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Abstract. The theory of summability is a very extensive field,
which has various applications. We prove the following theorem.
Assume f ∈ L∞(R3) with bounded support. If f is continuous
at some point (x1, x2, x3) ∈ R3, then the triple Fourier integral
of f is strongly q-Cesàro summable at (x1, x2, x3) to the function
value f(x1, x2, x3) for every 0 < q < ∞. Furthermore, if f is
continuous on some open subset G of R3, then the strong q-Cesàro
summability of the triple Fourier integral of f is locally uniform
on G.
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1. Introduction

1.1 Strong Cesàro summability of single Fourier integrals

Recall that the Fourier transform of a function f(x), integral in Lebesgue’s
sense on R, in symbol f(x) ∈ L1(R), is defined by

f̂(t) =
1√
2π

∫
R
f(x)e−tixdx, t ∈ R.

By the dominated convergence theorem, f̂(t) exists for every t ∈ R, f is
continuous on R and by the Riemann-Lebesgue lemma, f̂(t)→ 0 as |t| → ∞.

One of the main concerns is how to reconstruct the function f in terms
of its Fourier transform f̂ . For example, it is known that if f̂(x) ∈ L1(R),
then the inversion formula

(1) f(x) =
1√
2π

∫
R
f̂(t)etixdt,

holds for almost everywhere x ∈ R. (See, e.g. [[11], p. 11]).
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Recall that the right-hand side of (1) is called the Fourier integral of f .
However, f̂ /∈ L1(R), in general, and thus (1) makes no sense as a Lebesgue
integral. This motivates the information of the partial (also called Dirichlet)
integral of f̂ is defined by

sµ(f, x) =
1√
2π

∫ µ

−µ
f̂(t)etixdt, µ > 0.

By Fubini’s theorem, we find that

(2) sµ(f, x) =
1

π

∫
R
f(x− t)Dµ(t)dt, x ∈ R,

where

(3) Dµ(t) =
sinµt

t
, 0 6= t ∈ R.

This representation justifies the use of the term ”Dirichlet Integral”. One
might expect that (1) could be saved by considering its right- hand side as
an improper integral, that is, the limit of sµ(f, x) as µ→∞. Unfortunately,
this is not the case in general. According to [1], there exists a function
f ∈ L1(R) such that limµ→∞ sup |sµ(f, x)| =∞ for almost every x ∈ R.

On the other hand, strong Cesàro summability of sµ(f, x) with respect
to µ may take place. The following theorem was proved in [5] by the author.

Theorem 1. Let f ∈ L1(R) be locally bounded on R, and let 0 < q <∞.
(a) If f is continuous at some point x ∈ R, then

(4) lim
m→∞

1

m

∫ m

0
|sµ(f, x)− f(x)|qdµ = 0.

(b) If f is continuous on some open subset G of R, then (4) holds locally
uniformly on G. Note that if (4) holds for some 0 < q < ∞, then it holds
for every 0 < q1 < q. Indeed, by Hölder’s inequality, we have{

1

m

∫ m

0
|sµ(f, x)− f(x)|q1dµ

}1/q1

(5)

≤
{

1

m

∫ m

0
|sµ(f, x)− f(x)|qdµ

}1/q

, m > 0.

Thus, in case q ≥ 1, the ordinary Cesàro summability of sµ(f, x), that is

lim
m→∞

1

m

∫ m

0
sµ(f, x)dµ = f(x)

immediately follows from (4). Concerning Cesàro summability of integrals,
we refer to [[3], pp. 10-13], where it is called summability (C, 1).
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1.2. Strong Cesàro summability of double Fourier integrals [2]

Recall that the double Fourier transform of a function f(x1, x2) ∈ L1(R2)
is defined by

(6) f̂(t1, t2) =
1

2π

∫∫
R2

f(x1, x2)e
−i(t1x1+t2x2)dx1dx2, t1, t2 ∈ R2.

By the dominated convergence theorem, f̂(t1, t2) exists for every (t1, t2) ∈
R2, f̂ is continuous on R2 and by the Riemann-Lebesgue lemma, f̂(t1, t2)→
0 as |t1|, |t2| → ∞. If f̂ ∈ L1(R2), then the inversion formula

(7) f(x1, x2) =
1

2π

∫∫
R2

f̂(t1, t2)e
i(t1x1+t2x2)dt1dt2

holds for almost every (t1, t2) ∈ R2. The reader is referred to [[5], ch. 1] for
details. The partial (also called Dirichlet) integral of f̂ is defined by

sµ1,µ2(f, x1, x2) =
1

2π

∫ µ1

−µ1

∫ µ2

−µ2
f̂(t1, t2)e

i(t1x1+t2x2)dt1dt2, µ1, µ2 > 0.

