FASCICULIMATHEMATICI

Nr 53

Marian Liskowski

DENSITY OF SMOOTH FUNCTIONS IN SOBOLEV SPACES "WITH MIXED FUNCTIONS"

Abstract

The results presented in this paper concern approximation by smooth functions in the Sobolev spaces defined by means of a modular (1). These spaces can be a natural medium to study the partial differential equations with rapidly or slowly increasing coefficients (i.e. the coefficients are of a nonpolynomial type).

Key words: modular space, Sobolev space.
AMS Mathematics Subject Classification: 46A80, 46E30, 46E35.

1. Basic notions

Let A and B denote arbitrary open and bounded intervals in $R=(-\infty$, $+\infty)$ and $\Omega=A \times B . L(\Omega)$ denote the space of Lebesgue integrable real functions on Ω, with equality almost everywhere. Let real functions φ : $A \times R \rightarrow[0,+\infty)$ and $\psi: B \times R \rightarrow[0,+\infty)$ satisfy the following conditions:

1. φ and ψ are measurable functions of the first variable for every fixed value of the second one;
2. $\varphi(t, u)$ and $\psi(t, u)$ are even, convex and continuous at zero with respect to the second variable, $\varphi(t, 0)=\psi(t, 0)=0, \varphi(t, u)>0$ and $\psi(t, u)>0$ if $u \neq 0$ for a.e. t.
3. $\int_{A} \varphi(t, u) d t<\infty, \int_{B} \psi(t, u) d t<\infty$ for every u

For any function $f \in L(\Omega)$ we define a functional

$$
I_{\varphi, \psi}(f)=\int_{A} \varphi\left(x, \int_{B} \psi(y, f(x, y)) d y\right) d x
$$

The functional $I_{\varphi, \psi}$ is a convex modular in $L(\Omega)$, ([4]). We denote by $L_{\varphi, \psi}(\Omega)$ the vector space of all functions f in $L(\Omega)$ such that $I_{\varphi \cdot \psi}(\lambda f)<\infty$ for some $\lambda>0$, ([3], [4]).

Convergence $f_{n} \rightarrow f$ in $L_{\varphi, \psi}(\Omega)$ we mean as the convergence in the sense of the modular $I_{\varphi, \psi}$:

$$
I_{\varphi, \psi}\left(\lambda\left(f_{n}-f\right)\right) \rightarrow 0, \quad n \rightarrow \infty \text { for some } \lambda>0
$$

Let k be an arbitrary nonnegative integer number and let φ and ψ satisfy the conditions 1-3. We denote by $W_{\varphi, \psi}^{k}(\Omega)$ the space of all functions $f \in$ $L_{\varphi, \psi}(\Omega)$ possessing distributional derivatives $D^{\alpha} f$ up to order k belonging to the space $L_{\varphi, \psi}(\Omega)$. The space $W_{\varphi, \psi}^{k}(\Omega)$ we call the Sobolev space "with mixed functions", ([2]). We consider a functional $I_{\varphi, \psi}^{(k)}$

$$
\begin{equation*}
I_{\varphi, \psi}^{(k)}(f)=\sum_{|\alpha| \leq k} \int_{A} \varphi\left(x, \int_{B} \psi\left(y, D^{\alpha} f(x, y)\right) d y\right) d x \tag{1}
\end{equation*}
$$

for $f \in W_{\varphi, \psi}^{k}(\Omega)$. Obviously $I_{\varphi, \psi}^{(k)}$ is a convex modular; convergence in the space $W_{\varphi, \psi}^{k}(\Omega)$ is defined as the convergence in sense of the modular $I_{\varphi, \psi}^{(k)}$, i.e. the sequence $\left(f_{n}\right)$ is convergent to f if there holds the following condition

$$
\begin{equation*}
I_{\varphi, \psi}^{(k)}\left(\lambda\left(f_{n}-f\right)\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{2}
\end{equation*}
$$

for some $\lambda>0$.

2. Selected properties of $L_{\varphi, \psi}(\Omega)$

Let $S(\Omega)$ be the set of all simple functions in $L(\Omega)$. We have $S(\Omega) \subset$ $L_{\varphi, \psi}(\Omega)$.

Lemma 1. The set $S(\Omega)$ is dense in $L_{\varphi, \psi}(\Omega)$ in the sense of the modular $I_{\varphi, \psi}$.

