal{I})$ or briefly τ^* , finer than τ , generated by $\beta(\mathcal{I}, \tau) = \{U - I : U \in \tau \text{ and } I \in \mathcal{I}\}$, but in general $\beta(\mathcal{I}, \tau)$ is not always a topology [1]. Additionally, $Cl^*(A) = A \cup A^*$ defines a Kuratowski closure operator for $\tau^*(\mathcal{I})$. If \mathcal{I} is an ideal on X then (X, τ, \mathcal{I}) is called an ideal topological space. Let (X, τ, \mathcal{I}) be an ideal topological space and A a subset of X. Then $A_*(\mathcal{I}, \tau) = \{x \in X : U \cap A \notin \mathcal{I} \text{ for every } U \in SO(X, x)\}$ is called semi local function of A with respect to \mathcal{I} and τ [2]. Let (X, τ, \mathcal{I}) be an ideal topological space. We say that the topology τ is *compatible* with the ideal \mathcal{I} , denoted $\tau \sim \mathcal{I}$, if the following hold for every $A \subset X$, if for every $x \in A$ there exists a $U \in \tau$ such that $U \cap A \in \mathcal{I}$, then $A \in \mathcal{I}$ [1].

2. δ -local functions

Definition 1. Let (X, τ, \mathcal{I}) an ideal topological space and A a subset of X. Then $A^{\delta*}(\mathcal{I}, \tau) = \{x \in X : U \cap A \notin \mathcal{I} \text{ for every } U \in \delta O(X, x)\}$ is called δ -local function of A with respect to \mathcal{I} and τ , where $\delta O(X, x) = \{U \in \delta O(X) : x \in U\}$. We denote simply $A^{\delta*}$ for $A^{\delta*}(\mathcal{I}, \tau)$.

Remark 1. The notions of the local function, semi local function and δ -local functions are independent notions as in the following example. Therefore, Remark 3.2(1) in [2] is false.

Example 1. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a, b\}\}$ and $\mathcal{I} = \{\phi, \{a\}, \{b\}, \{a, b\}\}$. Take $A = \{a, d\}$. Then $A^{\delta *} = X$, $A^* = \{c, d\}$ and $A_* = \{d\}$.

Example 2. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{a, c\}, \{a, b\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\phi, \{a, c\}\}$. Take $A = \{a, c\}$. Then $A^{\delta *} = \phi, A^* = \{a, b\}$ and $A_* = \{a, b, d\}$.

Remark 2. (1) The simplest ideals are $\{\phi\}$ and $\mathcal{P}(X) = \{A : A \subset X\}$. It can be deduce that $A^{\delta*}(\{\phi\}) = \delta Cl(A) \neq Cl(A)$ and $A^{\delta*}(\mathcal{P}(X)) = \phi$ for every $A \subset X$.

- (2) If $A \in \mathcal{I}$, then $A^{\delta *} = \phi$.
- (3) Neither $A \subset A^{\delta *}$ nor $A^{\delta *} \subset A$ in general.

55

Theorem 1. Let (X, τ, \mathcal{I}) an ideal topological space and A, B subsets of X. Then for δ -local functions the following properties hold:

- (1) If $A \subset B$, then $A^{\delta *} \subset B^{\delta *}$,
- (2) $A^{\delta*} = \delta Cl(A^{\delta*}) \subset \delta Cl(A)$ and $A^{\delta*}$ is δ -closed,
- (3) $(A^{\delta*})^{\delta*} \subset A^{\delta*},$
- (4) $(A \cup B)^{\delta *} = A^{\delta *} \cup B^{\delta *}$
- (5) $A^{\delta *} B^{\delta *} = (A B)^{\delta *} B^{\delta *} \subset (A B)^{\delta *}$
- (6) If $U \in \tau^{\delta}$, then $U \cap A^{\delta *} = U \cap (U \cap A)^{\delta *} \subset (U \cap A)^{\delta *}$,
- (7) If $U \in \mathcal{I}$, then $(A U)^{\delta *} = A^{\delta *}$,
- (8) If $A \subseteq A^{\delta *}$, then $A^{\delta *} = \delta Cl(A^{\delta *}) = \delta Cl(A)$.

Proof. (1) Suppose that $A \subset B$ and $x \notin B^{\delta *}$. Then there exists $U \in \delta O(X, x)$ such that $U \cap B \in \mathcal{I}$. Since $A \subset B$, $U \cap A \in \mathcal{I}$ and $x \notin A^{\delta *}$, i.e., $A^{\delta *} \subset B^{\delta *}$.

(2) $A^{\delta*} \subset \delta Cl(A^{\delta*})$ holds in general. Let $x \in \delta Cl(A^{\delta*})$. Then $A^{\delta*} \cap U \neq \phi$ for every $U \in \delta O(X, x)$. Therefore, there exists some $y \in A^{\delta*} \cap U$ and $U \in \delta O(X, y)$ since $y \in A^{\delta*}$, $A \cap U \notin \mathcal{I}$ and hence $x \in A^{\delta*}$. Thus $\delta Cl(A^{\delta*}) \subset A^{\delta*}$ and $\delta Cl(A^{\delta*}) = A^{\delta*}$. Now, let $x \in A^{\delta*}$, then $A \cap U \notin \mathcal{I}$ for every $U \in \delta O(X, x)$. This implies that $A \cap U \neq \phi$ for every $U \in \delta O(X, x)$ and so, $x \in \delta Cl(A)$. Consequently, $A^{\delta*} = \delta Cl(A^{\delta*}) \subset \delta Cl(A)$ and $A^{\delta*}$ is δ -closed.