Use of (6) and Fubini’s theorem, we get

(8) sµ1,µ2(f, x1, x2) =
1

π2

∫∫
R2

f(x1 − t1, x2 − t2)Dµ1(t1)Dµ2(t2)dt1dt2,

where Dµ(t) is defined in (3). The inversion formula (7) makes no sense if

f̂ /∈ L1(R2) and cannot be saved by replacing the right-hand side by the
limit of sµ1,µ2(f, x1, x2) as µ1, µ2 →∞, because this limit does not exist in
general (see [1]).

On the other hand, Cesàro summability of sµ1,µ2(f, x1, x2) with respect
to µ1, µ2 may take place. The following theorem was proved in [2] by the
author.

Theorem 2. Let f ∈ L∞(R2) with bounded support and let 0 < q <∞.
(a) If f is continuous at some point (x1, x2) ∈ R2, then

(9) lim
m1,m2→∞

1

m1m2

∫ m1

0

∫ m2

0
|sµ1,µ2(f, x1, x2)− f(x1, x2)|qdµ1dµ2 = 0.

(b) If f is continuous on some open subset G of R2, then (9) holds locally
uniformly on G. By the term locally uniformly on G we mean that every
point (x1, x2) in G has a neighborhood in G, on which the limit relation (9)
holds uniformly.
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In 1974, Khan [4] studied on degree of approximation to a functions be-
longing to the class Lip(α, p). Recently, Mishra et al. ([6]-[9]) have obtained
the degree of approximation of a function belonging to various classes using
different summability matrices with monotone and non-monotone rows.

2. Main results

2.1. Strong Cesàro summability of Triple Fourier integrals

Recall that the triple Fourier transform of a function f(x1, x2, x3) ∈
L1(R3) is defined by

f̂(t1, t2, t3)(10)

=
1

(2π)3/2

∫∫∫
R3

f(x1, x2, x3)e
−i(t1x1+t2x2+t3x3)dx1dx2dx3,

t1, t2, t3 ∈ R3. By the dominated convergence theorem, f̂(t1, t2, t3) exists for
every (t1, t2, t3) ∈ R3, f̂ is continuous on R3 and by the Riemann-Lebesgue
lemma, f̂(t1, t2, t3) → 0 as |t1|, |t2|, |t3| → ∞. If f̂ ∈ L1(R3), then the
inversion formula

(11) f(x1, x2, x3) =
1

(2π)3/2

∫∫∫
R3

f̂(t1, t2, t3)e
i(t1x1+t2x2+t3x3)dt1dt2dt3

holds for almost everywhere (t1, t2, t3) ∈ R3. The partial (also called Dirich-
let) integral of f̂ is defined by

sµ1,µ2,µ3(f, x1, x2, x3)

=
1

(2π)3/2

∫ µ1

−µ1

∫ µ2

−µ2

∫ µ3

−µ3
f̂(t1, t2, t3)e

i(t1x1+t2x2+t3x3)dt1dt2dt3,

µ1, µ2, µ3 > 0. Use of (10) and Fubini’s theorem we get

sµ1,µ2,µ3(f, x1, x2, x3)(12)

=
1

π3

∫∫∫
R3

f(x1 − t1, x2 − t2, x3 − t3)Dµ1(t1)Dµ2Dµ3(t3)dt1dt2dt3,

where Dµ(t) is defined in (3). The inversion formula (11) makes no sense

if f̂ /∈ L1(R3) and cannot be saved by replacing the right-hand side by the
limit of sµ1,µ2,µ3(f, x1, x2, x3) as µ1, µ2, µ3 →∞, because this limit does not
exist in general.

On the other hand, Cesàro summability of sµ1,µ2,µ3(f, x1, x2, x3) with
respect to µ1, µ2, µ3 may take place. The following theorem is three dimen-
sional analogue of Theorem 2.
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Theorem 3. Let f ∈ L∞(R3) with bounded support and let 0 < q <∞.
(a) If f is continuous at some point (x1, x2, x3) ∈ R3, then

lim
m1,m2,m3→∞

1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0
|sµ1,µ2,µ3(f, x1, x2, x3)(13)

−f(x1, x2, x3)|qdµ1dµ2dµ3 = 0.

