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1. Introduction

Random approximations and random fixed point theorems are stochastic
generalizations of classical approximations and fixed point theorems. The
study of random fixed point theorems was initiated by Prague school of
probabilities in the 1950’s by Spacek [25] and Hans [14], [15]. The interest
in these problems was enhanced after the publication of the survey article
of Bharucha-Reid [8] in 1976. Random fixed point theory and applications
have been further developed rapidly in recent years (see e.g. [4], [2], [3],
[6], [7], [17], [19], [29] and references therein). The class of asymptotically
nonexpansive self-mappings introduced by Goebel and Kirk [13] in 1972. In
2001, Xu and Ori [30] introduced the following implicit iteration process
{xn} defined by

xn = αnxn−1 + (1− αn)Tn(modN)xn, n ≥ 1, x0 ∈ K,(1)

for a finite family of nonexpansive mappings {T1, T2, ..., TN} : K → K, where
K is a nonempty closed convex subset of a Hilbert space E and {αn}n≥1 is a
real sequence in (0, 1). They proved the weakly convergence of the sequence
{xn} defined by (1) to a common fixed point p ∈ F = ∩Ni=1F (Ti).
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In 2003, Sun [27] introduced the following implicit iteration process {xn}
defined by

xn = αnxn−1 + (1− αn)T
k(n)
i(n) xn, n ≥ 1, x0 ∈ K,(2)

for a finite family of asymptotically quasi-nonexpansive self-mappings on
a bounded closed convex subset K of a Hilbert space E with {αn}n≥1 a
sequence in (0, 1), where n = (k(n) − 1)N + i(n), i(n) ∈ {1, 2, ..., N}, and
proved the strong convergence of the sequence {xn} defined by (2) to a
common fixed point p ∈ F = ∩Ni=1F (Ti).

In 2010, Filomena Cianciaruso et al. [12] considered the following implicit
iterative process for a finite family of asymptotically nonexpansive mappings

xn = (1− αn − γn)xn−1 + αnT
k(n)
i(n) yn + γnun,(3)

yn = (1− βn − δn)xn + βnT
k(n)
i(n) xn + δnvn, n ≥ 1,

where n = (k(n)− 1)N + i(n), i(n) ∈ {1, 2, ..., N}, {αn}, {βn}, {γn}, {δn},
are sequences of real numbers in (0, 1) with αn + γn ≤ 1 and βn + δn ≤ 1
for all n ≥ 1 and {un}, {vn}, are two bounded sequences and x0 is a given
point. They proved convergence of the implicit iterative process defined by
(3) to a common fixed point of asymptotically nonexpansive mappings in
uniformly convex Banach spaces.

Very recently, Hao et al. [16] studied the convergence of an implicit
iterative process with errors for two finite families {Ti}Ni=1, {Si}Ni=1 : K → K
of asymptotically nonexpansive mappings defined as follows:

xn = (1− αn − γn)xn−1 + αnT
k(n)
i(n) yn + γnun,(4)

yn = (1− βn − δn)xn + βnS
k(n)
i(n) xn + δnvn, n ≥ 1,

where n = (k(n)− 1)N + i(n), i(n) ∈ {1, 2, ..., N}, {αn}, {βn}, {γn}, {δn},
are sequences of real numbers in [0, 1] with αn + γn ≤ 1 and βn + δn ≤ 1 for
all n ≥ 1 and {un}, {vn}, are two bounded sequences.

The development of random fixed point iterations was initiated by Choud-
hury in [10] where random Ishikawa iteration scheme was defined and its
strong convergence to a random fixed point in Hilbert spaces was discussed.
After that several authors have worked on random fixed point iterations
some of which are noted in ([5], [9], [21], [20], [22], [23]) and many others.
Banerjee et al. [1] construct a composite implicit random iterative process
with errors for a finite family {Ti : i ∈ I = {1, 2, . . . , N}} of N continuous
asymptotically nonexpansive random operators from Ω × C to C, where C
be nonempty closed convex subset of a separable Banach space E. They
discuss the necessary and sufficient conditions for the convergence of this
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composite implicit random iterative process defined in the compact form as
follows:

ξn(t) = αnξn−1(t) + βnT
k(n)
i(n) (t, ηn(t)) + γnfn(t),(5)

ηn(t) = anξn(t) + bnT
k(n)
i(n) (t, ξn(t)) + cngn(t), n ≥ 1, ∀t ∈ Ω,

where {αn}, {βn}, {γn}, {an}, {bn} , {cn} are sequences of real numbers in
[0, 1] with αn+βn+γn = an+ bn+ cn = 1 and {fn(t)}, {gn(t)} are bounded
sequences of measurable functions from Ω to C.

