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DENSITY OF SMOOTH FUNCTIONS IN SOBOLEV
SPACES "WITH MIXED FUNCTIONS”

ABSTRACT. The results presented in this paper concern approx-
imation by smooth functions in the Sobolev spaces defined by
means of a modular (1). These spaces can be a natural medium
to study the partial differential equations with rapidly or slowly
increasing coefficients (i.e. the coefficients are of a nonpolynomial
type).
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1. Basic notions

Let A and B denote arbitrary open and bounded intervals in R = (—oo0,
o0) and 2 = A x B. L(f2) denote the space of Lebesgue integrable real
functions on 2, with equality almost everywhere. Let real functions ¢ :
Ax R —[0,400) and ¢ : B x R — [0, +00) satisfy the following conditions:
1. ¢ and 1 are measurable functions of the first variable for every fixed
value of the second one;
2. ¢ (t,u) and 1 (t,u) are even, convex and continuous at zero with respect
to the second variable, ¢ (¢,0) =1 (¢,0) =0, ¢ (t,u) > 0 and ¢ (t,u) >0
if u # 0 for a.e. t.
3. Jye(tu)dt < oo, [ (t,u)dt < oo for every u
For any function f € L(Q2) we define a functional

Loy (f) = /ASO <33,/B¢ (y, f (z,y)) dy> dz.

The functional I, is a convex modular in L(€), ([4]). We denote by
L (€2) the vector space of all functions f in L(2) such that I, ,(Af) < oo
for some A > 0, (3], [4]).

Convergence f, — f in Ly (€2) we mean as the convergence in the sense
of the modular I, y:

Iow (AN(fn—1f)) =0, n— oo for some X > 0.
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Let k be an arbitrary nonnegative integer number and let ¢ and v satisfy
the conditions 1 - 3. We denote by ij () the space of all functions f €
L () possessing distributional derivatives D®f up to order k belonging
to the space L, 4 (€2). The space W£¢ (©) we call the Sobolev space “with

(k)

mixed functions”, ([2]). We consider a functional I,

> [ oo [ o0 s ) a

o<k

(1) 1%.(f) =
\

for f € W:j’w (Q). Obviously I (kl)/) is a convex modular; convergence in the

©
space W;f " () is defined as the convergence in sense of the modular Igc) )

i.e. the sequence (f,) is convergent to f if there holds the following condition

(2) Igi)p(k(fn—f))%() as m — 00

for some A > 0.
2. Selected properties of L, ()

Let S (©2) be the set of all simple functions in L (2). We have S (Q) C
Ly ().

Lemma 1. The set S () is dense in Ly, (£2) in the sense of the modular
Iy

Proof. Let f € L, (©2), f > 0. Thus there exists a constant A > 0 such

that I, (Af) < oco. Let (f,) be a sequence of nonnegative simple functions
increasing to f on Q. Then f (x,y) > f (z,y) — fn (x,y) for arbitrary n and

every (z,y) € . Hence ¢ (y, Af (z,y)) = ¢ (y, A(f (z,9) — fu (z,y))) = 0
as n — oo for any A > 0 and (z,y) € Q. Since f € Ly (£2) we conclude
that

L/¢@Jf@wﬁ@<oo
B

for some A > 0 and a.e. x € A. By the dominated convergence theorem we
obtain

waﬂuuwwﬁuawmw%o

as n — oo for a.e. x € A. Using continuity of ¢ with respect to the second
variable, we have

4{%Lwﬁkﬁmw—h@wMW)%0asn%m.
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Moreover

o (o [ 0@ AG @) = fatear) <o (o [ 007 @) dy)

and [, ¢ (:U, [zt (y, \f (z,9)) dy) dr < oo for sufficiently small A > 0. Ap-
plying the dominated convergence theorem again, we obtain I, (A (fn — f))
— 0 as n — oo for small A > 0. Thus (f,) is convergent to f in the sense
of the modular I, .. If f € L, (£2) is arbitrary, then we may split f into
positive and negative parts and apply the above result. |