(b) If f is continuous on some open subset G of R3, then (13) holds locally
uniformly on G. By the term locally uniformly on G we mean that every
point (x1, x2, x3) in G has a neighborhood in G, on which the limit relation
(13) holds uniformly.

3. Proof of Theorem 3

Part (a). By the three dimensional analogue of inequality (5), without
loss of generality we may assume that 3 ≤ q <∞. By the assumption that
f ∈ L∞(R3) is continuous at (x1, x2, x3) ∈ R3, for every ε > 0 there exists
δ = δ(ε) > 0 such that

(14) |f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)| < ε if |tj | < δ, j = 1, 2, 3

and for some constant B > 0,we have

(15) |f(y1, y2, y3)| ≤ B for almost every (y1, y2, y3) ∈ R3.

Since f is bounded support, there exits some constant M > 0 such that

(16) f(x1 − t1, x2 − t2, x3 − t3) = 0 for all (t1, t2, t3) ∈
R3

QM
,

where

(17) QM = [−M,M ]|[−M,M ]|[−M,M ].

Recall (see, e.g.,[[11], vol. 1, pp. 56-58]) that∫
sin t

t
dt = lim

n→∞

∫ m

−m

sin t

t
dt = π,

and ∣∣∣∣ ∫ m

−m

sin t

t
dt

∣∣∣∣ < 2π for all m > 0,

Thus, we may choose M so large (17) that both (16) and the following
inequality hold: ∣∣∣∣ ∫ m

−m

sin t

t
dt− π

∣∣∣∣ < ε whenever m ≥M.
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Accordingly, for µ > 0 we have

(18)

∣∣∣∣ ∫ m

−m

sinµt

t
dt− π

∣∣∣∣ < { ε, if µm ≥M,
3π, if µm < M, µ > 0.

By (12) and (16), the following representation clearly holds:

π3[sµ1,µ2,µ3(f, x1, x2, x3)− f(x1, x2, x3)]

=

∫∫∫
QM

[f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)]

×Dµ1(t1)Dµ2(t2)Dµ3(t3)dt1dt2dt3

− f(x1, x2, x3)

[
π3 −

∫∫∫
QM

Dµ1(t1)Dµ2(t2)Dµ3(t3)dt1dt2dt3

]
,

where Dµ(t) is defined in (3). Let mj > 1, j = 1, 2, 3.
By Minkowski’s inequality, we have∑

m1,m2,m3

(f, x1, x2, x3, q)(19)

= π3
{

1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0
|sµ1,µ2,µ3(f, x1, x2, x3)

− f(x1, x2, x3)|qdµ1dµ2dµ3
}1/q

≤
{

1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0

∣∣∣∣ ∫∫∫
QM

[f(x1 − t1, x2 − t2, x3 − t3)

− f(x1, x2, x3)]Dµ1(t1)Dµ2(t2)Dµ3(t3)dt1dt2dt3

∣∣∣∣qdµ1dµ2dµ3}1/q

+ |f(x1, x2, x3)| ×
{

1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0

∣∣∣∣ ∫∫∫
QM

Dµ1(t1)

× Dµ2(t2)Dµ3(t3)− π3
∣∣∣∣qdµ1dµ2dµ3}1/q

.

We claim that the order of magnitude of the second term on the right hand
side of (19) is O(ε). Indeed, by (15), (18) and Minkowski’s inequality, the
second term in question does not exceed the following quantity:

B

{
1

m1m2m3

[ ∫ 1

0

∫ 1

0

∫ 1

0
+

∫ m1

1

∫ 1

0

∫ 1

0
+

∫ 1

0

∫ m2

1

∫ 1

0
+

∫ 1

0

∫ 1

0

∫ m3

1

+

∫ m1

1

∫ m2

1

∫ m3

1
+

∫ m1

1

∫ m2

1

∫ 1

0
+

∫ 1

0

∫ m2

1

∫ m3

1
+

∫ m1

1

∫ 1

0

∫ m3

1

]
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×
∣∣∣∣[ ∫ M

−M

sinµ1t1
t1

dt1 − π
][ ∫ M

−M

sinµ2t2
t2

dt2 − π
]

×
[ ∫ M

−M

sinµ3t3
t3

dt3 − π
]

+ π

[ ∫ M

−M

sinµ1t1
t1

dt1 − π
]

+ π

[ ∫ M

−M

sinµ2t2
t2

dt2 − π
]

