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ABSTRACT. The theory of summability is a very extensive field,
which has various applications. We prove the following theorem.
Assume f € L°(R3) with bounded support. If f is continuous
at some point (21,79, 73) € R3, then the triple Fourier integral
of f is strongly ¢g-Cesaro summable at (z1,z2,x3) to the function
value f(x1,x2,23) for every 0 < ¢ < oco. Furthermore, if f is
continuous on some open subset G of R?, then the strong ¢g-Cesaro
summability of the triple Fourier integral of f is locally uniform
on G.
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1. Introduction

1.1 Strong Cesaro summability of single Fourier integrals

Recall that the Fourier transform of a function f(z), integral in Lebesgue’s
sense on R, in symbol f(z) € L'(R), is defined by

¢ — L —tlix
f(t) = \/27T/Rf(x)e dx, t € R.

By the dominated convergence theorem, f (t) exists for every t € R, f is
continuous on R and by the Riemann-Lebesgue lemma, f(t) — 0 as |t| — occ.

One of the main concerns is how to reconstruct the function f in terms
of its Fourier transform f. For example, it is known that if f(z) € L*(R),
then the inversion formula

1 £ tix
(1) f@) = 5= [ Foetar

holds for almost everywhere x € R. (See, e.g. [[11], p. 11]).
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Recall that the right-hand side of (1) is called the Fourier integral of f.
However, f ¢ L'(R), in general, and thus (1) makes no sense as a Lebesgue
integral. This motivates the information of the partial (also called Dirichlet)
integral of f is defined by

1 B .
su(frz) = N /_Mf(t)emdt, p > 0.

By Fubini’s theorem, we find that

(2) su(foz) = 717/ fle—)D,()dt, x € R,
R

where

(3) Du(t)zsmT’“‘t, 0£tcR.

This representation justifies the use of the term ”Dirichlet Integral”. One
might expect that (1) could be saved by considering its right- hand side as
an improper integral, that is, the limit of s,(f,x) as u — oo. Unfortunately,
this is not the case in general. According to [1], there exists a function
f € LY(R) such that lim,_s sup |s,(f,z)| = oo for almost every = € R.
On the other hand, strong Cesaro summability of s,(f,x) with respect
to u may take place. The following theorem was proved in [5] by the author.

Theorem 1. Let f € LY(R) be locally bounded on R, and let 0 < q < o0o.
(a) If f is continuous at some point © € R, then

@ i [ (o) = St = .

m—oo M,

(b) If f is continuous on some open subset G of R, then (4) holds locally
uniformly on G. Note that if (4) holds for some 0 < q < oo, then it holds
for every 0 < q1 < q. Indeed, by Holder’s inequality, we have

5) {1 [ et ) - f(x)\qldu}l/ql

m

1 m 1/‘1

{2 [Mldro - s@ran) L m>o.

mJo
Thus, in case ¢ > 1, the ordinary Cesaro summability of s, (f,x), that is

1 m

lim — dy =
Jin [T (= (@

immediately follows from (4). Concerning Cesdaro summability of integrals,
we refer to [[3], pp. 10-13], where it is called summability (C,1).
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1.2. Strong Cesaro summability of double Fourier integrals [2]

Recall that the double Fourier transform of a function f(z1,x2) € L'(R?)
is defined by

. 1 ‘
(6)  flt1,t2) = 27r/ flay, z)e”MEHT) gy day 1y 8y € R2.
R2

By the dominated convergence theorem, f (t1,t2) exists for every (ti,t2) €
R2?, f is continuous on R? and by the Riemann-Lebesgue lemma, f (t1,t2) —
0 as [t1], |ta| = oo. If f € L'(R?), then the inversion formula

(7) f(x1,22) / F(ty, to)e!trorttam) qp dqt,

holds for almost every (t1,ts) € R?. The reader is referred to [[5], ch. 1] for
details. The partial (also called Dirichlet) integral of f is defined by

Spyue (fr 1, 22) = / f b1, t2)e BT gy Ay g, g > 0.
p1d —pe

Use of (6) and Fubini’s theorem, we get

(8)  Sprua(frz1,22) = / f(@1 = t1, @2 — t2) Dy, (81) Dy, (t2) dtrdts,

where D, (t) is defined in (3). The inversion formula (7) makes no sense if
f ¢ L'(R?) and cannot be saved by replacing the right-hand side by the
limit of s, 4, (f,z1,22) as p1, p2 — 00, because this limit does not exist in
general (see [1]).

