F A S C I C U L I M A T H E M A T I C I
 Nr 53

Janusz Matkowski

A COUNTERPART OF THE TAYLOR THEOREM AND MEANS

Abstract. For an n-times differentiable real function f defined in an a real interval I, some properties of the Taylor remainder means $T_{n}^{[f]}$ are considered. It is proved that $T_{n}^{[f]}$ is symmetric iff $n=1$, and a conjecture concerning the equality $T_{n}^{[g]}=T_{n}^{[f]}$ is formulated. The main result says that if $f^{(n)}$ is one-to-one, there exists a unique mean $M_{n}^{[f]}: f^{(n)}(I) \times f^{(n)}(I) \rightarrow f^{(n)}(I)$ such that, for all $x, y \in I$,

$$
f(y)=\sum_{k=0}^{n-1} \frac{f^{(k)}(x)}{k!}(y-x)^{k}+\frac{M_{n}^{[f]}\left(f^{(n)}(x), f^{(n)}(y)\right)}{n!}(y-x)^{n} .
$$

The connection between $T_{n}^{[f]}$ and $M_{n}^{[f]}$ is given. A functional equation related to $M_{2}^{[f]}$ is derived and an open problem is posed. Key words: Taylor theorem, mean, Taylor remainder mean, functional equation.
AMS Mathematics Subject Classification: 26A24, 26E60, 39B22.

1. Introduction

By the Taylor theorem, if a real function f defined on an interval $I \subset \mathbb{R}$ is n-times differentiable and $f^{(n)}$, the n-th derivative of f, is one-to-one, then there exists a unique mean $T_{n}^{[f]}: I^{2} \rightarrow I$ such that, for all $x, y \in I$,

$$
f(y)=\sum_{k=0}^{n-1} \frac{f^{(k)}(x)}{k!}(y-x)^{k}+\frac{f^{(n)}\left(T_{n}^{[f]}(x, y)\right)}{n!}(y-x)^{n}
$$

The mean $T_{n}^{[f]}$, called the Taylor reminder mean, is continuous and strict. In the first Section we show (Theorem 1) that $T_{n}^{[f]}$ is symmetric if, and only if, $n=1$ that if $T_{n}^{[f]}$ is the Lagrange mean. (Let us mention that A. Horwitz [3], [4], (cf. also P.S. Bullen [2], p. 409) on the basis the Taylor theorem, introduced some symmetric means.) It is known that $T_{1}^{[g]}=T_{1}^{[f]}$ iff there are
$a, b, c \in \mathbb{R}, a \neq 0$, such that $g(x)=a f(x)+b x+c$ for all $x \in I$ (L.R. Berrone and J. Moro [1], also [5]). In Section 2 we conjecture that $T_{n}^{[g]}=T_{n}^{[f]}$ for an $n>1$, iff there are $a \in \mathbb{R}, a \neq 0$, and a polynomial p of the degree n, such that

$$
g(x)=a f(x)+p(x), \quad x \in I
$$

Theorem 3, the main result in Section 3, a counterpart of the Taylor Theorem, reads as follows. If a real function f is n-times differentiable in an interval I and $f^{(n)}$ is one-to-one, then $f^{(n)}(I)$ is an interval and there exists a unique strict mean $M_{n}^{[f]}: f^{(n)}(I) \times f^{(n)}(I) \rightarrow f^{(n)}(I)$ such that, for all $x, y \in I$,

$$
f(y)=\sum_{k=0}^{n-1} \frac{f^{(k)}(x)}{k!}(y-x)^{k}+\frac{M_{n}^{[f]}\left(f^{(n)}(x), f^{(n)}(y)\right)}{n!}(y-x)^{n}
$$