(3) $x \in (A^{\delta*})^{\delta*}$. Then, for every $U \in \delta O(X, x)$, $A^{\delta*} \cap U \notin \mathcal{I}$ and hence $A^{\delta*} \cap U \neq \phi$. Let $y \in A^{\delta*} \cap U$. Then $U \in \delta O(X, y)$ and $y \in A^{\delta*}$. Thus we have $A \cap U \notin \mathcal{I}$ and $x \in A^{\delta*}$, i.e., $(A^{\delta*})^{\delta*} \subset A^{\delta*}$.

(4) $A^{\delta*} \cup B^{\delta*} \subset (A \cup B)^{\delta*}$ holds by (1). Now let $x \in (A \cup B)^{\delta*}$. Then, for every $U \in \delta O(X, x)$, $(U \cap A) \cup (U \cap B) = U \cap (A \cup B) \notin \mathcal{I}$. Therefore, $U \cap A \notin \mathcal{I}$ or $U \cap B \notin \mathcal{I}$. This implies that $x \in A^{\delta*}$ or $x \in B^{\delta*}$, that is, $x \in A^{\delta*} \cup B^{\delta*}$. So we obtain the equality.

(5) Since $A = (A - B) \cup (B \cap A)$, by (4), $A^{\delta *} = (A - B)^{\delta *} \cup (B \cap A)^{\delta *}$ and hence

$$\begin{aligned} A^{\delta *} - B^{\delta *} &= A^{\delta *} \cap (X - B^{\delta *}) \\ &= ((A - B)^{\delta *} \cup (B \cap A)^{\delta *}) \cap (X - B^{\delta *}) \\ &= ((A - B)^{\delta *} \cap (X - B^{\delta *})) \cup ((B \cap A)^{\delta *} \cap (X - B^{\delta *})) \\ &= ((A - B)^{\delta *} - B^{\delta *}) \cup \phi \subset (A - B)^{\delta *}. \end{aligned}$$

(6) Assume that $U \in \delta O(X)$ and $x \in U \cap A^{\delta *}$. Then $x \in U$ and $x \in A^{\delta *}$. For $V \in \delta O(X, x)$, $V \cap U \in \delta O(X, x)$, since δ -open sets forms a topology. Thus $V \cap (U \cap A) = (V \cap U) \cap A \notin \mathcal{I}$. Hence $x \in (U \cap A)^{\delta *}$. Therefore, $U \cap A^{\delta *} \subset (U \cap A)^{\delta *}$. Also, $U \cap A^{\delta *} \subset U \cap (U \cap A)^{\delta *}$ and by (1), $A^{\delta *} \supset (U \cap A)^{\delta *}$ and $U \cap A^{\delta *} \supset U \cap (U \cap A)^{\delta *}$. So, we get the result.

(7) Since $A \cap U \subset U \in I$, $A \cap U \in I$ and by Remark 2 $(A \cap U)^{\delta *} = \phi$. Since $A = (A-U) \cup (A \cap U)$, by (4) $A^{\delta *} = (A-U)^{\delta *} \cup (A \cap U)^{\delta *} = (A-U)^{\delta *}$. So, we get the result. (8) For any subset A of X, by (2) we have $A^{\delta *} = \delta Cl(A^{\delta *}) \subset \delta Cl(A)$. Since $A \subseteq A^{\delta *}$, $\delta Cl(A) \subseteq \delta Cl(A^{\delta *})$ and hence $A^{\delta *} = \delta Cl(A^{\delta *}) = \delta Cl(A)$.

Theorem 2. Let (X, τ) be a topological space with ideals \mathcal{I}_1 and \mathcal{I}_2 on X and $A \subset X$. Then the following properties hold:

- (1) If $\mathcal{I}_1 \subset \mathcal{I}_2$, then $A^{\delta*}(\mathcal{I}_2) \subset A^{\delta*}(\mathcal{I}_1)$,
- (2) $A^{\delta*}(\mathcal{I}_1 \cap \mathcal{I}_2) = A^{\delta*}(\mathcal{I}_1) \cup A^{\delta*}(\mathcal{I}_2).$

Proof. (1) Let $\mathcal{I}_1 \subset \mathcal{I}_2$ and $x \in A^{\delta*}(\mathcal{I}_2)$. Then $A \cap U \notin \mathcal{I}_2$ for every $U \in \delta O(X, x)$ and hence $A \cap U \notin \mathcal{I}_1$, i.e., $x \in A^{\delta*}(\mathcal{I}_1)$. Therefore, we have the result.

(2) By (1), we have $A^{\delta*}(\mathcal{I}_1) \subset A^{\delta*}(\mathcal{I}_1 \cap \mathcal{I}_2)$ and $A^{\delta*}(\mathcal{I}_2) \subset A^{\delta*}(\mathcal{I}_1 \cap \mathcal{I}_2)$. Therefore, $A^{\delta*}(\mathcal{I}_1) \cup A^{\delta*}(\mathcal{I}_2) \subset A^{\delta*}(\mathcal{I}_1 \cap \mathcal{I}_2)$. Now, let $x \in A^{\delta*}(\mathcal{I}_1 \cap \mathcal{I}_2)$. Then for every $U \in \delta O(X, x)$, $U \cap A \notin \mathcal{I}_1 \cap \mathcal{I}_2$ and hence $U \cap A \notin \mathcal{I}_1$ or $U \cap A \notin \mathcal{I}_2$. This shows that $x \in A^{\delta*}(\mathcal{I}_1)$ or $x \in A^{\delta*}(\mathcal{I}_2)$. Thus $x \in A^{\delta*}(\mathcal{I}_1) \cup A^{\delta*}(\mathcal{I}_2)$. So, we get the result.