On the other hand, Cesaro summability of s, ., (f,z1,22) with respect
to p1, po may take place. The following theorem was proved in [2] by the
author.

Theorem 2. Let f € L™(R?) with bounded support and let 0 < q < oo.
(a) If f is continuous at some point (w1, x2) € R?, then

9) lim

m1,m2—>00 1M1 19

mi Mo
/ / |81 o (f5 21, w2) — f(1, 22)|Tdprdp = 0.

(b) If f is continuous on some open subset G of R%, then (9) holds locally
uniformly on G. By the term locally uniformly on G we mean that every
point (x1,x2) in G has a neighborhood in G, on which the limit relation (9)
holds uniformly.
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In 1974, Khan [4] studied on degree of approximation to a functions be-
longing to the class Lip(a, p). Recently, Mishra et al. ([6]-[9]) have obtained
the degree of approximation of a function belonging to various classes using
different summability matrices with monotone and non-monotone rows.

2. Main results

2.1. Strong Cesaro summability of Triple Fourier integrals

Recall that the triple Fourier transform of a function f(x1,x9,x3) €
LY(R3) is defined by

(10) f(t17t27t3)
1 .
~ (2m)32 ///Rg f (w1, w2, wg)e PR gy iy durs,

t1,t2, t3 € R3. By the dominated convergence theorem, f (t1,t2,t3) exists for
every (t1,to,t3) € R3, f is continuous on R? and by the Riemann-Lebesgue
lemma, f(t1,t2,t3) — 0 as |t1], |ta], [t3] = oo. If f € L'(R®), then the
inversion formula

1 N )
(11)  f(x1,22,23) = 2n) // \ Ft1, o, tg)elhmittam2att88) g g, i
R

holds for almost everywhere (1,12,13) € R3. The partial (also called Dirich-
let) integral of f is defined by

Sy 2,13 (f, Z1,T2, 353

M1
= 3/2/ / f tlat27t3) (tlxl+t2$2+t3z3)dt1dt2dt37
H2J —p3

1, f2, 3 > 0. Use of (10) and Fubini’s theorem we get

(12) S,U«l ,11«27N3 f,l'l,fL'Q,l’g

// f 1 —t1, 20 —to, T3 — tg)DM (tl)DugDug (tg)dtldtgdtg,

where D, (t) is defined in (3). The inversion formula (11) makes no sense
if f ¢ L'(R3) and cannot be saved by replacing the right-hand side by the
limit of s, o s (f; 21, T2, 23) as pi1, pa, 3 — 00, because this limit does not
exist in general.

On the other hand, Cesaro summability of s, ., ., (f; %1, 22, 23) with
respect to 1, uo, s may take place. The following theorem is three dimen-
sional analogue of Theorem 2.
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Theorem 3. Let f € L=(R?) with bounded support and let 0 < q < 0o.
(a) If f is continuous at some point (x1,T2,73) € R, then

mi fmo fms
13 li
( ) ml’m;’r}nlSHOO m1m2m3/ / / ‘Sul,#%m f :L'l,xg,xg)

—f (@1, 22, x3)| dprdpzdps = 0.

(b) If f is continuous on some open subset G of R3, then (13) holds locally
uniformly on G. By the term locally uniformly on G we mean that every
point (x1,x2,x3) in G has a neighborhood in G, on which the limit relation
(13) holds uniformly.

3. Proof of Theorem 3

Part (a). By the three dimensional analogue of inequality (5), without
loss of generality we may assume that 3 < ¢ < co. By the assumption that
f € L*®(R3) is continuous at (z1,x2,73) € R3, for every € > 0 there exists
d = 0(e) > 0 such that

(14) |f(.’L‘1 —t1,x9 —to,x3 — t3) — f(JJl,xQ,SU3)| <e if ‘tj ‘ < 5, ] = 1,2,3
and for some constant B > 0,we have

(15) |f(y1,y2,y3)| < B for almost every (y1,y2,y3) € R”.

