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1. Introduction

In the present paper we study semilinear delay functional second order
integro-differential equations of the type:

(1) x′′(t) = Ax(t) + f(t, xt,

∫ t

0
k(t, s)h(s, xs)ds), t ∈ [0, T ],

(2) x(t) + (g(xt1 , . . . , xtp))(t) = φ(t), −r ≤ t ≤ 0,

(3) x′(0) = η ∈ X,

where 0 < t1 < t2 < . . . < tp ≤ T , p ∈ N , A is the infinitesimal generator of
a strongly continuous cosine family of bounded linear operators {C(t)}t∈R
on X; f , g, h, k and φ are given functions satisfying some assumptions and
xt(θ) = x(t+ θ), for θ ∈ [−r, 0] and t ∈ [0, T ].

Equations of the form (1)-(3) or their special forms serve as an abstract
formulation of partial integro-differential equations which arise in the prob-
lems with memory visco-elasticity and many other physical phenomena, see
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[1], [5], [7], [8], [9], [14] and the references given therein. The problems
of qualitative properties of solutions of second order functional differen-
tial equations have studied by many authors, see[7]-[9], [11], [16]-[19]. It is
advantageous to treat second order abstract differential equations directly
rather than to convert into first order differential system. For direct appli-
cations of second order differential system, one may refer Fitzgibbon[8]. On
the other hand, as nonlocal condition is more precise to describe natural
phenomena than classical initial condition, the Cauchy problem with non-
local condition also received much attention in recent years, see [2]-[4], [10],
[12]. The nonlocal evolution problems were first studied by L. Byszewski.

The objective of this paper is to obtain existence and uniqueness of a mild
solution on initial data of second order integro-differential (1)-(3), using the
theory of strongly continuous cosine family of operators and modified version
of Banach contraction theorem. We are generalizing and improving some of
results reported in [11], [16]-[19].

The paper is organized as follows: Section 2 presents preliminaries and
hypotheses. In Section 3, we prove existence and uniqueness of solutions.
Section 4, deals with continuous dependence on initial data of mild solutions.
Finally in Section 5, we give application based on our result.

2. Preliminaries and hypotheses

Let X be a Banach space with the norm ‖ · ‖. Let C = C([−r, 0], X),
0 < r <∞, be the Banach space of all continuous functions ψ : [−r, 0]→ X
endowed with supremum norm

‖ψ‖C = sup {‖ψ(t)‖ : −r ≤ t ≤ 0}.

Let B = C([−r, T ], X), T > 0, be the Banach space of all continuous func-
tions x : [−r, T ] → X with the supremum norm ‖x‖B = sup{‖x(t)‖ : −r ≤
t ≤ T}. For any x ∈ B and t ∈ [0, T ], we denote by xt the element of C
given by xt(θ) = x(t+ θ), for θ ∈ [−r, 0] and φ is a given element of C.

Definition 1. A one parameter family {C(t) : t ∈ R} of bounded linear
operators in the Banach space X is called strongly continuous cosine family
if and only if

(a) C(0) = I is the identity operator,
(b) C(t+ s) + C(t− s) = 2C(t)C(s) ∀t, s ∈ R,
(c) The map t 7→ C(t)(x) is strongly continuous for each x ∈ X.

The associated sine function is the family {S(t)}t∈R of operators defined
by S(t)x =

∫ t
0 C(s)xds, for x ∈ X, t ∈ R. The infinitesimal generator

A : X → X of a cosine family {C(t) : t ∈ R} is defined by Ax = d2

dt2
C(t)x|t=0,
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x ∈ D(A), where D(A) = {x ∈ X : C(·)x ∈ C2(R, X)}. For more informa-
tion on strongly continuous cosine and sine families, we refer the reader to
[[7], [17]-[19]].

In this paper, we assume that, there exist positive constants M ≥ 1
and N such that ‖C(t)‖ ≤ M and ‖S(t)‖ ≤ N , for every t ∈ [0, T ]. Also
k : [0, T ]× [0, T ]→ R is continuous function and as [0, T ]× [0, T ] is compact
set, there exists a constant L1 > 0 such that |k(t, s)| ≤ L1, for 0 ≤ s ≤ t ≤ T .