Proof. Let $f \in L_{\varphi, \psi}(\Omega), f \geq 0$. Thus there exists a constant $\lambda>0$ such that $I_{\varphi \cdot \psi}(\lambda f)<\infty$. Let $\left(f_{n}\right)$ be a sequence of nonnegative simple functions increasing to f on Ω. Then $f(x, y) \geq f(x, y)-f_{n}(x, y)$ for arbitrary n and every $(x, y) \in \Omega$. Hence $\psi(y, \lambda f(x, y)) \geq \psi\left(y, \lambda\left(f(x, y)-f_{n}(x, y)\right)\right) \rightarrow 0$ as $n \rightarrow \infty$ for any $\lambda>0$ and $(x, y) \in \Omega$. Since $f \in L_{\varphi, \psi}(\Omega)$ we conclude that

$$
\int_{B} \psi(y, \lambda f(x, y)) d y<\infty
$$

for some $\lambda>0$ and a.e. $x \in A$. By the dominated convergence theorem we obtain

$$
\int_{B} \psi\left(y, \lambda\left(f(x, y)-f_{n}(x, y)\right)\right) d y \rightarrow 0
$$

as $n \rightarrow \infty$ for a.e. $x \in A$. Using continuity of φ with respect to the second variable, we have

$$
\varphi\left(x, \int_{B} \psi\left(y, \lambda\left(f(x, y)-f_{n}(x, y)\right)\right) d y\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Moreover

$$
\varphi\left(x, \int_{B} \psi\left(y, \lambda\left(f(x, y)-f_{n}(x, y)\right)\right) d y\right) \leq \varphi\left(x, \int_{B} \psi(y, \lambda f(x, y)) d y\right)
$$

and $\int_{A} \varphi\left(x, \int_{B} \psi(y, \lambda f(x, y)) d y\right) d x<\infty$ for sufficiently small $\lambda>0$. Applying the dominated convergence theorem again, we obtain $I_{\varphi, \psi}\left(\lambda\left(f_{n}-f\right)\right)$ $\rightarrow 0$ as $n \rightarrow \infty$ for small $\lambda>0$. Thus $\left(f_{n}\right)$ is convergent to f in the sense of the modular $I_{\varphi, \psi}$. If $f \in L_{\varphi, \psi}(\Omega)$ is arbitrary, then we may split f into positive and negative parts and apply the above result.

The real function $\Phi(\cdot,:)$ convex with respect to the second variable - defined on a product $I \times R$, where I is a bounded interval, $I \subset R$ - satisfies the condition (\star), if there exist constants $k>1$ and $\sigma>0$ such that

$$
\Phi(t-v, u) \leq \Phi(t, k u)+g(t, v)
$$

for $t \in I, u \in R$ and $|v|<\sigma$, where

$$
h(v)=\int_{I} g(t, v) d t \rightarrow 0
$$

as $v \rightarrow \infty$ and $H=\sup _{|v|<\sigma} h(v)<\infty,([5])$. The condition (\star) is satisfied, for example, by any function Φ that does not depend on the parameter t; nontrivial examples are given e.g. in [1].

We define the family $\left(\tau_{(s, t)}\right)_{(s, t) \in R^{2}}$ of translation operators as follows $\tau_{(s, t)} f(x, y)= \begin{cases}f(x+s, y+t) & \text { for }(x, y) \in[A \cap(A-s)] \times[B \cap(B-t)] \\ 0 & \text { elsewhere in } \Omega,\end{cases}$ for every $f \in L_{\varphi, \psi}(\Omega)$.

Let \mathcal{V} be a filter of neighborhoods of zero in R^{2}. The family $\left(\tau_{(s, t)}\right)_{(s, t) \in R^{2}}$ of translation operators will be called \mathcal{V}-bounded, if there exists a number $K>1$ and a function $G: \Omega \rightarrow[0,+\infty)$ such that $G(s, t) \rightarrow 0$ with respect to \mathcal{V}, and for every $f \in L_{\varphi, \psi}(\Omega)$ there is a set $V \in \mathcal{V}$ for which

$$
I_{\varphi, \psi}\left(\tau_{(s, t)} f\right) \leq I_{\varphi, \psi}(K f)+G(s, t)
$$

for all $(s, t) \in V$.
Lemma 2. Let φ and ψ satisfy the conditions 1-3 and (\star). Then the family $\left(\tau_{(s, t)}\right)_{(s, t) \in R^{2}}$ of translation operators is \mathcal{V}-bounded.

