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ABSTRACT. For an n-times differentiable real function f defined
in an a real interval I, some properties of the Taylor remainder
I are considered. Tt is proved that T,[Lf lis symmetric iff
n = 1, and a conjecture concerning the equality TT[Lg] = TT[Lf Vs
formulated. The main result says that if f(") is one-to-one, there
exists a unique mean VAR fO(1) x £ (1) — f0)(I) such
that, for all z,y € I,
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The connection between T, 7[Lf I and Mr[Lf I is given. A functional
equation related to M2[f I'is derived and an open problem is posed.
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1. Introduction

By the Taylor theorem, if a real function f defined on an interval I C R is
n-times differentiable and f(), the n-th derivative of f, is one-to-one, then
there exists a unique mean Ty[Lf] : I? — I such that, for all z,y € I,

Fo) (TTQ’C] (wvy))

n!

n—1
f(k)
fly) = 2 i

@) () 4 (v— )"

=0

The mean T,[Lf }, called the Taylor reminder mean, is continuous and strict.
In the first Section we show (Theorem 1) that 7 s symmetric if, and only

if, n = 1 that if T,[Lf Vs the Lagrange mean. (Let us mention that A. Horwitz
[3], [4], (cf. also P.S. Bullen [2], p. 409) on the basis the Taylor theorem,

introduced some symmetric means.) It is known that Tl[g] = Tl[f Viff there are
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a,b,c € R, a # 0, such that g (x) = af (x)+bx+cfor all x € I (L.R. Berrone

and J. Moro [1], also [5]). In Section 2 we conjecture that 79 = 7 for an
n > 1, iff there are a € R, a # 0, and a polynomial p of the degree n, such
that

g(@)=af (@) +p), wel.
Theorem 3, the main result in Section 3, a counterpart of the Taylor The-

orem, reads as follows. If a real function f is n-times differentiable in an
interval I and f™ is one-to-one, then f™ (I) is an interval and there exists

a unique strict mean M fO (1) x f0) (1) = f™) (1) such that, for all
z,y €1,

n—1 (k) " 7[Lf} () (g , (n)
f =3 U )( _ )+ My (f™) (z), f™ (y))

oWt n!

n

(y—x)
k=0

A formula for the mean MT[Lf I and its relation with Ty I are also given. Taking
n = 1 in Theorem 3 we obtain the main result of [7] (cf. also [8]). An
application of Theorem 3 for n = 2 leads to the equality

[ () = 1 (y)

= % [Mgf] (" @), " W) + M (" (), " (ﬂf))}

for all z,y € I, x #y. For f(x) = 23, setting g := f’, h := ¢” we obtain

)=o) 1T, (2r) (s

3

)] s,y €,z #y.
T—y 2

It is an open problem to determine all functions g, h : I — R satisfying this
functional equation.

2. The Taylor remainder means

Recall that a function M : IZ — I is called a mean in a nontrivial interval
I C R if it is internal, that is if

min(z,y) < M(z,y) < max(z,y) for all z,y € I.

The mean M is called strict if these inequalities are sharp for all z,y € I,
x # vy, and symmetric if M(xz,y) = M(y,x) for all z,y € I.

The Lagrange mean-value theorem can be formulated in the following
way. If a function f : I — R is a differentiable, then there exists a strict
symmetric mean L : I? — I such that, for all z,y € I,x # y,

f(x) = fy)

T—y :f/(L(.’L',y))
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If f is one-to-one then, obviously, L/l := L is uniquely determined and is
called the Lagrange mean generated by f.
The classical Taylor theorem can be formulated in the following way.

Theorem 1. Let I C R be an interval and n € N be fized. If f : I - R

is n-times differentiable function in I, then there exists a strict mean Tgf] :
I? — I such that, for all x,y € I,

nl ) (g Fo (T (2, y)

k=0

If moreover the n-th derivative of f is one-to-one, then Tm

determined and

s uniquely

fy) - zf“““”( — )t

(y—fv)

-1
) T @) = (57) " [n ayel aty.