A formula for the mean $M_{n}^{[f]}$ and its relation with $T_{n}^{[f]}$ are also given. Taking $n=1$ in Theorem 3 we obtain the main result of [7] (cf. also [8]). An application of Theorem 3 for $n=2$ leads to the equality

$$
\frac{f^{\prime}(x)-f^{\prime}(y)}{x-y}=\frac{1}{2}\left[M_{2}^{[f]}\left(f^{\prime \prime}(x), f^{\prime \prime}(y)\right)+M_{2}^{[f]}\left(f^{\prime \prime}(y), f^{\prime \prime}(x)\right)\right]
$$

for all $x, y \in I, x \neq y$. For $f(x)=x^{3}$, setting $g:=f^{\prime}, h:=g^{\prime \prime}$ we obtain

$$
\frac{g(x)-g(y)}{x-y}=\frac{1}{2}\left[h\left(\frac{2 x+y}{3}\right)+h\left(\frac{2 y+x}{3}\right)\right], x, y \in I, x \neq y
$$

It is an open problem to determine all functions $g, h: I \rightarrow \mathbb{R}$ satisfying this functional equation.

2. The Taylor remainder means

Recall that a function $M: I^{2} \rightarrow I$ is called a mean in a nontrivial interval $I \subset \mathbb{R}$ if it is internal, that is if

$$
\min (x, y) \leq M(x, y) \leq \max (x, y) \text { for all } x, y \in I
$$

The mean M is called strict if these inequalities are sharp for all $x, y \in I$, $x \neq y$, and symmetric if $M(x, y)=M(y, x)$ for all $x, y \in I$.

The Lagrange mean-value theorem can be formulated in the following way. If a function $f: I \rightarrow \mathbb{R}$ is a differentiable, then there exists a strict symmetric mean $L: I^{2} \rightarrow I$ such that, for all $x, y \in I, x \neq y$,

$$
\frac{f(x)-f(y)}{x-y}=f^{\prime}(L(x, y))
$$

If f^{\prime} is one-to-one then, obviously, $L^{[f]}:=L$ is uniquely determined and is called the Lagrange mean generated by f.

The classical Taylor theorem can be formulated in the following way.
Theorem 1. Let $I \subset \mathbb{R}$ be an interval and $n \in \mathbb{N}$ be fixed. If $f: I \rightarrow \mathbb{R}$ is n-times differentiable function in I, then there exists a strict mean $T_{n}^{[f]}$: $I^{2} \rightarrow I$ such that, for all $x, y \in I$,

$$
f(y)=\sum_{k=0}^{n-1} \frac{f^{(k)}(x)}{k!}(y-x)^{k}+\frac{f^{(n)}\left(T_{n}^{[f]}(x, y)\right)}{n!}(y-x)^{n}
$$

If moreover the n-th derivative of f is one-to-one, then $T_{n}^{[f]}$ is uniquely determined and
(1) $T_{n}^{[f]}(x, y)=\left(f^{(n)}\right)^{-1}\left(n!\frac{f(y)-\sum_{k=0}^{n-1} \frac{f^{(k)}(x)}{k!}(y-x)^{k}}{(y-x)^{n}}\right), x, y \in I, x \neq y$.

The mean $T_{n}^{[f]}$ is called the Taylor remainder mean of n-th order and the function f is called a generator of $T_{n}^{[f]}$. Clearly, $T_{1}^{[f]}=L^{[f]}$.

Remark 1. If $f: I \rightarrow \mathbb{R}$ is n-times differentiable function in the interval $I \subset \mathbb{R}$ and $f^{(n)}$, the n-th derivative of f, is one-to-one, then $f^{(n)}$ is strictly monotonic and continuous (cf. [6], Remark 1) and, consequently, f is of the class C^{n} in I.

Theorem 2. Let $I \subset \mathbb{R}$ be an interval and $n \in \mathbb{N}$ be fixed. Suppose that $f: I \rightarrow \mathbb{R}$ is n-times differentiable and $f^{(n)}$ is one-to-one. The mean $T_{n}^{[f]}$ is symmetric if, and only if, $n=1$.