Since f is bounded support, there exits some constant M > 0 such that

3
(16) f($1 — 11,29 — to, T3 — t3) =0 for all (tl,tz,tg) c —-—,
QM
where
(17) Qm = [-M, M]|[-M, M]|[-M, M].
Recall (see, e.g.,[[11], vol. 1, pp. 56-58]) that
/ LT L

n—oo [_ . t

and

t
’/ Smdt‘<27r for all m > 0,

Thus, we may choose M so large (17) that both (16) and the following

inequality hold:
sint
’/ —dt—w < € whenever m > M.
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Accordingly, for p > 0 we have

| <

By (12) and (16), the following representation clearly holds:

e, if um>M,
3m, if um < M, p > 0.

8#1,#2,#3 f?xlax2ax3) f($1>$271'3)]

///M (1 — t1, w9 — to, 3 — t3) — f(x1, 22, 23)]

XD/“( )D,u,g(tg)Dug,(tg)dtldtgdtg

— f(wl,acg,xg) |:7T3 — // D/Ll(tl)Dug(tz)Dug@g)dtldthtg s
Qm

where D, (t) is defined in (3). Let m; > 1, j =1,2,3.
By Minkowski’s inequality, we have

19) Y (frre1s,q)

mi,m2,m3

5 1 m1 pma pms
=T E— S X1, X2,
{m1m2m3 /() /(; A ‘ #1,#27#3(f7 1,42, 3)

1/q
- f($17x27x3)‘qd/i1d/1/2dlu,3}
1 mi fme M3
a1
mimams Jo 0 0

///M[f(ﬂfl —t1, w9 — tg, w3 — 13)

q 1/q
— f(x1, 22, 23)|Dpi (t1) Dua(ta) Dus(ts)dt  dtadts dmdﬂzd%}
1 mi1 pma rms3
+f(w1,x2,x3)|x{/ [ ][ pme
mimams Jo Jo Jo Qum
q 1/q
x Dy (ta) Dps(ts) — 7° duld/uduza} :

We claim that the order of magnitude of the second term on the right hand
side of (19) is O(e). Indeed, by (15), (18) and Minkowski’s inequality, the
second term in question does not exceed the following quantity:

Az UL L= LT L
VRNV T
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M M
t t
[/ Slnﬂl 1dt1 _W} [/ sin fio sinpiats ), ]
M M b2
M M
t t
x[/ smugg dts —W]—i-ﬂ[/ il 1dt1—7r]
Mt

t M gin pst
+7r[ Sm“”dtg—n]ﬂ[/ Slnuggdt3—ﬂ:|
3

X

q 1/q
dpn d,u2du3}

< B{ (2773 4 372 + 372 + 372 + (m1 — 1)Y9[97%€ + me + 372 + 3n?]

my — 1)Y997%¢ + me + 37 + 377
)Y4[97%€ + e + 3% + 377
— )Y (my — DY (m3 — 1)Ve® + me 4 me + 7e]
DY (my — 1)V9[3re? 4 me 4 37 + 7€
)
)

(
( )

1/q(mg — 1)1/q[3ﬂ'€2 + me + 312 4 me]
( )

-1

m3—1

m1 —
-1

m2

3

L= DYms — 1 1/q[37762+7re+37r2+7re]} = O(e),

provided that mj, mgs and mg are large enough. Now equation (19), we have

(20) Z (fs 21,22, 73, q)

mi,m2,m3

1 mi1 fmg M3
mimamsJjo Jo Jo

///M[f(:ﬁ1 —t1, 22 — tg, w3 — t3)

q 1/q
— f(@1, 22, 23)] Dt (t1) Do (tz) Dus(t3)dtydtadts dmdmdug}
+ O(e),
as mi,ma, msg — co. We shall assume that
1
(21) m] > 57 .] = 172737

where § occurs in (14), and consider the decomposition

Qv = Epy X Epy X By UCE R, X Epy, X Epy,y
UEp, X CEpy X By UEy, X Ey, X CEp,
UCE,,, X CEp, X By, UCE,,, X By, x CE,,,
U Em, X CEyy, X CEpy UCE,, X CEy, X CEy,,,

where

(22) Emj = {tj €ER: |tj| < 1/mj}7
CEpm, ={t; e R:1/m; < |tj| <M}, j=1,2,3.
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Accordingly, we decompose the inner triple product integral [ [ fQM in (20)

into eight parts and denote them in turn by I;, 7 = 1,2,3,4,5,6,7,8; for
example,