+ π

[ ∫ M

−M

sinµ3t3
t3

dt3 − π
]∣∣∣∣qdµ1dµ2dµ3}1/q

≤ B
{

[27π3 + 3π2 + 3π2 + 3π2] + (m1 − 1)1/q[9π2ε+ πε+ 3π2 + 3π2]

+ (m2 − 1)1/q[9π2ε+ πε+ 3π2 + 3π2]

+ (m3 − 1)1/q[9π2ε+ πε+ 3π2 + 3π2]

+ (m1 − 1)1/q(m2 − 1)1/q(m3 − 1)1/q[ε3 + πε+ πε+ πε]

+ (m1 − 1)1/q(m2 − 1)1/q[3πε2 + πε+ 3π2 + πε]

+ (m2 − 1)1/q(m3 − 1)1/q[3πε2 + πε+ 3π2 + πε]

+ (m1 − 1)1/q(m3 − 1)1/q[3πε2 + πε+ 3π2 + πε]

}
= O(ε),

provided that m1, m2 and m3 are large enough. Now equation (19), we have∑
m1,m2,m3

(f, x1, x2, x3, q)(20)

≤
{

1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0

∣∣∣∣ ∫∫∫
QM

[f(x1 − t1, x2 − t2, x3 − t3)

− f(x1, x2, x3)]Dµ1(t1)Dµ2(t2)Dµ3(t3)dt1dt2dt3

∣∣∣∣qdµ1dµ2dµ3}1/q

+ O(ε),

as m1,m2,m3 →∞. We shall assume that

(21) mj >
1

δ
, j = 1, 2, 3,

where δ occurs in (14), and consider the decomposition

QM = Em1 × Em2 × Em3 ∪ CEm1 × Em2 × Em3

∪ Em1 × CEm2 × Em3 ∪ Em1 × Em2 × CEm3

∪ CEm1 × CEm2 × Em3 ∪ CEm1 × Em2 × CEm3

∪ Em1 × CEm2 × CEm3 ∪ CEm1 × CEm2 × CEm3 ,

where

(22)

{
Emj = {tj ∈ R : |tj | ≤ 1/mj},

CEmj = {tj ∈ R : 1/mj < |tj | ≤M}, j = 1, 2, 3.
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Accordingly, we decompose the inner triple product integral
∫ ∫ ∫

QM
in (20)

into eight parts and denote them in turn by Ij , j = 1, 2, 3, 4, 5, 6, 7, 8; for
example,

I1 =

∫
Em1

∫
Em2

∫
Em3

[f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)]

×Dµ1(t1)Dµ2(t2)Dµ3(t3)dt1dt2dt3.

By the trivial estimate

(23) |Dµ(t)| ≤ µ, µ ≥ 0 and t ∈ R,

Clearly, we have

|I1| ≤ µ1µ2µ3

×
∫
Em1

∫
Em2

∫
Em3

[f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)]dt1dt2dt3.

By Fubini’s theorem, we obtain

1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0
|I1|qdµ1dµ2dµ3

≤ 1

m1m2m3

{∫
Em1

∫
Em2

∫
Em3

|f(x1 − t1, x2 − t2, x3 − t3)

− f(x1, x2, x3)|dt1dt2dt3
}q ∫ m1

0
µq1dµ1

∫ m2

0
µq2dµ2

∫ m3

0
µq3dµ3

=
(m1m2m3)

q

(q + 1)3

{∫
Em1

∫
Em2

∫
Em3

[f(x1 − t1, x2 − t2, x3 − t3)

− f(x1, x2, x3)]dt1dt2dt3

}q
.

On combining (14), (21) and (22), hence we conclude that{
1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0
|I1|qdµ1dµ2dµ3

}1/q

≤ 8ε

(q + 1)3/q
= O(ε).(24)

Next

I2 =

∫
CEm1

∫
Em2

∫
Em3

[f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)]

×Dµ1(t1)Dµ2(t2)Dµ3(t3)dt1dt2dt3.
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Applying Fubini’s theorem and Jensen’s inequality, we yield

Aq2 =
1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0
|I2|qdµ1dµ2dµ3(25)

≤ 1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0

{∫
Em2

|Dµ2(t2)|
∫
Em3

|Dµ3(t3)|

×
∣∣∣∣ ∫

CEm1

[f(x1 − t1, x2 − t2, x3 − t3)

− f(x1, x2, x3)]Dµ1(t1)dt1

∣∣∣∣dt2dt3}qdµ1dµ2dµ3
≤ 1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0

{[∫
Em2

|Dµ2(t2)|dt2
]q−1

×
[ ∫

Em3

|Dµ3(t3)dt3|
]q−1[ ∫

Em2

|Dµ2(t2)|

×
∫
Em3

|Dµ3(t3)|
]∣∣∣∣ ∫

CEm1

[f(x1 − t1, x2 − t2, x3 − t3)