3. The open sets of $\tau^{\delta *}$

In this section, we have defined $\tau^{\delta*}$ in terms of the closure operator $\delta Cl^*(A) = A \cup A^{\delta*}$.

Theorem 3. Let (X, τ, \mathcal{I}) be an ideal topological space, $\delta Cl^*(A) = A \cup A^{\delta*}$. and A, B subsets of X. Then

- (1) $\delta Cl^*(\phi) = \phi$.
- (2) $A \subseteq \delta Cl^*(A)$.
- (3) $\delta Cl^*(A \cup B) = \delta Cl^*(A) \cup \delta Cl^*(B).$
- (4) $\delta Cl^*(A) = \delta Cl^*(\delta Cl^*(A)).$

Proof. By Theorem 1, we obtain

- (1) $\delta Cl^*(\phi) = (\phi)^{\delta^*} \cup \phi = \phi.$
- (2) $A \subseteq A \cup A^{\delta *} = \delta Cl^*(A).$
- (3) $\delta Cl^*(A \cup B) = (A \cup B)^{\delta_*} \cup (A \cup B) = (A^{\delta_*} \cup B^{\delta_*}) \cup (A \cup B) = Cl^{\delta_*}(A) \cup Cl^{\delta_*}(B).$
- (4) $\delta Cl^*(\delta Cl^*(A)) = \delta Cl^*(A^{\delta *} \cup A) = (A^{\delta *} \cup A)^{\delta *} \cup (A^{\delta *} \cup A) = ((A^{\delta *})^{\delta *} \cup A^{\delta *}) \cup (A^{\delta *} \cup A) = A^{\delta *} \cup A = \delta Cl^*(A).$

By Theorem 3, we obtain that $\delta Cl^*(A) = A \cup A^{\delta^*}$ is a Kuratowski closure operator. We will denote by τ^{δ^*} the topology generated by δCl^* , that is, $\tau^{\delta^*} = \{U \subseteq X : \delta Cl^*(X - U) = X - U\}.$

Lemma 1. Let (X, τ, \mathcal{I}) be an ideal topological space and A, B subsets of X. Then $A^{\delta*} - B^{\delta*} = (A - B)^{\delta*} - B^{\delta*}$.

Proof. We have, by Theorem 1 $A^{\delta *} = [(A - B) \cup (A \cap B)]^{\delta *} = (A - B)^{\delta *} \cup (A \cap B)^{\delta *} \subseteq (A - B)^{\delta *} \cup B^{\delta *}$. Thus $A^{\delta *} - B^{\delta *} \subseteq (A - B)^{\delta *} - B^{\delta *}$. Also by Theorem 1, $(A - B)^{\delta *} \subseteq A^{\delta *}$ and hence $(A - B)^{\delta *} - B^{\delta *} \subseteq A^{\delta *} - B^{\delta *}$. Hence $A^{\delta *} - B^{\delta *} = (A - B)^{\delta *} - B^{\delta *}$.

Corollary 1. Let (X, τ, \mathcal{I}) be an ideal topological space and A, B subsets of X with $B \in \mathcal{I}$. Then $(A \cup B)^{\delta *} = A^{\delta *} = (A - B)^{\delta *}$.

Proof. Since $B \in \mathcal{I}$, by Remark 2 $B^{\delta *} = \phi$. By Lemma 1, $A^{\delta *} = (A - B)^{\delta *}$ and by Theorem 1 $(A \cup B)^{\delta *} = A^{\delta *} \cup B^{\delta *} = A^{\delta *}$

Lemma 2. Let (X, τ, \mathcal{I}) be an ideal topological space and A, B subsets of X. Then

(1) If $A \subseteq B$, then $\delta Cl^*(A) \subseteq \delta Cl^*(B)$.

(2) $\delta Cl^*(A \cap B) \subseteq \delta Cl^*(A) \cap \delta Cl^*(B).$

(3) If $U \in \tau^{\delta}$, then $U \cap \delta Cl^*(A) \subseteq \delta Cl^*(U \cap A)$.

Proof. (1) Since $A \subseteq B$, by Theorem 1 we have $\delta Cl^*(A) = A \cup A^{\delta^*} \subseteq B \cup B^{\delta^*} = \delta Cl^*(B)$.

(2) This is obvious by (1).

(3) Since $U \in \tau^{\delta}$, by Theorem 1 we have $U \cap \delta Cl^*(A) = U \cap (A \cup A^{\delta^*}) = (U \cap A) \cup (U \cap A^{\delta^*}) \subseteq (U \cap A) \cup (U \cap A)^{\delta^*} = \delta Cl^*(U \cap A).$

The proof of the following Corollary follows from Theorem 1.