I =/ / / [f(x1 —t1, 22 — t2, 23 — t3) — f(21, T2, 23)]
Emy J By J Emyg
><Dul(tl)D,ug(tg)Dug(tg)dtldthtg.
By the trivial estimate
(23) |D.(t)] <p, p>0 and t€R,
Clearly, we have
11| < papops

X / / / [f(.%'l — tl, To — tQ, xr3 — tg) — f(:rl, X9, 1’3)]dt1dt2dt3.
EmqiJ Emgy Emg

By Fubini’s theorem, we obtain

1 mi1 fms fms
/ / / |11 |7dpy dpadps
mimoms
< {/ / / flx1 —t1, 29 — to, w3 — t3)
m1m2m3 Emy J EpyJ Emg
mq ma
—f($1,$2,$3)|dt1dt2dt3} / dul/ szm/ pidps
m1m2m3
= )8 {/ / / (X1 —t1, 20 — ta, x3 — t3)
(g Em, J EmyJ Emyg
— f($1,$2,$3)]dt1dt2dt3} .

On combining (14), (21) and (22), hence we conclude that

1 mi rma rms 1/q R
24 - I 9du duod < —— = 00fe).
( >{W,ng/()/()/0 L g dps ua} < o = 0

Next

12:/ / / [f(z1 = t1, 32 — to, 33 — t3) — f(21, 22, 23)]
CEm,J Emy/ Emg
><Dul(tl)D/LQ(tg)D,ug(tg)dtldtzdtg.
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Applying Fubini’s theorem and Jensen’s inequality, we yield

q 1 mi frme ms ‘
(25) Ay = ——— | L2|*dpa dpadyps
mimams Jo Jo Jo

< — D, (ts D,.(t3
s b U, 1P 1D

/ [f(z1 —t1, 20 — t2, x3 — t3)
c

Em,

X

q
— f(@1, 22, 23)| Dy, (t1)dty dt2dt3} dpydpgdps

s o LA o]
XUE Dug(t3>dt3|]q_l[/E | Dy (82)]

m3 m2

X fE Dus(ﬁ)’]’/CEml[f(iﬂl—t1,$2—t2,$3—t3)

m3
q
dtodts } dpadpadpys.

IN

— [z, 22, 23)] Dy, (t1)dty

By (3), (22) and (23), while applying Fubini’s theorem again, we obtain

1 mi mo ms3 1/m2 q—l
w0 s [
mimoms
1/ms q—1
X |:2/ mgdtg] [/ mg/ m3:|
0

’"L 2 ’"L 3

/ [f(x1 —t1, 22 — to, w3 — t3) — f(21, 22, x3)]
CEpm,

X

q
Dﬂl (tl)dtl dtgdtg }dmdqu,ug

22q 2 me ms
~ o U
mimsaomms Em2 Em3
X[/ / [f(z1 —t1, 22 — t2, 23 — t3)
0 CEm,

sin pqdt
- f($1,$2,x3)]#

dtq

q
dm} dtadts } dpadps
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22q72 mi
mi JEn, Em, 0

/ [f(x1 —t1, 20 — to, x3 — t3) — f(@1, 22, 23)]
CEum,

sin pqt
% U1 1dt1

q
d,ul:| dtgdtg .
1

The inner triple integral on the right hand side of (26) involving the ¢
power can be estimated by the Hausdorff-inequality (see, e.g., [[10], p. 178§]
or [11, Vol. 2 p. 254]) as follows:

en [
_ /0 "
el [,

where x1 (1) is the characteristic function of the set [-M, —1/m1)U[M,1/mq),
Cy is constant depending only on ¢, and p = ¢/(q — 1) is the exponent con-
jugate to ¢. Since 3 < ¢ < 0o, we have 1 < p < 3/2. Combining (25) to (27)
and using Minkowski’s inequality, we get