Proof. Applying the condition (\star), we obtain

$$
\begin{aligned}
I_{\varphi, \psi}\left(\tau_{(s, t)} f\right)= & \int_{A \cap(A-s)} \varphi\left(x, \int_{B \cap(B-t)} \psi(y, f(x+s, y+t)) d y\right) d x \\
\leq & \int_{(A+s) \cap A} \varphi\left(x-s, \int_{B} \psi\left(y, k_{1} f(x, y)\right) d y+\int_{B} g_{1}(y, t) d y\right) d x \\
\leq & \int_{A} \varphi\left(x, k_{2} \int_{B} \psi\left(y, k_{1} f(x, y)\right) d y\right. \\
& \left.+k_{2} \int_{B} g_{1}(y, t) d y\right) d x+\int_{A} g_{2}(x, s) d x \\
\leq & \int_{A} \varphi\left(x, 2 k_{2} \int_{B} \psi\left(y, k_{1} f(x, y)\right) d y\right) d x \\
& +\int_{A} \varphi\left(x, 2 k_{2} \int_{B} g_{1}(y, t) d y\right) d x+\int_{A} g_{2}(x, s) d x
\end{aligned}
$$

Let us denote $\widetilde{h}_{1}(t)=\int_{A} \varphi\left(x, 2 k_{2} \int_{B} g_{1}(y, t) d y\right) d x$ and $h_{2}(s)=\int_{A} g_{2}(x, s) d x$. Thus, by (\star), we have $h_{2}(s) \rightarrow 0$ as $s \rightarrow 0$. Moreover, the condition (\star) for the function ψ yields $h_{1}(t)=\int_{B} g_{1}(y, t) d y \rightarrow 0$ as $t \rightarrow 0$ and $H_{1}=$ $\sup _{|t|<\sigma} h_{1}(t)<\infty$. Hence

$$
\varphi\left(x, k_{3} h_{1}(t)\right) \leq \varphi\left(x, k_{3} H_{1}\right) \quad \text { and } \quad \int_{A} \varphi\left(x, k_{3} H_{1}\right) d x<\infty
$$

Applying dominated convergence theorem we have $\widetilde{h}_{1}(t) \rightarrow 0$ as $t \rightarrow 0$. Thus writing $G(s, t)=\widetilde{h}_{1}(t)+h_{2}(s)$, we have $G(s, t) \rightarrow 0$ with respect to the filter \mathcal{V} and

$$
I_{\varphi, \psi}\left(\tau_{(s, t)} f\right) \leq I_{\varphi, \psi}(K f)+G(s, t)
$$

for $(s, t) \in R^{2}$ and $K \geq 1$.
Lemma 3. Let φ and ψ satisfy the conditions $1-3$ and (\star). Then $\tau_{(s, t)} f \rightarrow f$ in the sense of the modular $I_{\varphi, \psi}$ with respect to the filter \mathcal{V} for every characteristic function f of a measurable subset of Ω.

Proof. Let $C \subset \Omega$ and $f=\chi_{C}$ be the characteristic function of C. We denote $C_{(s, t)}=C \dot{-}(C-(s, t))$ for any $(s, t) \in R^{2}$. Then

$$
I_{\varphi, \psi}\left(\tau_{(s, t)} f-f\right)=\int_{A} \varphi\left(x, \int_{B} \psi\left(y, \chi_{C_{(s, t)}}(x, y)\right) d y\right) d x
$$

By Jensen's inequality, we have

$$
\begin{aligned}
I_{\varphi, \psi}\left(\tau_{(s, t)} f-f\right) & \leq \frac{1}{L} \int_{A} \int_{B} \varphi\left(x, L \chi_{C_{(s, t)}}(x, y)\right) \psi(y, 1) d x d y \\
& =\frac{1}{L} \iint_{C_{(s, t)}} \varphi(x, L) \psi(y, 1) d x d y<\infty
\end{aligned}
$$

where $L=\int_{B} \psi(y, 1) d y$. Since $\left|C_{(s, t)}\right| \rightarrow 0$ as $(s, t) \rightarrow 0$, then $I_{\varphi, \psi}\left(\tau_{(s, t)} \chi_{C}-\right.$ $\left.\chi_{C}\right) \rightarrow 0$ in the sense of the filter \mathcal{V}.

Theorem 1. Let φ and ψ satisfy the conditions 1-3 and (\star). Then $\tau_{(s, t)} f \rightarrow f$ in the sense of the modular $I_{\varphi, \psi}$ with respect to the filter \mathcal{V} for every $f \in L_{\varphi, \psi}(\Omega)$.