Corollary 2. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. If $A \subseteq A^{\delta*}$, then

- 1. $\delta Cl(A) = \delta Cl^*(A)$.
- 2. $\delta Int(X A) = \delta Int^*(X A).$

A basis for the open sets of $\tau^{\delta *}$ described as follow:

Let (X, τ) be a space, \mathcal{I} an ideal on X and A is $\tau^{\delta*}$ -closed if and only if $A^{\delta*} \subset A$. Thus we have $U \in \tau^{\delta*}$ if and only if X - U is $\tau^{\delta*}$ -closed if and only if $U \subset X - (X - U)^{\delta*}$. Thus if $x \in U, x \notin (X - U)^{\delta*}$, i.e., there exists a $V \in \delta O(X, x)$ such that $V \cap (X - U) \in \mathcal{I}$. Hence, let $I_o = V \cap (X - U)$ and we have $x \in V - I_o \subset U$, where $V \in \delta O(X, x)$ and $I_o \in \mathcal{I}$. Let us denote $\beta(\mathcal{I}, \tau) = \{V - I_o : V \in \delta O(X), I_o \in \mathcal{I}\}$, simplicity $\beta(\mathcal{I}, \tau)$ for β .

Theorem 4. Let (X, τ) be a space, \mathcal{I} an ideal on X. Then β is a basis for $\tau^{\delta*}$.

Proof. Since $\phi \in \mathcal{I}$, then $\delta O(X) \subset \beta$ from which it follows that $X = \bigcup \beta$ (recall that δ -open sets forms a topology). Also for every $\beta_1, \beta_2 \in \beta$, we have $\beta_1 = V_1 - I_1$ and $\beta_2 = V_2 - I_2$, where $V_1, V_2 \in \delta O(X)$ and $I_1, I_2 \in \mathcal{I}$. Then $\beta_1 \cap \beta_2 = (V_1 - I_1) \cap (V_2 - I_2) = (V_1 \cap (X - I_1)) \cap (V_2 \cap (X - I_2)) = (V_1 \cap V_2) - (I_1 \cup I_2) \in \beta, \text{ where } V_1 \cap V_2 \in \delta O(X), I_1 \cup I_2 \in \mathcal{I}.$

Remark 3. The topology $\tau^{\delta*}$ finer than τ^{δ} . See the following example.

Example 3. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{a, c\}, \{b, c\}, \{c\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\phi, \{b\}\}$. Here, $\{a, c\} \in \tau^{\delta*}$, but $\{a, c\} \notin \delta O(X)$.

Remark 4. If (X, τ, \mathcal{I}) is an ideal topological space, β is a basis for $\tau^{\delta*}$. If β is itself a topology, then we have $\beta = \tau^{\delta*}$ and all the open sets of $\tau^{\delta*}$ are of the simple form $V - I_0$ where $V \in \tau^{\delta*}$ and $I_0 \in \mathcal{I}$. The Example 3.6 in [1] also shows that β is not a topology in general. In the following section, we can see the condition relating τ and \mathcal{I} that will guarantee β is a topology and hence all sets in $\tau^{\delta*}$ will be of simple form.

4. δ -compatible topology with an ideal

Definition 2. Let (X, τ, \mathcal{I}) be an ideal topological space. We say that the topology τ is δ -compatible with the ideal \mathcal{I} , denoted $\tau \sim^{\delta} \mathcal{I}$, if the following hold for every $A \subset X$, if for every $x \in A$ there exists a $U \in \delta O(X, x)$ such that $U \cap A \in \mathcal{I}$, then $A \in \mathcal{I}$.

Remark 5. A δ -compatible space is a compatible, but the converse is not true in general.

Theorem 5. Let (X, τ, \mathcal{I}) be an ideal topological space, then the following are equivalent:

- (1) $\tau \sim^{\delta} \mathcal{I}$,
- If a subset A of X has a cover of δ-open sets each of whose intersection with A is in I, then A is in I,
- (3) For every $A \subset X$, if $A \cap A^{\delta *} = \phi$, $A \in \mathcal{I}$,
- (4) For every $A \subset X$, if $A A^{\delta^*} \in \mathcal{I}$,
- (5) For every $A \subset X$, if A contains no nonempty subset B with $B \subset B^{\delta*}$, then $A \in \mathcal{I}$.

Proof. $(1) \Rightarrow (2)$ The proof is obvious.

(2) \Rightarrow (3) Let $A \subset X$ and $x \in A$. Then $x \notin A^{\delta *}$ and there exists $U_x \in \delta O(X, x)$ such that $U_x \cap A \in \mathcal{I}$. Thus, $A \subset \bigcup \{U_x : x \in A\}$ and $U_x \in \delta O(X, x)$ by (2) $A \in \mathcal{I}$.

(3) \Rightarrow (4) For any $A \subset X$, $A - A^{\delta *} \subset A$ and $(A - A^{\delta *}) \cap (A - A^{\delta *})^{\delta *} \subset (A - A^{\delta *}) \cap A^{\delta *} = \phi$. By (3), $A - A^{\delta *} \in \mathcal{I}$.