/ [f(x1 —t1, 29 — to, 23 — t3) — f(21, 22, 23)]
CEm,

q

Si t
St i

dtq

1
flz1 —t1,m — to, 23 — t3) — f(x1, 22, 3)
t

q

X Xl(tl)SinMItldtl dpy

P 1/p
dtl} )

f(x1 —t1,x0 — to, 23 — t3) — f(x1, 22, 23)
1

2q—2
(28) A% < Cq/ me T
Em2 Em3
1
{ flz1 —t1, 00 — to, 23 — t3) — f(21,72,73) pdtl} /pdthtg
CEm, h
22(] 2
< Cq/ meo ms3
Emg Em3
f(z1 —t1, w0 — to, w3 — t3) — f(x1, 22, 73) pdt1:| v
31

l/ml flx1 —t1, 29 — to, w3 — t3) — f(1, 22, 23)

+ t

Al
L

p 71/p
dtl] }dtgdtg.
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By (14), (18) and (21), we estimate the inner integral flj\//[ml as follows:

(29) H/‘S +/M}‘f(:r1—t1,£L‘2—t2,wi—t3)—f($1,x2,x3)
1/m1 0 1
5 P 1/p M P 1/p
T el e
1/mq 5] ) 121

<¥ 1/f1_|_%
=p-Dip|T T ol

P 1/p
ﬁJ

The estimate is valid for the other inner integral f:Al/[ ™ Putting together
(25), (28), (29) and its counterpart yields

1 mi  pm2  pm3 1/q
(30) AQ == { / / / |]2qd,u1dugdu3}
mimams Jo 0 0
2B
5, - 0(0).

S(p—U”p%+(mﬁﬂJ

provided that mq is large enough. An analogous estimate is valid for

I3 = / / / [f(x1 —t1, 29 — to, 23 — t3) — f(x1, 22, x3)]
By CEmyJ By
><D,U,l(tl)Dug(tz)D,u,g(tg)dtldthtg.

that is, we have

1 mi me ms3 1/(1
(31) A3 = { / / / |I3qd,uldugdu3}
mimams Jo 0 0
8C, 2B

S@—nWF+0me‘O@’

provided that my is large enough.
Iy = / / / [flz1 —ti,m2 — to, 23 — t3) — f(z1, 22, 73)]
Eml E’mg Cmg

><D,u1 (tl)Dug (tQ)D,u,g(tg)dtldtgdtg.

that is, we have

1 m1 mo ms3 ]-/q
(32) A4 = { / / / ’I4’qduld,u,2du3}
mimams Jo 0 0
8C, 2B

< G| o) =0
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provided that mg is large enough
Is = / / / [f(x1 —t1, 22 — t2, 23 — 13) — f(21, 72, 23)]
CEm, JCEmyJ Cmg
XD/Ll(tl)D,UQ(tg)Dug(tg)dtldthtg.

Now, we apply the Hausdroff-Young inequality (see, e.g. [[10], p. 178]) to
obtain

1 mi1 pfm2 ms 1/(1
(33) A5 = {/ / / |I5‘qd,uldugdu3}
mimam3 Jo Jo Jo

{ 1 /ml/m2
mimaoms Jo 0

‘// flxr —t1, 29 — to, w3 — t3) — f(21, 22, 23)
R3

t1tats
X X1 (tl)(Sil’l ,ultl)xg (tg)(sin ,LLQtQ)

q 1/q
dmduadug}

X x3(ts3)(sin psts)dtdtadts

CETVLl CE’!YIQ CE'm3

flx1 —t1, w0 — to, 23 — t3) — f(z1,22,23)
t1tats

IN

D 1/p
dtq dtzdtg}

where x;(¢;) is the characteristic function of the set [-M, —1/m;)U(1/m;, M],
j=1,2,3, C'q is constant depending only on ¢, and p = ¢/(q¢ — 1) is the
exponent conjugate to q.