− f(x1, x2, x3)]Dµ1(t1)dt1

∣∣∣∣qdt2dt3}dµ1dµ2dµ3.
By (3), (22) and (23), while applying Fubini’s theorem again, we obtain

Aq2 ≤
1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0

{[
2

∫ 1/m2

0
m2dt2

]q−1
(26)

×
[
2

∫ 1/m3

0
m3dt3

]q−1[ ∫
Em2

m2

∫
Em3

m3

]
×
∣∣∣∣ ∫

CEm1

[f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)]

×Dµ1(t1)dt1

∣∣∣∣qdt2dt3}dµ1dµ2dµ3
=

22q−2

m1m2m3

∫ m2

0

∫ m3

0

{∫
Em2

m2

∫
Em3

m3

×
[ ∫ m1

0

∣∣∣∣ ∫
CEm1

[f(x1 − t1, x2 − t2, x3 − t3)

− f(x1, x2, x3)]
sinµ1dt1

t1
dt1

∣∣∣∣qdµ1]dt2dt3}dµ2dµ3
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=
22q−2

m1

∫
Em2

m2

∫
Em3

m3

[ ∫ m1

0

∣∣∣∣∫
CEm1

[f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)]

× sinµ1t1
t1

dt1

∣∣∣∣qdµ1]dt2dt3.
The inner triple integral on the right hand side of (26) involving the qth

power can be estimated by the Hausdorff-inequality (see, e.g., [[10], p. 178]
or [11, Vol. 2 p. 254]) as follows:

∫ m1

0

∣∣∣∣ ∫
CEm1

[f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)](27)

× sinµ1t1
t1

dt1

∣∣∣∣qdµ1
=

∫ m1

0

∣∣∣∣ ∫
R

f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)

t1

× χ1(t1) sinµ1t1dt1

∣∣∣∣qdµ1
≤ Cqq

{∫
CEm1

∣∣∣∣f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)

t1

∣∣∣∣pdt1}1/p

,

where χ1(t1) is the characteristic function of the set [−M,−1/m1)∪[M, 1/m1),
Cq is constant depending only on q, and p = q/(q − 1) is the exponent con-
jugate to q. Since 3 ≤ q <∞, we have 1 < p ≤ 3/2. Combining (25) to (27)
and using Minkowski’s inequality, we get

Aq2 ≤
22q−2

m1
Cqq

∫
Em2

m2

∫
Em3

m3(28)

×
{∫

CEm1

∣∣∣∣f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)

t1

∣∣∣∣pdt1}1/p

dt2dt3

≤ 22q−2

m1
Cqq

∫
Em2

m2

∫
Em3

m3

×
{[∫ M

1/m1

∣∣∣∣f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)

t1

∣∣∣∣pdt1]1/p
+

[∫ −1/m1

−M

∣∣∣∣f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)

t1

∣∣∣∣pdt1]1/p}dt2dt3.
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By (14), (18) and (21), we estimate the inner integral
∫M
1/m1

as follows:

[{∫ δ

1/m1

+

∫ M

δ

}∣∣∣∣f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)

t1

∣∣∣∣pdt1]1/p(29)

≤
[ ∫ δ

1/m1

εp1
tp1
dt1

]1/p
+

[ ∫ M

δ

(2B)p

tp1
dt1

]1/p
≤ 1

(p− 1)1/p

[
εm1

1/q +
2B

δ1q

]
The estimate is valid for the other inner integral

∫ −1/m1

−M . Putting together
(25), (28), (29) and its counterpart yields

A2 =

{
1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0
|I2|qdµ1dµ2dµ3

}1/q

(30)

≤ 8Cq

(p− 1)1/p

[
ε+

2B

(m1δ)1q

]
= O(ε),

provided that m1 is large enough. An analogous estimate is valid for

I3 =

∫
Em1

∫
CEm2

∫
Em3

[f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)]

×Dµ1(t1)Dµ2(t2)Dµ3(t3)dt1dt2dt3.

that is, we have

A3 =

{
1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0
|I3|qdµ1dµ2dµ3

}1/q

(31)

≤ 8Cq

(p− 1)1/p

[
ε+

2B

(m2δ)1q

]
= O(ε),

provided that m2 is large enough.