Definition 2. A function x : [−r, T ] → X is called a mild solution of
the system (1)-(3), if it satisfies the following equations

x(t) = C(t)[φ(0)− (g(xt1 , . . . , xtp))(0)] + S(t)η

+

∫ t

0
S(t− s)f(s, xs,

∫ s

0
k(s, τ)h(τ, xτ )dτ)ds, t ∈ [0, T ],

x(t) + (g(xt1 , . . . , xtp))(t) = φ(t), −r ≤ t ≤ 0,

x′(0) = η ∈ X.

The following lemma is known as Pachpatte’s inequality.

Lemma 1 ([13], p. 33). Let u, f and g be nonnegative continuous func-
tions defined on R+, for which the inequality

u(t) ≤ u0 +

∫ t

0
f(s)u(s)ds+

∫ t

0
f(s)

(∫ s

0
g(σ)u(σ)dσ

)
ds, t ∈ R+,

holds, where u0 is nonnegative constant. Then

u(t) ≤ u0[1 +

∫ t

0
f(s)exp(

∫ s

0
[f(σ) + g(σ)]dσ)ds], t ∈ R+.

Our results are based on the modified version of the Banach contraction
principle.

Lemma 2 ([15], p. 196). Let X be a Banach space. Let D be an operator
which maps the elements of X into itself for which Dr is a contraction, where
r is a positive integer. Then D has a unique fixed point.

We list the following hypotheses for our convenience.
(H1) Let f : [0, T ] × C ×X → X be such that for every w ∈ B, x ∈ X

and t ∈ [0, T ], f(·, wt, x) ∈ B and there exists a constant L > 0 such that

‖f(t, ψ, x)− f(t, φ, y)‖ ≤ L(‖ψ − φ‖C + ‖x− y‖), φ, ψ ∈ C, x, y ∈ X.

(H2) Let h : [0, T ]×C → X be such that for every w ∈ B and t ∈ [0, T ],
h(·, wt) ∈ B and there exists a constant H > 0 such that

‖h(t, ψ)− h(t, φ)‖ ≤ H‖ψ − φ‖C , φ, ψ ∈ C.
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(H3) Let g : Cp → C be such that exists a constant G ≥ 0 satisfying

‖(g(xt1 , xt2 , . . . , xtp))(t)− (g(yt1 , yt2 , . . . , ytp))(t)‖ ≤ G‖x− y‖B,

t ∈ [−r, 0].

3. Existence and uniqueness

Theorem 1. Suppose that the hypotheses (H1)-(H3) are satisfied. Then
the second order integro-differential system (1)-(3) has a unique mild solu-
tion x on [−r, T ].

Proof.Let x(t) be a mild solution of the problem (1)-(3). Then it satisfies
the equivalent integral equation

x(t) = C(t)φ(0)− C(t)(g(xt1 , . . . , xtp))(0) + S(t)η(4)

+

∫ t

0
S(t− s)f(s, xs,

∫ s

0
k(s, τ)h(τ, xτ )dτ)ds, t ∈ [0, T ],

x(t) + (g(xt1 , . . . , xtp))(t) = φ(t), −r ≤ t ≤ 0,(5)

x′(0) = η ∈ X.(6)

Now, we rewrite solution of initial value problem (1)-(3) as follows: For
φ ∈ C, define φ̂ ∈ B by

(7) φ̂(t) =

{
φ(t)− (g(xt1 , . . . , xtp))(t) if − r ≤ t ≤ 0,

C(t)[φ(0)− (g(xt1 , . . . , xtp))(0)] if 0 ≤ t ≤ T.

If y ∈ B and x(t) = y(t) + φ̂(t), t ∈ [−r, T ], then it is easy to see that y
satisfies

(8) y(t) = 0; −r ≤ t ≤ 0

and

y(t) = S(t)η +

∫ t

0
S(t− s)f

(
s, ys + φ̂s,(9) ∫ s

0
k(s, τ)h(τ, yτ + φ̂τ )dτ

)
ds, t ∈ [0, T ]

if and only if x(t) satisfies the equations (4)-(6).
We define the operator F : B → B, by

(10) (Fy)(t) =


0 if − r ≤ t ≤ 0

S(t)η +
∫ t
0 S(t− s)f

(
s, ys + φ̂s,∫ s

0 k(s, τ)h(τ, yτ + φ̂τ )dτ
)
ds if t ∈ [0, T ].
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From the definition of an operator F defined by the equation (10), it is to
be noted that the equations (8)-(9) can be written as

y = Fy.