We decompose the domain of integration at the right most side of (33)
as follows:

CEy, x CEp, X CEpy = (1/mq, M] x (1/mg, M] x (1/m3, M]
U[-M,—1/my) x [-M,—1/ma) x [-M,—1/m3)

x (1/mg, M] x (1/m3, M|

1/mo, M| x [—=M,—1/m3)

C
|
S
)
g
X
:
=
X
I
=
)
s

For example, we consider the corresponding integral over (1/my, M]x (1/ma,
M] x (1/mg, M].
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By Minkowski’s inequality, while using (14), (15) a

O S A /
Sy L L
Sk

X'f(im —t1,x9 — to, x5 — t3) — f(21, 22, 23) "

nd (21), we find that
//mz //m3
/1/m1 /

t1tats

B ) ) (€)P 1/p
< { / / / 10 pdtldthtg}
1/mq1 J1/mo J1/ms3 t1t2t3
d M
2B)P
+ {/ / / iptpl)fp dt1dtadts
1/my Jo 1/mg t1%2'3

M 5 P 1/p
I %dtldtzdtg}
/m2 /m3 t1tot

1/p
dtldtzdtg}

1/p

1/p

/
M M 5 (2B) 1/p
todt
/5 /5 // tptptpdtldeg}
M 1/p
/ / (2B)" dtldtgdtg,}

5 tithty

1 2B 2B
< [Emi/qmé/q)mé/q_i_(Sl/qmi/qm;’/q 7m1/qml/q

2B 1/q l/q 2B 1/q 2B 1/q 2B 1/ 2B

The same estimate is valid for the other seven integrals, too. Combining (33)
with (34) and its seven counter parts, while using Minkowski’s inequality

yields
1 mi mo ms3 1/q
As = / / / 15| dp1dpadps
mimams Jo 0 0
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8C, L2 . 2B
€
- (p — 1)3/17 (6m1)1/‘] (5m2)1/q
2B n 2B " 2B
(6mz)t/a ~ (62mim3)l/a  (62myma)t/a
2B 2B
=0
+ ((52m2m3)1/q * ((53m1m2m3)1/q (6)7

+

provided that mi, mo and mg are large.

Is = / / / [f(z1 —t1, 22 — ta, 23 — t3) — f(21, 22, 23)]
Em, JCEpmy/CEmg
XD,ul (tl)D,UQ(tQ)DMg(tg)dtldthtg.

Applying Fubini’s theorem, we get

q 1 mi mo ms 4
(31) A = ——— || 9dpr dpandps
mimams Jo 0 0
1 m1 M2 M3
_— D, (t
s o b U P

/ / [f(z1 —t1, 20 — to,x3 — t3 — f(x1, 22, 23)]
CEmy JCEpy

q
dty } dpydpgdps

1 mi m2 m3 q—1
< — D, (t1)|dt
<mand, &AL, pwco]

/ Dm(tl)|’/ / [f(z1 — t1, 20 — Lo, x3 — t3)
Em, CEmy JCEm,

q
}dmduzdus.

IN

X

X l)‘u2 (tQ)Dl%, (tg)dthtg

— f(@1,m2,23)] Dy, (t2) Dy (t3)dt2dts

By (3), (22) and (23), while applying Fubini’s theorem again, we obtain

1 mi mo ms3 1/m1 qg—1
(35) Ag § / / / {[2/ mldt1:| mq
mimams Jo 0 0 0 Em,

/ / [f(z1 —t1, 22 — to, 23 — t3) — f(x1, T2, 23)]
CEpy ) CEpy
q

dty }dMI dpadps

X

X l)‘u2 (tg)Du?) (tg)dthtg




STRONG CESARO SUMMABILITY OF TRIPLE ... 109

27 mi mo ms
o U]
mimams Em,

‘/ / flx1 —t1, 29 — to, w3 — t3) — f(z1, 22, 23)]
CEm2 C’Em3

dt dt

to
2q—1 mo  rms
= s ml[/ Lo
mams3 J g, CEmyJ CEmyg
[f(z1 —t1, 22 — to, 23 — t3) — f(x1, T2, 23)]
in podts sin usdt a
w DHLH202 ST H3Ats dugd,ug]dtl.

dta dt3

dtadts

to t3

The inner triple integral on the right hand side of (35) involving the ¢'*
power can be estimated by the Hausdorff-inequality as follows:

(36)/0 2/0 3 /C’EmQ/C’Em3[f($1 —t1, 29 — to,x3 — t3) — f(x1, 22, 23)]

sm dty sin psdt q
':2 2 S 3 dtadts| duadus
/mz/m:” / fler —t1, 29 — t2,333—t3) f(x1, 22, 23)
R2 tats
q
X x2(t2) sin patoxs(ts) sin pstsdtadts| duadus
_ _ _ _ P 1/p
< Cg{/ / |f(x1 —t1, 20 — ta, 23 — t3) — f(21, 72, 23) dthtg} 7
CBy J OBy | tat3

where x(t;) is the characteristic function of the set [-M, —1/m;)J(1/m;, M],
Jj = 2,3, Cy is constant depending only on ¢, and p = ¢/(¢ — 1) is the
exponent conjugate to q.