The real function @ (-,:)convex with respect to the second variable - de-
fined on a product I x R, where [ is a bounded interval, I C R - satisfies
the condition (%), if there exist constants k > 1 and ¢ > 0 such that

O (t—v,u) <P (t,ku) + g (t,v)

fort € I, u € R and | v |< o, where

h(v):/g(t,v)dt—)()

I
as v — oo and H = supjy|<,h (v) < 0o, ([5]). The condition (x) is satisfied,
for example, by any function ® that does not depend on the parameter t;

nontrivial examples are given e.g. in [1].
We define the family (T(s’t)) (s,)ER? of translation operators as follows

fx+s,y+t) for (z,y) €e[AN(A—3s)] x[BN(B—1t)]
0 elsewhere in 2,

T(s,t)f(x7y) = {

for every f € Ly ().

Let V be a filter of neighborhoods of zero in R?. The family (T(S7t))(s’t)eR2
of translation operators will be called V-bounded, if there exists a number
K > 1 and a function G : Q — [0,400) such that G (s,t) — 0 with respect
to V', and for every f € Ly (2) there is a set V' € V for which

Loy (s f) < Lo (K f) + G (s,1)
for all (s,t) € V.

Lemma 2. Let ¢ and 1) satisfy the conditions 1-3 and (x). Then the
family (T(syt))(s nere Of translation operators is V-bounded.
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Proof. Applying the condition (x), we obtain

Loy (T f) = /M(A_S)so (fv,/Bm(B_t)UJ(y,f(fL’ﬂLs,y+t))dy> dzx
< /(AHmAw (w—sy/Bw(y,klf(m,y))dy +/Bgl (y,1) dy) dx
/w(x,ka/ Y (y, k1 f (z,y)) dy
A B
e <y,t>dy) e
/@(x,%z/ w(yvklf(ﬂfvy))dy> dx
A B
+ /Acp<x,2k2/ g1 (y, 1) dy) dx—l—/Agg (z,s)dx.

Let us denote hy (¢ = [z, 2k [5 g1(y,t)dy)dx and ha(s) = [, g2(x, s)dx.
Thus, by (%), we have ha (s) —> 0 as s — 0. Moreover, the condition (x)
for the function ¢ yields hq(t fB g1(y,t)dy — 0 ast — 0 and H; =
SUPJy|<q M1 () < co. Hence

IN

IN

o (x,kshy (t)) < p(z,ksHy) and / o (x, ksHy) dr < 0.
A

Applying dominated convergence theorem we have hi(t) = 0 as t — 0.
Thus writing G (s,t) = hy (t) + ha (s), we have G (s,t) — 0 with respect to
the filter V and

Lo (15, f) < Lo (Kf) + G (s,)
for (s,t) € R? and K > 1. [ |

Lemma 3. Let ¢ and 1 satisfy the conditions 1-3 and (). Then
T(s,)f — [ in the sense of the modular 1, with respect to the filter V
for every characteristic function f of a measurable subset of €.

Proof. Let C C Q and f = x¢ be the characteristic function of C. We
denote C(s4) = C—(C — (s,t)) for any (s,t) € R?. Then

Iow (s f = f) = /Aso <:L’,/B"¢ (%quyt) (x,y)) dy) dx.

By Jensen’s inequality, we have

Loy (e f — ) < + / / z, Lxc,,,, (2, y)) Y (y,1) dzdy

:L//c(m o (@, L) ¥ (y, 1) dzdy < oo,
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where L = [ 4(y,1)dy. Since | C(54) |—= 0 as (s,t) = 0, then I, (7(s 5 Xc—
Xc) — 0 in the sense of the filter V. |

Theorem 1. Let ¢ and v satisfy the conditions 1-3 and (x). Then
T(s,)f — [ in the sense of the modular I, with respect to the filter V for
every f € Ly ().