Now we show that Fn is a contraction on B for some positive integer n. Let
y, w ∈ B and using hypotheses (H1) - (H3), we get,

‖(Fy)(t)− (Fw)(t)‖ ≤ ‖S(t)η − S(t)η‖

+

∫ t

0
‖S(t− s)‖‖f(s, ys + φ̂s,

∫ s

0
k(s, τ)h(τ, yτ + φ̂τ )dτ)

− f(s, ws + φ̂s,

∫ s

0
k(s, τ)h(τ, wτ + φ̂τ )dτ)‖ds

≤
∫ t

0
NL[‖(ys + φ̂s)− (ws + φ̂s)‖C

+ L1

∫ s

0
‖h(τ, yτ + φ̂τ )− h(τ, wτ

+ φ̂τ )‖dτ ]ds

≤ NL
∫ t

0
‖ys − ws‖Cds

+ NL

∫ t

0
L1H

∫ s

0
‖yτ − wτ‖Cdτds

≤ NL
∫ t

0
‖y − w‖Bds+NL

∫ t

0
L1H

∫ s

0
‖y − w‖Bdτds

≤ NL‖y − w‖Bt+NLL1H‖y − w‖B
t2

2

≤ NL‖y − w‖Bt+NLL1HT‖y − w‖B
t

2
≤ NL‖y − w‖Bt+NLL1HT‖y − w‖Bt
≤ NL(1 + L1HT )‖y − w‖Bt,

‖(F 2y)(t)− (F 2w)(t)‖ = ‖(F (Fy))(t)− (F (Fw))(t)‖
= ‖(F (y1))(t)− (F (w1))(t)‖

≤
∫ t

0
‖S(t− s)‖‖f(s, y1s + φ̂s,

∫ s

0
k(s, τ)h(τ, y1τ + φ̂τ )dτ)

− f(s, w1s + φ̂s,

∫ s

0
k(s, τ)h(τ, w1τ + φ̂τ )dτ)‖ds

≤
∫ t

0
NL‖y1s − w1s‖C +NL

∫ t

0
L1H‖y1τ − w1τ‖Cdτds

≤ NL
∫ t

0
‖y1 − w1‖C([−r,s],X)ds
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+ NL

∫ t

0
L1H

∫ s

0
‖y1 − w1‖C([−r,τ ],X)dτds

≤ NL
∫ t

0
sup

τ∈[−r,s]
‖y1(τ)− w1(τ)‖ds

+ NLL1H

∫ t

0

∫ s

0
sup

η∈[−r,τ ]
‖y1(η)− w1(η)‖dτds

≤ NL
∫ t

0
sup

τ∈[−r,s]
‖Fy(τ)− Fw(τ)‖ds

+ NLL1H

∫ t

0

∫ s

0
sup

η∈[−r,τ ]
‖Fy(η)− Fw(η)‖dτds

≤ NL
∫ t

0
sup

τ∈[−r,s]
(NL[1 + L1HT ]‖y − w‖Bτ)ds

+ NLL1H

∫ t

0

∫ s

0
sup

η∈[−r,τ ]
(NL[1 + L1HT ]‖y − w‖Bη)dτds

≤ N2L2[1 + L1HT ]‖y − w‖B[

∫ t

0
( sup
τ∈[−r,s]

τ)ds

+

∫ t

0
L1H

∫ s

0
( sup
η∈[−r,τ ]

η)dτds]

≤ N2L2[1 + L1HT ]‖y − w‖B[

∫ t

0
sds+

∫ t

0
L1H

∫ s

0
τdτds]

≤ N2L2[1 + L1HT ]‖y − w‖B[
t2

2
+ L1H

t3

3!
]

≤ N2L2[1 + L1HT ]2‖y − w‖B[
t2

2
+ L1HT

t2

3!
]

≤ N2L2[1 + L1HT ]2‖y − w‖B[
t2

2!
+ L1HT

t2

2!
]

≤ (NL[1 + L1HT ]t)2

2!
‖y − w‖B.

Continuing in this way, we get,

‖(Fny)(t)− (Fnw)(t)‖ ≤ (NL(1 + L1HT )t)n

n!
‖y − w‖B

≤ (NL(1 + L1HT )T )n

n!
‖y − w‖B.