Proof. Let $f \in L_{\varphi, \psi}(\Omega)$. Then, by Lemma 1 , there exists a sequence $\left(f_{n}\right)$ of functions $f_{n} \in S(\Omega)$ such that $f_{n} \rightarrow f$ in the sense of $I_{\varphi, \psi}$. Thus there exists a number $\lambda_{0}>0$ such that $I_{\varphi, \psi}\left(\lambda_{0}\left(f_{n}-f\right)\right) \rightarrow 0$ as $n \rightarrow \infty$. Applying Lemma 2, we obtain for $0<\lambda \leq \lambda_{0}$ and an arbitrary positive integer n

$$
\begin{aligned}
I_{\varphi, \psi} & \left(\frac{\lambda}{3 K}\left(\tau_{(s, t)} f-f\right)\right) \leq \frac{1}{3} I_{\varphi, \psi}\left(\frac{\lambda_{0}}{K} \tau_{(s, t)}\left(f-f_{n}\right)\right) \\
& +\frac{1}{3} I_{\varphi, \psi}\left(\frac{\lambda_{0}}{K}\left(\tau_{(s, t)} f_{n}-f_{n}\right)\right)+\frac{1}{3} I_{\varphi, \psi}\left(\frac{\lambda_{0}}{K}\left(f_{n}-f\right)\right) \\
\leq & I_{\varphi, \psi}\left(\lambda_{0}\left(f-f_{n}\right)\right)+I_{\varphi, \psi}\left(\lambda_{0}\left(\tau_{(s, t)} f_{n}-f_{n}\right)\right)+G(s, t)
\end{aligned}
$$

Let $\varepsilon>0$ be given. Now, we choose n_{0} such that $I_{\varphi, \psi}\left(\lambda_{0}\left(f-f_{n_{o}}\right)\right)<\varepsilon$. Applying Lemma 3 we find sets $V_{1} \in \mathcal{V}$ and $V_{2} \in \mathcal{V}$ such that $I_{\varphi, \psi}\left(\lambda_{0}\left(\tau_{(s, y)} f_{n_{0}}-\right.\right.$ $\left.\left.f_{n_{0}}\right)\right)<\varepsilon$ for $(s, t) \in V_{1}$ and $G(s, t)<\varepsilon$ for $(s, t) \in V_{2}$. Hence

$$
I_{\varphi, \psi}\left(\frac{\lambda}{3 K}\left(\tau_{(s, t)} f-f\right)\right)<3 \varepsilon
$$

for $(s, t) \in V_{1} \cap V_{2} \in \mathcal{V}$.
From Theorem 1 follows immediately
Corollary. If φ and ψ satisfy the assumptions of Theorem 1, then for every $f \in L_{\varphi, \psi}(\Omega)$ there exists a number $c>0$ such that

$$
\sup _{\substack{|s|<\sigma \\|t|<\sigma}} \int_{A} \varphi\left(x, \int_{B} \psi(y, c(f(x+s, y+t)-f(x, y))) d y\right) d x \rightarrow 0
$$

as $\sigma \rightarrow 0$.

3. Density of $C_{0}^{\infty}(\Omega)$ in Sobolev space $W_{\varphi, \psi}^{k}$

Let ρ be a nonnegative, real-valued function belonging to $C_{0}^{\infty}\left(R^{2}\right)$ and having the following properties:

1. $\rho(x, y)=0$ if $|(x, y)| \geq 1$
2. $\iint_{R^{2}} \rho(x, y) d x d y=1$.

If $\sigma>0$, the function $\rho_{\sigma}(x, y)=\sigma^{-2} \rho\left(\frac{x}{\sigma}, \frac{y}{\sigma}\right)$ belongs to $C_{0}^{\infty}\left(R^{2}\right)$ also and $\iint_{R^{2}} \rho_{\sigma}(x, y) d x d y=1$. The convolution

$$
f_{\sigma}(x, y)=\left(\rho_{\sigma} \star f\right)(x, y)=\iint_{R^{2}} \rho_{\sigma}(x-s, y-t) f(s, t) d s d t
$$

is the regularization of f for which the right side makes sense.
Lemma 4. Let $f \in W_{\varphi, \psi}^{k}(\Omega)$ and φ and ψ satisfy the conditions 1-3 and (\star). Then $\rho_{\sigma} \star f \rightarrow f$ in the sense of the modular $I_{\varphi, \psi}^{(k)}$ with respect to the filter \mathcal{V} in $W_{\varphi, \psi}^{k}\left(\Omega^{\prime}\right)$ if $\Omega^{\prime}=A^{\prime} \times B^{\prime}$, where A^{\prime} and B^{\prime} are open intervals such that $\overline{A^{\prime}} \subset A, \overline{B^{\prime}} \subset B$.