Proof. Assume that $T_{n}^{[f]}(x, y)=T_{n}^{[f]}(y, x)$ for some $n \in \mathbb{N}, n \geq 2$, and for all $x, y \in I$. Then, from 1 , we get

$$
f(y)-\sum_{k=0}^{n-1} \frac{f^{(k)}(x)}{k!}(y-x)^{k}=(-1)^{n}\left[f(x)-\sum_{k=0}^{n-1} \frac{f^{(k)}(y)}{k!}(x-y)^{k}\right]
$$

for all $x, y \in I, x \neq y$. Differentiating both sides with respect to x we obtain

$$
\begin{aligned}
&-\sum_{k=0}^{n-1} \frac{f^{(k+1)}(x)}{k!}(y-x)^{k}+\sum_{k=1}^{n-1} \frac{f^{(k)}(x)}{(k-1)!}(y-x)^{k-1} \\
&=(-1)^{n}\left[f^{\prime}(x)-\sum_{k=1}^{n-1} \frac{f^{(k)}(y)}{(k-1)!}(x-y)^{k-1}\right]
\end{aligned}
$$

for all $x, y \in I, x \neq y$. Differentiating both sides of this equality with respect to y we obtain

$$
\begin{aligned}
& -\sum_{k=1}^{n-1} \frac{f^{(k+1)}(x)}{(k-1)!}(y-x)^{k}+\sum_{k=2}^{n-1} \frac{f^{(k)}(x)}{(k-2)!}(y-x)^{k-2} \\
& \quad=(-1)^{n}\left[-\sum_{k=1}^{n-1} \frac{f^{(k+1)}(y)}{(k-1)!}(x-y)^{k-1}+\sum_{k=2}^{n-1} \frac{f^{(k)}(y)}{(k-2)!}(x-y)^{k-2}\right]
\end{aligned}
$$

and, after obvious simplification,

$$
\frac{f^{(n)}(x)}{(n-2)!}(y-x)^{n-2}=(-1)^{n} \frac{f^{(n)}(y)}{(n-2)!}(x-y)^{n-2}
$$

whence,

$$
f^{(n)}(x)=f^{(n)}(y), \quad x, y \in I, \quad x \neq y
$$

which contradicts the injectivity of $f^{(n)}$. This proves that $n=1$.
If $n=1$, then clearly, $T_{1}^{[f]}=L^{[f]}$ is symmetric.
Example 1. For $f(x)=x^{n+1}, x \in(0, \infty), n \geq 2$, by easy calculations, get

$$
T_{n}^{[f]}(x, y)=\frac{n x+y}{n+1}, \quad x, y>0
$$

Hence, taking $g(x)=\sum_{k=0}^{n+1} a_{k} x^{k}$ where $a_{k} \in \mathbb{R}$ for $k=0,1, \ldots, n+1$ and $a_{n+1} \neq 0$, in view of formula Theorem 3, we get

$$
T_{n}^{[g]}(x, y)=\frac{n x+y}{n+1}, x, y>0
$$

Example 2. For $f=\exp$ and $n=2$ we get

$$
M_{2}^{[\exp]}(x, y)=\log \frac{2\left[e^{y}-e^{x}-e^{x}(y-x)\right]}{(y-x)^{2}}, x, y \in \mathbb{R}
$$

3. A conjecture on the equality of Taylor remainder means and some remarks

It is natural to ask when two Taylor remainder means are equal. We pose the following

Conjecture 1. Let $I \subset \mathbb{R}$ be an interval and $n \in \mathbb{N}$ be fixed. Suppose that $f: I \rightarrow \mathbb{R}, g: I \rightarrow \mathbb{R}$ are n-times differentiable, $f^{(n)}$ and $g^{(n)}$ are one-to-one. Then

$$
T_{n}^{[g]}=T_{n}^{[f]}
$$

if, and only if, there are $a \in \mathbb{R}, a \neq 0$, and a polynomial p of the degree n, such that

$$
g(x)=a f(x)+p(x), \quad x \in I
$$

Remark 2. This conjecture holds true for $n=1$ (cf. Berrone \& Moro [1], also [5]).