For n large enough, (NL(1+L1HT )T )n

n! < 1. Thus there exists a positive integer
n such that Fn is a contraction in B. By virtue of Lemma 2, the operator
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F has a unique fixed point ỹ in B. Then x̃ = ỹ + φ̂ is a solution of second
order integro-differential system (1)-(3). This completes the proof. �

4. Continuous dependence on initial data

Theorem 2. Suppose that the functions f , h and g satisfy the hypothe-
ses (H1)-(H3). Then for each φ1, φ2 ∈ C and for the corresponding mild
solutions x1, x2 of the problems

(11) x′′(t) = Ax(t) + f(t, xt,

∫ t

0
k(s, t)h(t, xt)dt), t ∈ [0, T ],

(12) x(t) + (g(xt1 , . . . , xtp))(t) = φi(t), −r ≤ t ≤ 0, (i = 1, 2),

(13) x′(0) = ηi ∈ X, i = 1, 2,

the inequality

‖x1 − x2‖B ≤ [M‖φ1 − φ2‖C +MG‖x1 − x2‖B(14)

+ N‖η1 − η2‖]
[
1 +NLTe(NL+L1H)T

]
is true.

Moreover, if G = 0, then it reduces to classical inequality

‖x1 − x2‖B ≤ [M‖φ1 − φ2‖C(15)

+ N‖η1 − η2‖]
[
1 +NLTe(NL+L1H)T

]
.

Proof. Let φi (i = 1, 2) be arbitrary functions in C and let xi (i = 1, 2)
be the mild solutions of the problem (11)-(13). Then for t ∈ [−r, 0],

x1(t)− x2(t) = φ1(t)− (g(x1t1 , . . . , x1tp))(t)(16)

− φ2(t) + (g(x2t1 , . . . , x2tp))(t)

and for t ∈ [0, T ],

x1(t)− x2(t) = C(t)[φ1(0)− φ2(0)− (g(x1t1 , . . . , x1tp))(0)(17)

− (g(x2t1 , . . . , x2tp))(0)] + S(t)(η1 − η2)

+

∫ t

0
S(t− s)[f(s, x1s,

∫ s

0
k(s, τ)h(τ, x1sτ )dτ))

− f(s, x2s,

∫ s

0
k(s, τ)h(τ, x2sτ )dτ)]ds.
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From (17) and hypotheses (H1)-(H3), we get, for t ∈ [0, t],

‖x1(t)− x2(t)‖ = ‖C(t)‖‖φ1 − φ2‖C(18)

+ G‖C(t)‖‖x1 − x2‖B + ‖S(t)‖‖η1 − η2‖

+

∫ t

0
‖T (t− s)‖‖f(s, x1s,

∫ s

0
k(s, τ)h(τ, x1τ )dτ)

− f(s, x2s,

∫ s

0
k(s, τ)h(τ, x2τ )dτ)‖ds

≤M‖φ1 − φ2‖C +MG‖x1 − x2‖B +N‖η1 − η2‖

+

∫ t

0
NL

[
‖x1s − x2s‖C + L1H

∫ s

0
‖x1τ − x2τ‖Cdτ

]
ds.

Define the function z : [−r, T ] → R by z(t) = sup{‖x1(s) − x2(s)‖ : −r ≤
s ≤ t}, t ∈ [0, T ]. Let t∗ ∈ [−r, t] be such that z(t) = ‖x1(t∗) − x2(t∗)‖. If
t∗ ∈ [0, t], then from inequality (18),we have

z(t) = ‖x1(t∗)− x2(t∗)‖(19)

≤ M‖φ1 − φ2‖C +MG‖x1 − x2‖B +N‖η1 − η2‖

+

∫ t∗

0
NL

[
‖x1s − x2s‖C + L1H

∫ s

0
‖x1τ − x2τ‖Cdτ

]
ds

≤ M‖φ1 − φ2‖C +MG‖x1 − x2‖B +N‖η1 − η2‖

+

∫ t

0
NL

[
‖x1s − x2s‖C + L1H

∫ s

0
‖x1τ − x2τ‖Cdτ

]
ds

≤ K‖φ1 − φ2‖C +MG‖x1 − x2‖B +N‖η1 − η2‖

+

∫ t

0
NL

[
z(s) + L1H

∫ s

0
z(τ)dτ

]
ds.