We decompose the domain of integration at the right most side of (36)
as follows:

CFEm, x CEp, = (1/ma, M| x (1/mg, M]
U[—=M,—1/ms2) x (1/ms, M]
U (1/mg, M| x [-M,—1/ms3)
U[—M,—1/mga) x [-M,—1/ms3).

For example, we consider the corresponding integral over (1 /ma, M]x(1/mg, M].
By Minkowski’s inequality, while using (14), ) and (21), we find that

N TN
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P 1/p
dt2dt3}

1p
tptp dtQ dts }

tots

1p
ol ([
{/ 1/ms / 1/ms tptp 1/ms
1p
{ / ) / 2 dtgdtg} { / / 2 dtgdtg}
m2

1/q
1/q 1/q , 2Bmy, QBm3 2B
emy ' mg 51 + 514 (52/‘1 .

" ’ flxr —t1, @0 — to, 3 — t3) — f(x1, T2, 23)

< -
T (- 1)2/ P [
The same estimate is valid for the other three integrals, too.

Combining (36) with (37) and its three counter parts, while using Minko-
wski’s inequality yields

1 m1 pma pm3 1/q
(38)  Ag = {/ / / |16\qdﬂlduzdu3}
mimama.Jo Jo Jo

<80q[+23+23+23}
——— | €

T (el (dmg)te o (Oms)t/T o (82mamsg)t/a
= 0(e),

provided that mo and ms are large. An analogous estimate is valid for

I; = / / / [f(x1 —t1, 22 — to,x3 — t3) — f(x1, 22, 23)]
CEmy J By JCEm,
X Dy (tl)D,ug(tQ)Dug(tg)dtldthtg.

that is, we have

1 m1 mo ms l/q
(39) Ar = { / / / |I7|qdmdu2du3}
mimams Jo 0 0

. 8C, [6+ 28 2B

T (p-1)r (Oma)ta — (dmg)l/a
2B

+ (52m1m3)1/‘1}

provided that mq, and mg are large. An analogous estimate is valid for

Iy = / / / [f(x1 —t1, 22 — to, w3 — t3) — f(x1, 22, 23)]
CEpy JCBmyJ By
XDHl (tl)D,U,Q(tg)Dug(tg)dtldtgdtg.

= 0(e),

that is, we have

1 mi pme pmg 1/q
(40) Ag = {/ / / ’18’qdﬂldﬂ2dﬂ3}
mimams Jo  Jo  Jo
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.8, [ L 2B 2B
€
~ (p—1)¥p (6m1)t/a — (6mg)t/a

2B
* (62m1m2)1/q] = 00,

provided that mq, and mgy are large enough collecting together (19), (20),
(22), (24), (30), (31), (32), (34), (38), (39) and (40), gives finally that

1 m1 me ms3
(41) {mlm2m3/0 /0 /0 18101 o5 (> X1, T2, 3)

1/q
—-f(xl,xz,xswqdulduzdug} —0(e),

as mi, mg, mg — 00. Being € > 0 arbitrary, this proves (13).

Part (b). Let (z1,x2,23) be an arbitrary point in G. Let n > 0 be such
that

N = N(xy,22,23) = {(ybyz,ys) € R [(y1 — 21)* + (y2 — 22)?

+@yﬂmWBSn}ca

We claim that (13) holds uniformly on N. In fact, by the uniform conti-
nuity of f on N, inequality (14) holds for all (y1,y2,y3) € N in place of
(21,22, x3), possibly with a smaller § > 0. Since N is a compact set, M can
be chosen so large that (16) also holds for all (yi,y2,y3) € N in place of
(z1,22,23). It follows that the constant in the term O(e) does not depend
on (y1,y2,y3) € N in the estimate (20), (24), (30), (31), (32), (34),(38),
(39), (40) and consequently in (41). This proves part (b) and completes the
proof of Theorem 3.
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