Proof. Let $f \in W_{\varphi, \psi}^{k}(\Omega)$ and $\delta<\operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)$. For $(x, y) \in \Omega^{\prime}$ and α such that $|\alpha| \leq k$ we have

$$
\begin{aligned}
D^{\alpha} f_{\sigma}(x, y) & =\iint_{R^{2}} D_{(x, y)}^{\alpha} \rho_{\sigma}(x-s, y-t) \widetilde{f}(s, t) d s d t \\
& =(-1)^{|\alpha|} \iint_{R^{2}} D_{(s, t)}^{\alpha} \rho_{\sigma}(x-s, y-t) \widetilde{f}(s, t) d s d t \\
& =\iint_{R^{2}} \rho_{\sigma}(x-s, y-t) D_{(s, t)}^{\alpha} \widetilde{f}(s, t) d s d t \\
& =\iint_{R^{2}} \rho_{\sigma}(s, t) D_{(x, y)}^{\alpha} \widetilde{f}(x+s, y+t) d s d t
\end{aligned}
$$

where \tilde{f} is the zero extension of f outside Ω. Hence, we have for $(x, y) \in \Omega^{\prime}$

$$
\begin{aligned}
D^{\alpha} f_{\sigma}(x, y) & -D^{\alpha} f(x, y) \\
& =\iint_{|(s, t)|<\sigma} \rho_{\sigma}(s, t)\left(D^{\alpha} f(x+s, y+t)-D^{\alpha} f(x, y)\right) d s d t
\end{aligned}
$$

Writing $\triangle_{(s, t)} D^{\alpha} f(x, y)=D^{\alpha} f(x+s, y+t)-D^{\alpha} f(x, y)$ and applying Jensen's inequality, we obtain

$$
\begin{aligned}
\int_{A^{\prime}} & \varphi\left(x, \int_{B^{\prime}} \psi\left(y, D^{\alpha} f_{\sigma}(x, y)-D^{\alpha} f(x, y)\right) d y\right) d x \\
= & \int_{A^{\prime}} \varphi\left(x, \int_{B^{\prime}} \psi\left(y, \iint_{|(s, t)|<\sigma} \rho_{\sigma}(s, t) \triangle_{(s, t)} D^{\alpha} f(x, y) d s d t\right) d y\right) d x \\
\leq & \iint_{|(s, t)|<\sigma} \rho_{\sigma}(s, t) d s d t \\
& \times \sup ^{|s|<\sigma} \int_{A^{\prime}} \varphi\left(x, \int_{B^{\prime}}\left(\psi\left(\triangle_{(s, t)} D^{\alpha} f(x, y)\right)\right) d y\right) d x \\
& |t|<\sigma
\end{aligned}
$$

for any $|\alpha| \leq k$. By Corollary, for any $f \in W_{\varphi, \psi}^{k}(\Omega)$ there exists a set $V \in \mathcal{V}$ such that $I_{\varphi, \psi}^{(k)}\left(c\left(f_{\sigma}-f\right)\right)<\varepsilon$ for $(s, t) \in V$ and $(x, y) \in \Omega^{\prime}$.

From Lemma 4 follows immediately
Theorem 2. Let φ and ψ satisfy the conditions $1-3$ and (\star). If $\overline{\Omega^{\prime}} \subset \Omega$, then $C_{0}^{\infty}(\Omega)$ is dense in $W_{\varphi, \psi}^{k}\left(\Omega^{\prime}\right)$ in the sense of $I_{\varphi, \psi}^{(k)}$ with respect to the filter \mathcal{V}.

References

[1] Hudzik H., Musielak J., Urbański R., Linear operators in modular spaces. An application to approximation theory, Proc. Conference of Approximation and Function Spaces, (Gdańsk, 1979), (1981), 279-286.
[2] Liskowski M., Sobolev spaces "with mixed functions", Fasc. Math., 42 (2012), 73-82.
[3] Liskowski M., On approximation by means of linear operators in generalized Orlicz spaces, Int. Journal of Pure and Applied Mathematics, 37(2)(2007), 165-180.
[4] Musielak J., On approximation of functions of two variables by integral means and their generalization, Atti Sem. Mat. Univ. Modena, XLVI(1998), 335-349.
[5] Musielak J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math., 1034, Springer-Verlag (1983).

Marian Liskowski
Institute of Mathematics
Poznan University of Technology
Piotrowo 3A, 60-965 Poznań
e-mail: marian.liskowski@put.poznan.pl
Received on 19.04.2012 and, in revised form, on 17.10.2013.