(4) \Rightarrow (5) By (4), for every $A \subset X$, $A - A^{\delta *} \in \mathcal{I}$. Let $A - A^{\delta *} = J \in \mathcal{I}$, then $A = J \cup (A \cap A^{\delta *})$ and by Theorem 1 $A^{\delta *} = J^{\delta *} \cup (A \cap A^{\delta *})^{\delta *} = (A \cap A^{\delta *})^{\delta *}$ because Remark 2. Therefore, we have $A \cap A^{\delta *} = A \cap (A \cap A^{\delta *})^{\delta *} \subset$ $(A \cap A^{\delta*})^{\delta*}$ and $A \cap A^{\delta*} \subset A$. By the assumption $A \cap A^{\delta*} = \phi$ and hence $A = A - A^{\delta*} \in \mathcal{I}$.

 $(5) \Rightarrow (1)$ Let $A \subset X$ and assume that for every $x \in A$, there exists $U \in \delta O(X, x)$ such that $U \cap A \in \mathcal{I}$. Then $A \cap A^{\delta *} = \phi$. Since $(A - A^{\delta *}) \cap (A - A^{\delta *})^{\delta *} \subset (A - A^{\delta *}) \cap A^{\delta *} = \phi$. So, $A - A^{\delta *}$ contains no nonempty subset B with $B \subset B^{\delta *}$. By (5), $A - A^{\delta *} \in \mathcal{I}$ and hence $A = A \cap (X - A^{\delta *}) = A - A^{\delta *} \in \mathcal{I}$.

Theorem 6. Let (X, τ, \mathcal{I}) be an ideal topological space, then the following properties are equivalent:

(1) $\tau \sim^{\delta} \mathcal{I};$

(2) For every $\tau^{\delta*}$ -closed subset $A, A - A^{\delta*} \in \mathcal{I}$.

Proof. $(1) \Rightarrow (2)$ It is clear by Theorem 5.

 $\begin{array}{l} (2) \Rightarrow (1) \text{ Let } A \subseteq X \text{ and assume that for every } x \in A, \text{ there exists} \\ \text{an } \delta\text{-open set } U \text{ containing } x \text{ such that } U \cap A \in \mathcal{I}. \text{ Then } A \cap A^{\delta *} = \phi. \\ \text{Since } Cl^{\delta *}(A) = A \cup A^{\delta *} \text{ is } \tau^{\delta *}\text{-closed, we have } (A \cup A^{\delta *}) - (A \cup A^{\delta *})^{\delta *} \in \mathcal{I}. \\ \text{Moreover, } (A \cup A^{\delta *}) - (A \cup A^{\delta *})^{\delta *} = (A \cup A^{\delta *}) - (A^{\delta *} \cup (A^{\delta *})^{\delta *}) = (A \cup A^{\delta *}) - A^{\delta *} = A. \\ \text{Therefore } A \in \mathcal{I}. \end{array}$

Theorem 7. Let (X, τ, \mathcal{I}) be an ideal topological space. If τ is δ -compatible with \mathcal{I} , then the following equivalent properties hold:

- (1) For every $A \subseteq X$, $A \cap A^{\delta *} = \phi$ implies that $A^{\delta *} = \phi$.
- (2) For every $A \subseteq X$, $(A A^{\delta*})^{\delta*} = \phi$.
- (3) For every $A \subseteq X$, $(A \cap A^{\delta*})^{\delta*} = A^{\delta*}$.

Proof. First, we show that (1) holds if τ is δ -compatible with \mathcal{I} . Let A be any subset of X and $A \cap A^{\delta *} = \phi$. By Theorem 5, $A \in \mathcal{I}$ and by Remark $2 A^{\delta *} = \phi$.

(1) \Rightarrow (2) Assume that for every $A \subseteq X$, $A \cap A^{\delta *} = \phi$ implies that $A^{\delta *} = \phi$. Let $B = A - A^{\delta *}$, then

$$B \cap B^{\delta *} = (A - A^{\delta *}) \cap (A - A^{\delta *})^{\delta *}$$

= $(A \cap (X - A^{\delta *})) \cap (A \cap (X - A^{\delta *}))^{\delta *}$
 $\subseteq [A \cap (X - A^{\delta *})] \cap [A^{\delta *} \cap (X - A^{\delta *})^{\delta *}] = \phi.$

By (1) we have $B^{\delta *} = \phi$. Hence $(A - A^{\delta *})^{\delta *} = \phi$. (2) \Rightarrow (3) Assume for every $A \subseteq X$, $(A - A^{\delta *})^{\delta *} = \phi$.

$$A = (A - A^{\delta *}) \cup (A \cap A^{\delta *})$$
$$A^{\delta *} = [(A - A^{\delta *}) \cup (A \cap A^{\delta *})]^{\delta *}$$
$$= (A - A^{\delta *})^{\delta *} \cup (A \cap A^{\delta *})^{\delta *}$$
$$= (A \cap A^{\delta *})^{\delta *}.$$

(3) \Rightarrow (1) Assume for every $A \subseteq X$, $A \cap A^{\delta *} = \phi$ and $(A \cap A^{\delta *})^{\delta *} = A^{\delta *}$. This implies that $\phi = \phi^{\delta *} = A^{\delta *}$.

Corollary 3. Let (X, τ, \mathcal{I}) be an ideal topological space. If τ is δ -compatible with \mathcal{I} , then $()^{\delta^*}$ is an idempotent operator i.e. $A^{\delta^*} = (A^{\delta^*})^{\delta^*}$ for any subset A of X.

Proof. By Theorems 7 and 1 we obtain $A^{\delta *} = (A \cap A^{\delta *})^{\delta *} \subseteq A^{\delta *} \cap (A^{\delta *})^{\delta *} = (A^{\delta *})^{\delta *}$ and by Theorem 1 we have $A^{\delta *} = (A^{\delta *})^{\delta *}$ for any subset A of X.