Remark 3. Note that the "if" part of this conjecture is true.
To show it assume that $g=p+a f$ where $a \in \mathbb{R}, a \neq 0$, and

$$
p(x)=\sum_{k=0}^{n} a_{k} x^{k}, \quad x \in \mathbb{R}
$$

is a polynomial of the degree n. Then

$$
p(y)=\sum_{k=0}^{n} \frac{p^{(k)}(x)}{k!}(y-x)^{k}, \quad x, y \in \mathbb{R}
$$

and, taking into account that $a_{n}=\frac{p^{(n)}}{n!}$ is constant, for all $x, y \in I$, we have

$$
\begin{aligned}
g & (y)-\sum_{k=0}^{n-1} \frac{g^{(k)}(x)}{k!}(y-x)^{k} \\
& =p(y)+a f(y)-\sum_{k=0}^{n-1} \frac{p^{(k)}(x)+a f^{(k)}(x)}{k!}(y-x)^{k} \\
& =\left(p(y)-\sum_{k=0}^{n-1} \frac{p^{(k)}(x)}{k!}(y-x)^{k}\right)+a\left(f(y)-\sum_{k=0}^{n-1} \frac{f^{(k)}(x)}{k!}(y-x)^{k}\right) \\
& =a_{n}(y-x)^{n}+a\left(f(y)-\sum_{k=0}^{n-1} \frac{f^{(k)}(x)}{k!}(y-x)^{k}\right)
\end{aligned}
$$

whence, for all $x, y \in I, x \neq y$,

$$
\frac{g(y)-\sum_{k=0}^{n-1} \frac{g^{(k)}(x)}{k!}(y-x)^{k}}{(y-x)^{n}}=a_{n}+a \frac{f(y)-\sum_{k=0}^{n-1} \frac{f^{(k)}(x)}{k!}(y-x)^{k}}{(y-x)^{n}}
$$

Since

$$
\left(g^{(n)}\right)^{-1}(u)=\left(f^{(n)}\right)^{-1}\left(\frac{u-a_{n}}{a}\right)
$$

applying (1), for all $x, y \in I, x \neq y$, we hence get

$$
\begin{aligned}
& T_{n}^{[g]}(x, y)=\left(g^{(n)}\right)^{-1}\left(n!\frac{g(y)-\sum_{k=0}^{n-1} \frac{g^{(k)}(x)}{k!}(y-x)^{k}}{(y-x)^{n}}\right) \\
& \quad=\left(f^{(n)}\right)^{-1}\left(\frac{1}{a}\left(a_{n}+a n!\frac{f(y)-\sum_{k=0}^{n-1} \frac{f^{(k)}(x)}{k!}(y-x)^{k}}{(y-x)^{n}}-a_{n}\right)\right) \\
& \quad=\left(f^{(n)}\right)^{-1}\left(n!\frac{f(y)-\sum_{k=0}^{n-1} \frac{f^{(k)}(x)}{k!}(y-x)^{k}}{(y-x)^{n}}\right)=T_{n}^{[f]}(x, y) .
\end{aligned}
$$

Since $T_{n}^{[g]}(x, x)=x=T_{n}^{[f]}(x, x)$ for all $x \in I$, the proof is completed.
Remark 4. Under the assumptions of Conjecture, assume that $T_{n}^{[g]}=$ $T_{n}^{[f]}$ and put

$$
\psi:=f^{(n)} \circ\left(g^{(n)}\right)^{-1}
$$

Hence, taking into account 1 and setting

$$
\begin{aligned}
& F(x, y):=n!\frac{f(y)-\sum_{k=0}^{n-1} \frac{f^{(k)}(x)}{k!}(y-x)^{k}}{(y-x)^{n}} \\
& G(x, y):=n!\frac{g(y)-\sum_{k=0}^{n-1} \frac{g^{(k)}(x)}{k!}(y-x)^{k}}{(y-x)^{n}}
\end{aligned}
$$

we get the equality

$$
\psi(G(x, y))=F(x, y), \quad x, y \in I, \quad x \neq y
$$

Here ψ is continuous and strictly monotonic and the functions F and G are n-times continuously differentiable with respect to y (cf. Remark 1). Thus to prove the conjecture it is enough to show that ψ is an affine function. In this connection let us note the following