The mean T, T[If Vis called the Taylor remainder mean of n-th order and the
function f is called a generator of TT[Lf ! Clearly, Tl[f L Jti8

Remark 1. If f : I — R is n-times differentiable function in the interval
I c R and ™, the n-th derivative of f, is one-to-one, then f(is strictly
monotonic and continuous (cf. [6], Remark 1) and, consequently, f is of the
class C™ in [.

Theorem 2. Let I C R be an interval and n € N be fized. Suppose that
f: I — R is n-times differentiable and f™ is one-to-one. The mean T\ i
symmetric if, and only if, n = 1.

Proof. Assume that 7.\’ (x,y) = 7l (y,z) for some n € N, n > 2, and
for all z,y € I. Then, from 1, we get

n—1 (k) T n—1 (k)
Sy [f(x)— v <w—y>’f]

=0 k=0

=

for all x,y € I, x # y. Differentiating both sides with respect to « we obtain

n—1 n—1
 EAMMIGTNIN S iG1C)

k=0 ) k=1 (
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forall z,y € I, x # y. Differentiating both sides of this equality with respect
to y we obtain

f(k+1)( n—1 f(k
_;(hﬂ *Zw

=1 k=2
FE (y) (2 — )L — ) (y)

=(-1)" |- 2 (k —1)

)k—Q

and, after obvious simplification,

™ (@)
(n—2)!

(y—z)" " =
whence,
FW @) =", wyel x#y,
which contradicts the injectivity of (™). This proves that n = 1.
If n =1, then clearly, Tl[f b= Ll i symmetric. |

Example 1. For f(z) = 2""! z € (0,00), n > 2, by easy calculations,
get

r+y
Hence, taking g(z) = Z+01 apx® where a, € R for k = 0,1,...,n+ 1 and
an+1 # 0, in view of formula Theorem 3, we get
nr+y

Example 2. For f = exp and n = 2 we get

2MeY — e — o (y —
eV —e 62(y m)]’ .y €R.
(y —z)

M (2,y) = log

3. A conjecture on the equality of Taylor remainder
means and some remarks

It is natural to ask when two Taylor remainder means are equal. We pose
the following

Conjecture 1. Let I C R be an interval and n € N be fized. Suppose
that f : I = R, g : I — R are n-times differentiable, f™ and ¢™ are

one-to-one. Then
Tl = 7]
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if, and only if, there are a € R, a # 0, and a polynomial p of the degree n,
such that

gx)=af () +p(x), vl

Remark 2. This conjecture holds true for n = 1 (cf. Berrone & Moro

[1], also [5]).
Remark 3. Note that the ”if” part of this conjecture is true.

To show it assume that g = p + af where a € R, a # 0, and

n
x) = Zaka:k, r €R,
k=0

is a polynomial of the degree n. Then

" k)
P X
y):i: kl()(y_$)k7 x,yGK
k=0

p<>

and, taking into account that a,, = is constant, for all z,y € I, we have

®) (
L) () 4 af® (2
—p() +af(y) - 3 PO
k=0
n—=1 (k) . n—1 r(k) .
—<p<y>— = )(y—w)>+a<f(y)—zf 4 )<y—x>’“)
k=0 k=0
ol gk (g
zan(yﬂf)"+a<f(y)zf k,,( Ly x)k>,
k=0
whence, for all z,y € I, x # vy,
9) - Si  w-)t_ f) - S g - o)
(y—z)" " (y —x)"

Since
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applying (1), for all z,y € I, = # y, we hence get

T (2,y) = (9(")> h <n!g(y) - S (y - ) k)

(y —x)"

n—1 f&)(x
— (f(n))_l ((11 (an + an!f (v) - ’Zyé_fxl;!i) (y—=)* — an>>

b
(y —x)"

Since T} (x,z) =2 = 7Y (x,z) for all x € I, the proof is completed.
Remark 4. Under the assumptions of Conjecture, assume that T,Lg] =

TT[lﬂ and put
-1
W= ™o (g<n>) _

Hence, taking into account 1 and setting

Fly) = Spd 2@ (- gyt

F(z,y) == n! o —2) ,
Y () Fp By L8 (y — )t
Gry) = (y —a)"

we get the equality

V(G (x,y) =F(x,y), v,yel, z#y.