Theorem 8. Let (X, τ, \mathcal{I}) be an ideal topological space and τ δ -compatible with \mathcal{I} . A set is closed with respect to $\tau^{\delta*}$ -topology if and only if it is the union of a set which is δ -closed with respect to τ and a set in \mathcal{I} .

Proof. Let A be $\tau^{\delta*}$ -closed, then $A^{\delta*} \subseteq A$ implies that $A = (A - A^{\delta*}) \cup A^{\delta*}$. Now $A - A^{\delta*} \in \mathcal{I}$ by Theorem 6 and $A^{\delta*}$ is δ -closed with respect to τ by Theorem 1.

Conversely, if $A = B \cup I$, where B is δ -closed with respect to τ and $I \in \mathcal{I}$, then by Theorem 1 and Remark 2 we have $A^{\delta *} = B^{\delta *} \cup I^{\delta *} = B^{\delta *} \subseteq \delta Cl(B) = B \subseteq A$. Thus $A^{\delta *} \subseteq A$ and A is $\tau^{\delta *}$ -closed.

Corollary 4. Let (X, τ, \mathcal{I}) be an ideal topological space. If τ is δ -compatible with \mathcal{I} , then $\beta(\tau, \mathcal{I}) = \tau^{\delta^*}$.

Proof. Let $U \in \tau^{\delta^*}$. Then by Theorem 8 $X - U = F \cup B$, where F is δ -closed and $B \in \mathcal{I}$. Then $U = X - (F \cup B) = (X - F) \cap (X - B) = (X - F) - B = V - B$ where $V = X - F \in \delta O(X)$. Thus every τ^{δ^*} -open set is of the form V - B, where $V \in \delta O(X)$ and $B \in \mathcal{I}$. It follows from Theorem 4 that $\beta(\tau, \mathcal{I}) = \tau^{\delta^*}$.

Theorem 9. Let (X, τ, \mathcal{I}) be an ideal topological space, then the following properties are equivalent:

- (1) $\tau^{\delta} \cap \mathcal{I} = \phi;$
- (2) If $I \in \mathcal{I}$, then $\delta Int(I) = \phi$;
- (3) For every $G \in \tau^{\delta}$, $G \subseteq G^{\delta *}$;
- (4) $X = X^{\delta *}$.

Proof. (1) \Rightarrow (2) Let $\tau^{\delta} \cap \mathcal{I} = \phi$ and $I \in \mathcal{I}$. Suppose that $x \in \delta Int(I)$. Then there exists $U \in \tau^{\delta}$ such that $x \in U \subseteq I$. Since $I \in \mathcal{I}$ and hence $\phi \neq \{x\} \subseteq U \in \tau^{\delta} \cap \mathcal{I}$. This is contrary that $\tau^{\delta} \cap \mathcal{I} = \phi$. Therefore, $\delta Int(I) = \phi$.

 $(2) \Rightarrow (3)$ Let $x \in G$. Assume $x \notin G^{\delta *}$ then there exists $U_x \in \tau^{\delta}(x)$ such that $G \cap U_x \in \mathcal{I}$. By (2), $x \in G \cap U_x = \delta Int(G \cap U_x) = \phi$. Hence $x \in G^{\delta *}$ and $G \subseteq G^{\delta *}$.

(3) \Rightarrow (4) Since X is δ -open, then $X = X^{\delta*}$.

(4) \Rightarrow (1) $X = X^{\delta *} = \{x \in X : U \cap X = U \notin \mathcal{I} \text{ for each } \delta \text{-open set } U \text{ containing } x\}$. Hence $\tau^{\delta} \cap \mathcal{I} = \phi$.

Theorem 10. Let (X, τ, \mathcal{I}) be an ideal topological space, τ be δ -compatible with \mathcal{I} and $\tau^{\delta} \cap \mathcal{I} = \phi$. Let G be an $\tau^{\delta*}$ -open set such that G = U - A, where $U \in \tau^{\delta}$ and $A \in \mathcal{I}$. Then $\delta Cl(G^{\delta*}) = \delta Cl(G) = G^{\delta*} = U^{\delta*} = \delta Cl(U) =$ $\delta Cl(U^{\delta*})$.

Proof. (1) Let G = U - A, where $U \in \tau^{\delta}$ and $A \in \mathcal{I}$. Since $\tau^{\delta} \cap \mathcal{I} = \phi$, by Theorem 9 we have $U \subseteq U^{\delta*}$. Hence by Theorem 1 $U^{\delta*} = \delta Cl(U^{\delta*}) = \delta Cl(U)$.

(2) Now, by using $G \in \tau^{\delta*}$, we show that $G \subseteq G^{\delta*}$. In fact, $\delta Cl^*(X - G) = X - G$ which implies that $(X - G)^{\delta*} \subseteq X - G$ and by Lemma 1, $X^{\delta*} - G^{\delta*} \subseteq X - G$. Since $\tau^{\delta} \cap \mathcal{I} = \phi$, by Theorem 9, $X - G^{\delta*} \subseteq X - G$ and hence we have $G \subseteq G^{\delta*}$. Hence by Theorem 1, $G^{\delta*} = \delta Cl(G) = \delta Cl(G^{\delta*})$.