Remark 5. Let $I \subset \mathbb{R}$ be an interval and suppose that $f: I \rightarrow \mathbb{R}$ is n-times continuously differentiable. Then for every $x \in I$, the function $\varphi: I \rightarrow \mathbb{R}$ defined by

$$
\varphi(y):=\left\{\begin{array}{cl}
\frac{f(y)-f(x)}{y-x}, & y \neq x \\
f^{\prime}(x), & y=x
\end{array}\right.
$$

is n-times differentiable in $I \backslash\{x\}$ and

$$
\varphi^{(n-1)}(x)=\frac{f^{(n)}(x)}{n}
$$

Proof. Let us fix $x \in I$. By the definition of φ it is n-times differentiable in $I \backslash\{x\}$ and

$$
f(y)=(y-x) \varphi(y)+f(x), \quad y \in I, \quad y \neq x
$$

Hence, applying the Leibniz formula, we get
$f^{(n)}(y)=\sum_{k=0}^{n}\binom{n}{k}\left(\frac{d^{k}}{d y^{k}}(y-x)\right)\left(\frac{d^{n-k}}{d y^{n-k}} \varphi(y)\right)=(y-x) \varphi^{(n)}(y)+n \varphi^{(n-1)}(y)$
for all $y \in I, y \neq x$. Letting $y \rightarrow x$ we obtain

$$
f^{(n)}(x)=\lim _{y \rightarrow x} f^{(n)}(y)=n \lim _{y \rightarrow x} \varphi^{(n-1)}(y)
$$

which implies the result.

4. A counterpart of Taylor's mean-value theorem

The main result reads as follow.
Theorem 3. Let $I \subset \mathbb{R}$ be an interval and $n \in \mathbb{N}$ be fixed. If $f: I \rightarrow \mathbb{R}$ is n-times differentiable function in I, and $f^{(n)}$ is one-to-one, then $f^{(n)}(I)$ is an interval and there exists a unique strict mean $M_{n}^{[f]}: f^{(n)}(I) \times f^{(n)}(I) \rightarrow$ $f^{(n)}(I)$ such that, for all $x, y \in I$,

$$
\begin{equation*}
f(y)=\sum_{k=0}^{n-1} \frac{f^{(k)}(x)}{k!}(y-x)^{k}+\frac{M_{n}^{[f]}\left(f^{(n)}(x), f^{(n)}(y)\right)}{n!}(y-x)^{n} . \tag{2}
\end{equation*}
$$

Moreover, for all $u, v \in f^{(n)}(I), u \neq v$,
$M_{n}^{[f]}(u, v)=n!\frac{f \circ\left(f^{(n)}\right)^{-1}(v)-\sum_{k=0}^{n-1} \frac{f^{(k) \circ}\left(f^{(n)}\right)^{-1}(u)}{k!}\left(\left(f^{(n)}\right)^{-1}(v)-\left(f^{(n)}\right)^{-1}(u)\right)^{k}}{\left(\left(f^{(n)}\right)^{-1}(v)-\left(f^{(n)}\right)^{-1}(u)\right)^{n}}$,
and

$$
\begin{equation*}
f^{(n)}\left(T_{n}^{[f]}(x, y)\right)=M_{n}^{[f]}\left(f^{(n)}(x), f^{(n)}(y)\right), \quad x, y \in I \tag{3}
\end{equation*}
$$

Proof. The injectivity of $f^{(n)}$ and the Darboux property of the derivative imply that $f^{(n)}$ is continuous, strictly monotonic (cf. [7]) and, consequently, $f^{(n)}(I)$ is an interval. Define $M_{n}^{[f]}: f^{(n)}(I) \times f^{(n)}(I) \rightarrow f^{(n)}(I)$ by

$$
M_{n}^{[f]}(u, v):=f^{(n)}\left(T_{n}^{[f]}\left(\left(f^{(n)}\right)^{-1}(u),\left(f^{(n)}\right)^{-1}(v)\right)\right), u, v \in f^{(n)}(I)
$$

Now formula (2) follows from the Taylor theorem. The uniqueness and strictness of $M_{n}^{[f]}$ follow form the same properties of $T_{n}^{[f]}$.