I4 =

∫
Em1

∫
Em2

∫
Cm3

[f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)]

×Dµ1(t1)Dµ2(t2)Dµ3(t3)dt1dt2dt3.

that is, we have

A4 =

{
1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0
|I4|qdµ1dµ2dµ3

}1/q

(32)

≤ 8Cq

(p− 1)1/p

[
ε+

2B

(m3δ)1q

]
= O(ε),
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provided that m3 is large enough

I5 =

∫
CEm1

∫
CEm2

∫
Cm3

[f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)]

×Dµ1(t1)Dµ2(t2)Dµ3(t3)dt1dt2dt3.

Now, we apply the Hausdroff-Young inequality (see, e.g. [[10], p. 178]) to
obtain

A5 =

{
1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0
|I5|qdµ1dµ2dµ3

}1/q

(33)

=

{
1

m1m2m3

∫ m1

0

∫ m2

0∣∣∣∣ ∫∫∫
R3

f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)

t1t2t3
× χ1(t1)(sinµ1t1)χ2(t2)(sinµ2t2)

× χ3(t3)(sinµ3t3)dt1dt2dt3

∣∣∣∣qdµ1dµ2dµ3}1/q

≤ C̃q

{∫
CEm1

∫
CEm2

∫
CEm3∣∣∣∣f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)

t1t2t3

∣∣∣∣pdt1dt2dt3}1/p

where χj(tj) is the characteristic function of the set [−M,−1/mj)∪(1/mj ,M ],
j = 1, 2, 3, C̃q is constant depending only on q, and p = q/(q − 1) is the
exponent conjugate to q.

We decompose the domain of integration at the right most side of (33)
as follows:

CEm1 × CEm2 × CEm3 = (1/m1,M ]× (1/m2,M ]× (1/m3,M ]

∪ [−M,−1/m1)× [−M,−1/m2)× [−M,−1/m3)

∪ [−M,−1/m1)× (1/m2,M ]× (1/m3,M ]

∪ (1/m1,M ]× (1/m2,M ]× [−M,−1/m3)

∪ (1/m1,M ]× [−M,−1/m2)× (1/m3,M ]

∪ [−M,−1/m1)× [−M,−1/m2)× (1/m3,M ]

∪ (1/m1,M ]× [−M,−1/m2)× [−M,−1/m3)

∪ [−M,−1/m1)× (1/m2,M ]× [−M,−1/m3).

For example, we consider the corresponding integral over (1/m1,M ]×(1/m2,
M ]× (1/m3,M ].
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By Minkowski’s inequality, while using (14), (15) and (21), we find that{[∫ δ

1/m1

∫ δ

1/m2

∫ δ

1/m3

+

∫ δ

1/m1

∫ M

δ

∫ δ

1/m3

+

∫ M

δ

∫ δ

1/m2

∫ δ

1/m3

+

∫ δ

1/m1

∫ δ

1/m2

∫ M

δ
+

∫ δ

1/m1

∫ M

δ

∫ M

δ
+

∫ M

δ

∫ δ

1/m1

∫ M

δ

+

∫ M

δ

∫ δ

1/m2

∫ M

δ
+

∫ M

δ

∫ M

δ

∫ M

δ

]
×
∣∣∣∣f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)

t1t2t3

∣∣∣∣pdt1dt2dt3}1/p

≤
{∫ δ

1/m1

∫ δ

1/m2

∫ δ

1/m3

(ε)p

tp1t
p
2t
p
3

dt1dt2dt3

}1/p

+

{∫ δ

1/m1

∫ M

δ

∫ δ

1/m3

(2B)p

tp1t
p
2t
p
3

dt1dt2dt3

}1/p

+

{∫ M

δ

∫ δ

1/m2

∫ δ

1/m3

(2B)p

tp1t
p
2t
p
3

dt1dt2dt3

}1/p

+

{∫ δ

1/m1

∫ δ

1/m2

∫ M

δ

(2B)p

tp1t
p
2t
p
3

dt1dt2dt3

}1/p

+

{∫ δ

1/m1

∫ M

δ

∫ M

δ

(2B)p

tp1t
p
2t
p
3

dt1dt2dt3

}1/p

+

{∫ M

δ

∫ δ

1/m2

∫ M

δ

(2B)p

tp1t
p
2t
p
3

dt1dt2dt3

}1/p

+

{∫ M

δ

∫ M

δ

∫ δ

1/m3

(2B)p

tp1t
p
2t
p
3

dt1dt2dt3

}1/p

+

{∫ M

δ

∫ M

δ

∫ M

δ

(2B)p

tp1t
p
2t
p
3

dt1dt2dt3

}1/p

≤ 1

(p− 1)3/p

[
εm

1/q
1 m

1/q)
2 m

1/q
3 +

2B

δ1/q
m

1/q
1 m

1/q
3 +

2B

δ1/q
m

1/q
1 m

1/q
2

+
2B

δ1/q
m

1/q
2 m

1/q
3 +

2B

δ2/q
m

1/q
1 +

2B

δ2/q
m

1/q
2 +

2B

δ2/q
m

1/q
3 +

2B

δ3/q

]
.