Proof. Let f € L, (2). Then, by Lemma 1, there exists a sequence
(fn) of functions f, € S(Q) such that f, — f in the sense of I,,. Thus
there exists a number A\g > 0 such that I, (Ao (fn — f)) = 0 as n — oo.
Applying Lemma 2, we obtain for 0 < A < )¢ and an arbitrary positive

integer n
A 1 A
¢<3K( stf f))—?) <P'l/’< . st)(f fn))

+§Iww<}( st o = fn)) ;w(;\?(fn—f)>
< Lo (M0 (F = fu)) + Lo (Mo (Tsfo = fa)) + G (5:1).

Let € > 0 be given. Now, we choose ng such that I, s, (Ao (f — fn,)) <e. Ap-
plying Lemma 3 we find sets V; € V and V3 € Vsuch that 1, (/\0 (T(syy)fno —
fno)) < e for (s,t) € Vi and G (s,t) < € for (s,t) € Va. Hence

A
Lo (g5 (et =) <3¢

for (s,t) e VinVy e V. [ |
From Theorem 1 follows immediately

Corollary. If ¢ and ¢ satisfy the assumptions of Theorem 1, then for
every f € Ly () there exists a number ¢ > 0 such that

sup /s0<x7/w(y,C(f(ers,ert)—f(w,y)))dy>dx%O
|s] <o JA B
[t| <o

as o — 0.
3. Density of C§° (2) in Sobolev space Ws’ij

Let p be a nonnegative, real-valued function belonging to C§°(R?) and
having the following properties:

Lp(z,y) =0if | (z,y) [>1
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2. [[p2p(z,y) dedy = 1.
If o > 0, the function p, (z,y) = 0 2p (£, %) belongs to C5°(R?) also and
[/ g2 po (z,y) dzdy = 1. The convolution

fo (x,y) = (po * f) (2, y) Z//RQpa(xs,yt)f(s,t)dsdt

is the regularization of f for which the right side makes sense.

Lemma 4. Let f € Wj’w(ﬁ) and @ and 1 satisfy the conditions 1-3 and

(x). Then ps x f — f in the sense of the modular Ig(okl)b with respect to the
filter V in W;f,w((l’) if Q' = A’ x B, where A’ and B’ are open intervals
such that A’ C A, B’ C B.

Proof. Let f € Wk » (©2) and § < dist (,09). For (z,y) € @ and «
such that | o |< k we have

_ (_1)|a| //R DE. o (2 — 5,y — 1) T (s, ) dsdt

= // Po (33 —S5Y—- t) Dé,t)f(s’ t) dsdt

= // po (,t) D, )f(x—l—s,y—i-t)dsdt,
R2

where f is the zero extension of f outside 2. Hence, we have for (xz,y) € &
Dan (xay) - Daf (:r,y)
— [ pe ) D et sy ) - D (o)) dsi.
I(s,t)|<o

Writing A D*f (z,y) = D*f(xz+s,y+t) — D*f (x,y) and applying
Jensen’s inequality, we obtain

/A/ 7 <”” /B ¥ (4, D fo (2.y) = D°f (.y)) dy) i

= / 4 (IIZ‘,/ (0 <y7// Po (87t> A(s,t) Daf (%,y)det> dy) dx
A’ B’ [(s,t)|<o
// po (8,t) dsdt
[(s,t)|<o

X sup /,so (w/B (v (A(s,t)Daf(:v,y)))dy) dx

|s| <o
[t] <o

IN
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for any | a |< k. By Corollary, for any f € Wgw(ﬂ) there exists aset V € V
such that Ie(olfi)b(c(f" — f)) <efor (s,t) € V and (z,y) € . [ |

From Lemma 4 follows immediately

Theorem 2. Let ¢ and ¢ satisfy the conditions 1-3 and (x). If ¥ C €,

then C§°(Q) is dense in W;“Q’) in the sense of Igfq)/) with respect to the
filter V.
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