Remark 6. For $n=1$ this result coincides with the main result of [7]
Theorem 2 and formula (3) imply
Remark 7. The mean $M_{n}^{[f]}$ is symmetric iff $n=1$.
Example 3. Let $f(x)=\sum_{k=0}^{n+1} a_{k} x^{k}$ where $a_{k} \in \mathbb{R}$ for $k=0,1, \ldots, n+1$ and $a_{n+1} \neq 0$. From Example 1, applying 3, we get

$$
M_{n}^{[f]}(u, v)=\frac{n u+v}{n+1}, \quad u, v \in \mathbb{R}
$$

Example 4. Let $f=\exp$ and $n=2$. From Example 2 and 3 we get

$$
M_{2}^{[\exp]}(u, v)=2 \frac{v-u-u(\log v-\log u)}{(\log v-\log u)^{2}}, u, v>0
$$

Remark 8. Assume that f is twice differentiable in an interval I and that $f^{\prime \prime}$ is one-to-one. From Theorem 3 we have, for all $x, y \in I$,

$$
f(y)=f(x)+\frac{f^{\prime}(x)}{1!}(y-x)+\frac{M_{2}^{[f]}\left(f^{\prime \prime}(x), f^{\prime \prime}(y)\right)}{2!}(y-x)^{2}
$$

and

$$
f(x)=f(y)+\frac{f^{\prime}(y)}{1!}(x-y)+\frac{M_{2}^{[f]}\left(f^{\prime \prime}(y), f^{\prime \prime}(x)\right)}{2!}(x-y)^{2}
$$

Adding the respective sides of these equalities we get

$$
\frac{f^{\prime}(x)-f^{\prime}(y)}{x-y}=\frac{1}{2}\left[M_{2}^{[f]}\left(f^{\prime \prime}(x), f^{\prime \prime}(y)\right)+M_{2}^{[f]}\left(f^{\prime \prime}(y), f^{\prime \prime}(x)\right)\right]
$$

$x, y \in I, x \neq y$. Taking $f(x)=x^{3}$ and setting $g:=f^{\prime}, h:=g^{\prime \prime}$ we hence get

$$
\begin{equation*}
\frac{g(x)-g(y)}{x-y}=\frac{1}{2}\left[h\left(\frac{2 x+y}{3}\right)+h\left(\frac{2 y+x}{3}\right)\right], x, y \in I, \quad x \neq y \tag{4}
\end{equation*}
$$

In this connection we pose the following
Problem. Find all functions $g, h: I \rightarrow \mathbb{R}$ satisfying equation 4.

References

[1] Berrone L.R., Moro J., Lagrangian means, Aequationes Math., (55)(5)(1998), 217-226.
[2] Bullen P.S., Handbook of Means and Their Inequalities, Mathematics and Its Applications, Vol. 560, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.
[3] Horwitz A., Means and Taylor polynomials, J. Math. Anal. Appl., 149(1990), 220-235.
[4] Horwitz A., Means and averages of Taylor polynomials, J. Math. Anal. Appl., 176(1993), 404-412.
[5] Matkowski J., Mean value property and associated functional equation, Aequationes Math., 58(1999), 46-59.
[6] Matkowski J., On weighted extensions of Cauchy's means, J. Math. Anal. Appl., 319(2006), 215-227.
[7] Matkowski J., A mean-value theorem and its applications, J. Math. Anal. Appl., 373(2011), 227-234.
[8] Matkowski J., Power means generated by some mean-value theorems, Proc. Amer. Math. Soc., 139(2011), 3601-3610.

Janusz Matkowski
Faculty of Mathematics
Computer Science and Econometrics
University of Zielona Góra
ul. Prof. Z. Szafrana 5a
PL-65-516 Zielona Góra, Poland
e-mail: J.Matkowski@wmie.uz.zgora.pl

Received on 07.08.2013 and, in revised form, on 18.12.2013.