If t∗ ∈ [−r, 0] then z(t) ≤ ‖φ1 − φ2‖C + G‖x1 − x2‖B and since M ≥ 1 the
inequality (19) holds good. Thus for t∗ ∈ [−r, T ], the inequality (19) holds
good. Thanks to Pachpatte’s inequality given in Lemma 1 and applying it
to inequality (19) we get,

z(t) ≤ [M‖φ1 − φ2‖C +MG‖x1 − x2‖B

+ N‖η1 − η2‖]
[
1 +

∫ t

0
NLe

∫ s
0 (NL+L1H)dτds

]
≤ [M‖φ1 − φ2‖C +MG‖x1 − x2‖B

+ N‖η1 − η2‖]
[
1 +

∫ t

0
NLe(NL+L1H)Tds

]
≤ [M‖φ1 − φ2‖C +MG‖x1 − x2‖B

+ N‖η1 − η2‖]
[
1 +NLTe(NL+L1H)T

]
.
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Consequently,

‖x1 − x2‖B ≤ [M‖φ1 − φ2‖C +MG‖x1 − x2‖B(20)

+ N‖η1 − η2‖]
[
1 +NLTe(NL+L1H)T

]
.

Hence the inequality (14) holds. Finally inequality (15) is a consequence of
the inequality (20). Hence the proof is complete. �

5. Application

To illustrate the application of our result proved in Section 3, consider
the following semilinear partial functional integro-differential problem of the
form

∂2

∂t2
w(u, t) =

∂2

∂u2
w(u, t) +H

(
t, w(u, t− r),(21) ∫ t

0
k(t, s)P (s, w(s− r))ds

)
, 0 ≤ u ≤ π, t ∈ [0, T ]

(22) w(0, t) = w(π, t) = 0, 0 ≤ t ≤ T,

(23) w(u, t) +

p∑
i=1

w(u, ti + t) = φ(u, t), 0 ≤ u ≤ π, −r ≤ t ≤ 0,

(24)
∂

∂t
w(u, 0) = η(u) 0 ≤ u ≤ π,

where 0 < t1 ≤ t2 ≤ tp ≤ T , the function H : [0, T ] × R × R → R is
continuous. We assume that the functions H and P satisfy the following
conditions:

For every t ∈ [0, T ] and u, v, x, y ∈ R, there exists a constant l, p > 1 such
that

|H(t, u, x)−H(t, v, y)| ≤ l(|u− v|+ |x− y|),

|P (t, u)− P (t, v)| ≤ p(|u− v|).

Let us take X = L2[0, π]. Define the operator A : X → X by Az = zuu
with domain D(A) = {z ∈ X : z, zu are absolutely continuous, zuu ∈ X and
z(0) = z(π) = 0}. Then the operator A is the infinitesimal generator of a
strongly continuous cosine family {C(t)}t∈R onX. Moreover A has a discrete
spectrum, the eigenvalues are −n2, n ∈ N, with corresponding eigenvectors
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zn(u) = (
√

2/π)sin(nu). The set {zn : n ∈ N} is an orthonormal basis of X
and the following properties hold:

(a) If z ∈ D(A), then Az = −
∞∑
n=1

n2(z, zn)zn.

(b) For every z ∈ X, C(t)z =
∞∑
n=1

cosnt(z, zn)zn.

(c) For every z ∈ X, S(t)z =
∞∑
n=1

sinnt
n (z, zn)zn.

Consequently, ‖C(t)‖ = ‖S(t)‖ ≤ 1 and S(t) is compact for t ∈ R.
Define the function f : [0, T ]× C ×X → X, as follows

f(t, ψ, x)(u) = H(t, ψ(−r)u, x(u)),

h(t, φ)(u) = P (t, φ(−r)u),

for t ∈ [0, T ], ψ, φ ∈ C, x ∈ X and 0 ≤ u ≤ π. With these choices
of the functions, the equations(21)-(24) can be formulated as an abstract
integro-differential equations (1)-(3) in Banach space X. Since all the hy-
potheses of Theorem 1 are satisfied, Theorem 1, can be applied to guarantee
the existence of mild solution w(u, t) = x(t)u, t ∈ [0, T ], u ∈ [0, π], of the
semilinear partial differential problem (21)-(24).
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