(3) Again, $G \subseteq U$ implies that $G^{\delta *} \subseteq U^{\delta *}$. By Lemma 1, $G^{\delta *} = (U - A)^{\delta *} \supseteq U^{\delta *} - A^{\delta *} = U^{\delta *}$ since $A \in \mathcal{I}$. Thus $U^{\delta *} = G^{\delta *}$.

By (1), (2) and (3), we obtain the result.

Theorem 11. Let (X, τ, \mathcal{I}) be an ideal topological space and τ be δ -compatible with \mathcal{I} . Then for every $G \in \tau^{\delta}$ and any subset A of X, $(G \cap A)^{\delta *} = (G \cap A^{\delta *})^{\delta *} = \delta Cl(G \cap A^{\delta *}).$

Proof. (1) Let $G \in \tau^{\delta}$. Then by Theorem 1, $G \cap A^{\delta *} = G \cap (G \cap A)^{\delta *} \subseteq (G \cap A)^{\delta *}$ and hence $(G \cap A^{\delta *})^{\delta *} \subseteq ((G \cap A)^{\delta *})^{\delta *} \subseteq (G \cap A)^{\delta *}$ by Theorem 1.

(2) Now by using Theorem 1 and Theorem 7 we obtain $(G \cap (A - A^{\delta *}))^{\delta *} \subseteq G^{\delta *} \cap (A - A^{\delta *})^{\delta *} = G^{\delta *} \cap \phi = \phi$. Moreover, $(G \cap A)^{\delta *} - (G \cap A^{\delta *})^{\delta *} \subseteq ((G \cap A) - (G \cap A^{\delta *}))^{\delta *} = (G \cap (A - A^{\delta *}))^{\delta *} = \phi$, which implies that $(G \cap A)^{\delta *} \subseteq (G \cap A^{\delta *})^{\delta *}$.

By (1) and (2) we obtain $(G \cap A)^{\delta *} = (G \cap A^{\delta *})^{\delta *}$. By Theorem 1, $(G \cap A)^{\delta *} = (G \cap A^{\delta *})^{\delta *} \subseteq \delta Cl(G \cap A^{\delta *})$. Also, in view of Theorem 1 we have $G \cap A^{\delta *} \subseteq (G \cap A)^{\delta *}$ and hence $\delta Cl(G \cap A^{\delta *}) \subseteq \delta Cl((G \cap A)^{\delta *}) = (G \cap A)^{\delta *}$. Consequently, we obtain $(G \cap A^{\delta *})^{\delta *} = (G \cap A)^{\delta *} = \delta Cl(G \cap A^{\delta *})$.

5. δ_* - \mathcal{I} -open sets

In this section, we introduce $\delta_* - \mathcal{I}$ -open sets and the $\delta_* - \mathcal{I}$ -closure of a set in an ideal topological space and investigated their basic properties similarly with δ -open sets and δ -closure due to Veličko [7] and δ - \mathcal{I} -open sets and δ - \mathcal{I} -closure due to Yuksel et al. [8]. **Definition 3.** A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be a δR - \mathcal{I} -open (resp. regular open and R- \mathcal{I} -open) set if $Int(\delta Cl^*(A)) = A$ (resp. Int(Cl(A)) = A, $Int(Cl^*(A)) = A$). The complement of a δR - \mathcal{I} -open set is δR - \mathcal{I} -closed.

Remark 6. (1) Every regular open set is δR - \mathcal{I} -open.

(2) The notions of a δR - \mathcal{I} -open set and an R- \mathcal{I} -open set are independent notions. See example below.

Proof. (1) Let A be a regular open set. Then we have $Int(\delta Cl(A)) = A$ [8]. Since $\tau^{\delta} \subset \tau^{\delta*}$, $A = Int(A) \subset Int(\delta Cl^*(A)) \subset Int(\delta Cl(A)) = A$. Therefore A is δR - \mathcal{I} -open.

Example 4. $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{a, c\}, \{a, b\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\phi, \{a\}\}$. Take $A = \{a, b\}$. Then A is R- \mathcal{I} -open, but it is not δR - \mathcal{I} -open. If we take the ideal $\mathcal{I} = \{\phi, \{a, c\}\}$ in the same topology, then the set $A = \{a, c\}$ is δR - \mathcal{I} -open, but it is not R- \mathcal{I} -open.

Definition 4. Let (X, τ, \mathcal{I}) be an ideal topological space, A a subset of X and $x \in X$.

- (1) x is called a δ_* - \mathcal{I} -cluster point of A if $A \cap Int(\delta Cl^*(U)) \neq \phi$ for each open neighborhood of x,
- (2) The family of all δ_* - \mathcal{I} -cluster points of A is called δ_* - \mathcal{I} -closure of A and is denoted by $\delta_*Cl(A)$,
- (3) A subset A is said to be δ_* - \mathcal{I} -closed if $\delta_*Cl(A) = A$. The complement of a δ_* - \mathcal{I} -closed set of X is said to be δ_* - \mathcal{I} -open.

Lemma 3. Let A and B be subsets of an ideal topological spaces (X, τ, \mathcal{I}) . Then the following properties hold:

- (1) $Int(\delta Cl^*(A))$ is δR - \mathcal{I} -open,
- (2) If A and B are δR - \mathcal{I} -open, then $A \cap B$ is δR - \mathcal{I} -open,
- (3) If A is δR - \mathcal{I} -open, then it is δ_* - \mathcal{I} -open,
- (4) Every δ_* - \mathcal{I} -open set is the union of a family of δR - \mathcal{I} -open sets.