The same estimate is valid for the other seven integrals, too. Combining (33)
with (34) and its seven counter parts, while using Minkowski’s inequality
yields

A5 =

{
1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0
|I5|qdµ1dµ2dµ3

}1/q
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≤ 8C̃q

(p− 1)3/p

[
ε+

2B

(δm1)1/q
+

2B

(δm2)1/q

+
2B

(δm3)1/q
+

2B

(δ2m1m3)1/q
+

2B

(δ2m1m2)1/q

+
2B

(δ2m2m3)1/q
+

2B

(δ3m1m2m3)1/q

]
= O(ε),

provided that m1, m2 and m3 are large.

I6 =

∫
Em1

∫
CEm2

∫
CEm3

[f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)]

×Dµ1(t1)Dµ2(t2)Dµ3(t3)dt1dt2dt3.

Applying Fubini’s theorem, we get

Aq6 =
1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0
|I6|qdµ1dµ2dµ3(34)

≤ 1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0

{∫
Em1

|Dµ1(t1)|

×
∣∣∣∣ ∫

CEm2

∫
CEm3

[f(x1 − t1, x2 − t2, x3 − t3 − f(x1, x2, x3)]

×Dµ2(t2)Dµ3(t3)dt2dt3

∣∣∣∣dt1}qdµ1dµ2dµ3
≤ 1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0

{[∫
Em1

|Dµ1(t1)|dt1
]q−1

∫
Em1

|Dµ1(t1)|
∣∣∣∣ ∫

CEm2

∫
CEm3

[f(x1 − t1, x2 − t2, x3 − t3)

− f(x1, x2, x3)]Dµ2(t2)Dµ3(t3)dt2dt3

∣∣∣∣q}dµ1dµ2dµ3.
By (3), (22) and (23), while applying Fubini’s theorem again, we obtain

Aq6 ≤
1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0

{[
2

∫ 1/m1

0
m1dt1

]q−1 ∫
Em1

m1(35)

×
∣∣∣∣ ∫

CEm2

∫
CEm3

[f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)]

×Dµ2(t2)Dµ3(t3)dt2dt3

∣∣∣∣qdt1}dµ1dµ2dµ3
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=
2q−1

m1m2m3

∫ m1

0

{∫
Em1

m1

[ ∫ m2

0

∫ m3

0∣∣∣∣ ∫
CEm2

∫
CEm3

[f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)]

×sinµ2dt2
t2

sinµ3dt3
t3

dt2dt3

∣∣∣∣qdµ2dµ3]dt1}dµ1
=

2q−1

m2m3

∫
Em1

m1

[ ∫ m2

0

∫ m3

0

∣∣∣∣ ∫
CEm2

∫
CEm3

[f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)]

× sinµ2dt2
t2

sinµ3dt3
t3

dt2dt3

∣∣∣∣qdµ2dµ3]dt1.
The inner triple integral on the right hand side of (35) involving the qth

power can be estimated by the Hausdorff-inequality as follows:∫ m2

0

∫ m3

0

∣∣∣∣ ∫
CEm2

∫
CEm3

[f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)](36)

×sinµ2dt2
t2

sinµ3dt3
t3

dt2dt3

∣∣∣∣qdµ2dµ3
=

∫ m2

0

∫ m3

0

∣∣∣∣ ∫ ∫
R2

f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)

t2t3

×χ2(t2) sinµ2t2χ3(t3) sinµ3t3dt2dt3

∣∣∣∣qdµ2dµ3
≤ Cqq

{∫
CEm2

∫
CEm3

∣∣∣∣f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)

t2t3

∣∣∣∣pdt2dt3}1/p

,

where χj(tj) is the characteristic function of the set [−M,−1/mj)∪(1/mj ,M ],
j = 2, 3, Cq is constant depending only on q, and p = q/(q − 1) is the
exponent conjugate to q.