Here v is continuous and strictly monotonic and the functions F' and
G are n-times continuously differentiable with respect to y (cf. Remark
1). Thus to prove the conjecture it is enough to show that 1 is an affine
function. In this connection let us note the following

Remark 5. Let I C R be an interval and suppose that f : I — R
is n-times continuously differentiable. Then for every x € I, the function
@ : I — R defined by

cp(y) — f(y;:g:(x)’ y;«éx,
f (.%'), y==x.

is n-times differentiable in I\ {z} and

f™ ()

n

eV () =
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Proof. Let us fix x € I. By the definition of ¢ it is n-times differentiable

in I\ {z} and
fw=W-z)ely)+f(x), yel, y#u,
Hence, applying the Leibniz formula, we get
n k n—k
@) =S (™) (L, — a (g —2) o™ (n-1)

™ (y) kZ:O <k> (dyk (y x)) (dyn_kw (v) ) = (v —2) o™ (1) +ne™ ) (y)
for all y € I, y # x. Letting y — x we obtain

™ () = Tim £ () = n lim o=
F () = lim £ (y) = n lim "7 (y)

which implies the result. |

4. A counterpart of Taylor’s mean-value theorem

The main result reads as follow.
Theorem 3. Let I C R be an interval and n € N be fived. If f : I — R is
n-times differentiable function in I, and f is one-to-one, then f(™ (I) is

an interval and there exists a unique strict mean Mkﬂ Cf) (1) x f) (1) —
f™ (1) such that, for all z,y € I,

_ nz_:l F®) (2) (y —z) + M (F) (@), £ (1)
!

n!

n

(2) (y—a)".

Moreover, for all u,v € f (I), u # v,

. Fo (5) ™ ) - :zl’W(M ') - (1) (W)
M (u,v) =nl —

() @) = (1) )"

and
@ (T @) = M (£ @) f W) wy el

Proof. The injectivity of (™) and the Darboux property of the derivative
imply that f(™ is continuous, strictly monotonic (cf. [7]) and, consequently,

f™ (I) is an interval. Define MY f (1) x f™ (1) — ™ (1) by
M w0y i= 50 (20 (1) @ (1) @) ) v s a).

Now formula (2) follows from the Taylor theorem. The uniqueness and
strictness of M7[Lf ! follow form the same properties of T,[Lf I, |
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Remark 6. For n = 1 this result coincides with the main result of [7]

Theorem 2 and formula (3) imply

Remark 7. The mean M,[lf Vis symmetric iff n = 1.

Example 3. Let f (z) = Zié apx® where a, € R for k=0,1,...,n+1
and a,y1 # 0. From Example 1, applying 3, we get

nu —+ v
n+1’

M (u,v) = u,v € R.

Example 4. Let f = exp and n = 2. From Example 2 and 3 we get

v—u—u(logv—logu)

Mz[eXp] (u,v) =2 , u,v > 0.

(logv — logu)?

Remark 8. Assume that f is twice differentiable in an interval I and
that f” is one-to-one. From Theorem 3 we have, for all z,y € I,

" ] ¢ pn T "
£ = s+ 1D (g WCLTWO) e
and
/ ] ¢ pn " (g

Adding the respective sides of these equalities we get

frla)—fy 1

I @ )+ 0 (7 )57 @)

x,y € I, x #y. Taking f(z) = 2® and setting g := f’, h := ¢g" we hence get

b TDZ90 () ()] g

In this connection we pose the following

Problem. Find all functions g, h : I — R satisfying equation 4.
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