Proof. (1) Let A be a subset of X and $U = Int(\delta Cl^*(A))$. Then, we get $Int(\delta Cl^*(U)) = Int(\delta Cl^*(Int(\delta Cl^*(A)))) \subset Int(\delta Cl^*(\delta Cl^*(A))) =$ $Int(\delta Cl^*(A)) = U$ and every time $U = Int(U) \subset Int(\delta Cl^*(U))$ holds. So we obtain the result.

(2) Let A and B be δR - \mathcal{I} -open. Then $A \cap B = Int(\delta Cl^*(A)) \cap Int(\delta Cl^*(B))$ = $Int(\delta Cl^*(A) \cap \delta Cl^*(B)) \supset Int(\delta Cl^*(A \cap B)) \supset Int(A \cap B) = A \cap B$. (since every δR - \mathcal{I} -open set is open)

(3) Let A be a $\delta R \cdot \mathcal{I}$ -open set. For each $x \in A$, $(X - A) \cap A = \phi$. Thus $x \notin \delta_* Cl(X - A)$ for each $x \in A$. So, $x \notin (X - A)$ implies that $x \notin \delta_* Cl(X - A)$. Therefore, $\delta_* Cl(X - A) \subset (X - A)$. This shows that (X - A) is $\delta_* \cdot \mathcal{I}$ -closed and so A is $\delta_* \cdot \mathcal{I}$ -open. (4) Let A be a δ_* - \mathcal{I} -open set. Then (X - A) is δ_* - \mathcal{I} -closed and $(X - A) = \delta_* Cl(X - A)$. For each $x \in A$, $x \notin \delta_* Cl(X - A)$ and there exists an open neighborhood U_x such that $Int(\delta Cl^*(U_x)) \cap (X - A) = \phi$. Therefore, we have $x \in U_x \subset Int(\delta Cl^*(U_x)) \subset A$. This shows that $A = \bigcup \{Int(\delta Cl^*(U_x)) \mid x \in A\}$. By (1), $Int(\delta Cl^*(U_x))$ is δR - \mathcal{I} -open for each $x \in A$.

Lemma 4. Let A and B be subsets of an ideal topological space (X, τ, I) . Then the following statements hold:

(1) $A \subset \delta_* Cl(A)$,

- (2) If $A \subset B$, then $\delta_*Cl(A) \subset \delta_*Cl(B)$,
- (3) $\delta_*Cl(A) = \cap \{F \subset X \mid and F \text{ is } \delta_* \text{-}\mathcal{I}\text{-}closed \},\$
- (4) If A is a δ_* - \mathcal{I} -closed set of X for each $i \in \nabla$, $\cap \{A_i \mid i \in \nabla\}$ is δ_* - \mathcal{I} -closed,
- (5) $\delta_*Cl(A)$ is δ_* - \mathcal{I} -closed.

Proof. Straightforward.

Theorem 12. Let (X, τ, \mathcal{I}) be an ideal topological space and $\delta \tau^* = \{A \subset X \mid A \text{ is a } \delta_* \cdot \mathcal{I} \text{ -open set of } (X, \tau, \mathcal{I})\}$. Then $\delta \tau^*$ is a topology such that $\tau^{\delta} \subset \delta \tau^* \subset \tau$.

Proof. It follows from Lemma 3 and Lemma 4.

Example 5. $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$ and $\mathcal{I} = \{\phi, \{a\}\}$. Take $A = \{a, c\}$. Then A is δ_* - \mathcal{I} -open, but it is not δR - \mathcal{I} -open.

Acknowledgement. The authors would like to thank the referees for the helpful suggestions.

References

- JANKOVIĆ D., HAMLETT T.R., New topologies from old via ideals, Amer. Math. Monthly, 97(1990), 295-310.
- [2] KHAN M., NOIRI T., Semi-local functions in ideal topological spaces, J. of Advanced Research in Pure Math., 2(2010), 36-42.
- [3] KURATOWSKI K., Topology I, Warszawa, 1933.
- [4] LEVINE N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [5] HAYASHI E., Topologies defined by local properties, Math. Ann., 156(1964), 205-215.
- [6] VAIDYANATHASWAMY R., Set Topology, Chelsea Publishing Company, 1960.
- [7] VELIČKO N.V., H-closed topological spaces, Amer. Math. Soc. Transl., 2(78) (1968), 103-118.
- [8] YUKSEL S., ACIKGOZ A., NOIRI T., On δ-I-continuous functions, Turkish J. of Math., 29(2005), 39-51.

E. HATIR N. E. UNIVERSITY A.K. EDUCATION FACULTY KONYA-TURKEY *e-mail:* hatir10@yahoo.com

Ahmad Al-omari Department of Mathematics Faculty of Science Al al-Bayt University P.O. Box 130095 Mafraq 25113, Jordan *e-mail:* omarimutah1@yahoo.com

S. JAFARI DEPARTMENT OF MATHEMATICS COLLEGE OF VESTSJAELLAND SOUTH HERRESTRAEDE 11 4200 SLAGELSE *e-mail:* jafaripersia@gmail.com

Received on 25.09.2012 and, in revised form, on 23.07.2013.