We decompose the domain of integration at the right most side of (36)
as follows:

CEm2 × CEm3 = (1/m2,M ]× (1/m3,M ]

∪ [−M,−1/m2)× (1/m3,M ]

∪ (1/m2,M ]× [−M,−1/m3)

∪ [−M,−1/m2)× [−M,−1/m3).

For example, we consider the corresponding integral over (1/m2,M ]×(1/m3,M ].
By Minkowski’s inequality, while using (14), (15) and (21), we find that{[∫ δ

1/m2

∫ δ

1/m3

+

∫ M

δ

∫ δ

1/m3

+

∫ δ

1/m2

∫ M

δ
+

∫ M

δ

∫ M

δ

]
(37)
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×
∣∣∣∣f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)

t2t3

∣∣∣∣pdt2dt3}1/p

≤
{∫ δ

1/m2

∫ δ

1/m3

εp
tp2t

p
3

dt2dt3

}1p

+

{∫ M

δ

∫ δ

1/m3

(2B)p

tp2t
p
3

dt2dt3

}1p

+

{∫ δ

1/m2

∫ M

δ

(2B)p

tp2t
p
3

dt2dt3

}1p

+

{∫ M

δ

∫ M

δ

(2B)p

tp2t
p
3

dt2dt3

}1p

≤ 1

(p− 1)2/p

[
εm

1/q
2 m

1/q
3 +

2Bm
1/q
2

δ1/q
+

2Bm
1/q
3

δ1/q
+

2B

δ2/q

]
.

The same estimate is valid for the other three integrals, too.
Combining (36) with (37) and its three counter parts, while using Minko-

wski’s inequality yields

A6 =

{
1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0
|I6|qdµ1dµ2dµ3

}1/q

(38)

≤ 8Cq

(p− 1)2/p

[
ε+

2B

(δm2)1/q
+

2B

(δm3)1/q
+

2B

(δ2m2m3)1/q

]
= O(ε),

provided that m2 and m3 are large. An analogous estimate is valid for

I7 =

∫
CEm1

∫
Em2

∫
CEm3

[f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)]

×Dµ1(t1)Dµ2(t2)Dµ3(t3)dt1dt2dt3.

that is, we have

A7 =

{
1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0
|I7|qdµ1dµ2dµ3

}1/q

(39)

≤ 8Cq

(p− 1)2/p

[
ε+

2B

(δm1)1/q
+

2B

(δm3)1/q

+
2B

(δ2m1m3)1/q

]
= O(ε),

provided that m1, and m3 are large. An analogous estimate is valid for

I8 =

∫
CEm1

∫
CEm2

∫
Em3

[f(x1 − t1, x2 − t2, x3 − t3)− f(x1, x2, x3)]

×Dµ1(t1)Dµ2(t2)Dµ3(t3)dt1dt2dt3.

that is, we have

A8 =

{
1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0
|I8|qdµ1dµ2dµ3

}1/q

(40)
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≤ 8Cq

(p− 1)2/p

[
ε+

2B

(δm1)1/q
+

2B

(δm2)1/q

+
2B

(δ2m1m2)1/q

]
= O(ε),

provided that m1, and m2 are large enough collecting together (19), (20),
(22), (24), (30), (31), (32), (34), (38), (39) and (40), gives finally that{

1

m1m2m3

∫ m1

0

∫ m2

0

∫ m3

0
|sµ1,µ2,µ3(f, x1, x2, x3)(41)

− f(x1, x2, x3)|qdµ1dµ2dµ3
}1/q

= O(ε),

as m1,m2,m3 →∞. Being ε > 0 arbitrary, this proves (13).

Part (b). Let (x1, x2, x3) be an arbitrary point in G. Let η > 0 be such
that

N = N(x1, x2, x3) =

{
(y1, y2, y3) ∈ R3 : [(y1 − x1)2 + (y2 − x2)2

+ (y3 − x3)2]1/3 ≤ η
}
⊂ G.

We claim that (13) holds uniformly on N . In fact, by the uniform conti-
nuity of f on N , inequality (14) holds for all (y1, y2, y3) ∈ N in place of
(x1, x2, x3), possibly with a smaller δ > 0. Since N is a compact set, M can
be chosen so large that (16) also holds for all (y1, y2, y3) ∈ N in place of
(x1, x2, x3). It follows that the constant in the term O(ε) does not depend
on (y1, y2, y3) ∈ N in the estimate (20), (24), (30), (31), (32), (34),(38),
(39), (40) and consequently in (41). This proves part (b) and completes the
proof of Theorem 3.
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