Inspired and motivated by theses facts, we investigate convergence of the
following implicit random iterative process:

Definition 1. Let {Ti}Ni=1 and {Si}Ni=1 be two finite families of 2N
asymptotically nonexpansive random mappings form Ω × C to C. where
C is a nonempty closed convex subset of a separable Banach space E. Let
ξ0 : Ω→ C be a measurable function. Then define the sequence {ξn(w)} as

ξn(w) = (1− αn − γn)ξn−1(w) + αnT
k(n)
i(n) (w, ηn(w)) + γnfn(w),(6)

ηn(w) = (1− βn − δn)ξn(w) + βnS
k(n)
i(n) (w, ξn(w)) + δngn(w),

where n = (k(n)− 1)N + i(n), i(n) ∈ {1, 2, . . . , N}, {αn}, {βn}, {γn}, {δn}
are sequences of real numbers in [0, 1] with αn + γn ≤ 1 and βn + δn ≤ 1 for
all w ∈ Ω and for all n ≥ 1 and {fn(w)}, {gn(w)} are bounded sequences of
measurable functions from Ω to C.

We extend the random iterative process (5) to the case of two finite
families of asymptotically nonexpansive random mappings {Ti, Si : i =
1, 2, . . . , N} and also study the random version of the implicit iterative pro-
cess (4). We obtain the weak and strong convergence of an implicit random
iterative process (6) in a uniformly convex Banach space.

2. Preliminaries

Let (Ω,Σ) be a measurable space, C a nonempty subset of E. A mapping
ξ : Ω → C is called measurable if ξ−1(B ∩ C) ∈ Σ for every Borel subset
B of a Banach space E. A mapping T : Ω × C → C is said to be random
mapping if for each fixed x ∈ C, the mapping T (., x) : Ω→ C is measurable.
A measurable mapping ξ : Ω → C is called a random fixed point of the
random mapping T : Ω× C → C if T (w, ξ(w)) = ξ(w) for each w ∈ Ω.

We denote the set of all random fixed points of random mapping T by
RF (T ).
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Definition 2 ([18]). A Banach space E is said to satisfy the Opial’s
condition if for any sequence {xn} in E, xn ⇀ x weakly as n → ∞ and
x 6= y implying that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖,

for all y ∈ E.

Definition 3. A map T : C → E is called demiclosed at y ∈ E if for
each sequence {xn} in C and each x ∈ E, xn ⇀ x weakly and Txn → y
strongly imply that x ∈ C and Tx = y.

Definition 4 ([1]). A finite family {Ti : i ∈ I = {1, 2, 3, . . . , N}} of N

continuous random operators from Ω × C to E with F =
N⋂
i=1

RF (Ti) 6= ∅,

is said to satisfy condition B on C if there exists a nondecreasing function
f : [0,∞) → [0,∞) with f(0) = 0, f(r) ≥ 0 for all r ∈ (0,∞) such that for
all w ∈ Ω, f(d(ξ(w), F )) ≤ max

1≤i≤N
{‖ξ(w)−Ti(w, ξ(w))‖} for all ξ(w), where

ξ : Ω → C is a measurable function and d(ξ(w), F ) = inf{‖ξ(w) − q(w)‖ :

q(w) ∈ F =
N⋂
i=1

RF (Ti)}.

Definition 5 ([5]). Let C be a nonempty closed convex subset of a sep-
arable Banach space E and T : Ω× C → E be a random mapping. Then T
is said to be

(a) Nonexpansive random operator if for arbitrary x, y ∈ C,

‖T (w, x)− T (w, y)‖ ≤ ‖x− y‖, ∀w ∈ Ω.

(b) Asymptotically nonexpansive random mapping if there exists a mea-
surable mapping sequence rn(w) : Ω → [1,∞) with limn→∞ rn(w) = 1
for each w ∈ Ω such that for arbitrary x, y ∈ C and for each w ∈ Ω

‖Tn(w, x)− Tn(w, y)‖ ≤ rn(w)‖x− y‖, n = 1, 2, . . .

(c) Uniformly L-Lipschitzian random mapping if there exists a constant
L > 0 such that for arbitrary x, y ∈ C and w ∈ Ω

‖Tn(w, x)− Tn(w, y)‖ ≤ L‖x− y‖, n = 1, 2, ...

(d) Semicompact random mapping if for a sequence of measurable map-
pings {ξn} from Ω to C with limn→∞ ‖ξn(w) − T (w, ξn(w))‖ = 0 for
all w ∈ Ω there exists a subsequence {ξnk

(w)} of {ξn(w)} such that
{ξnk

(w)} → {ξ(w)} as k → ∞ for each w ∈ Ω, where {ξ(w)} is a
measurable mapping from Ω to C.
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Remark 1. Every asymptotically nonexpansive random mapping is uni-
formly L-Lipschitzian, where L = sup

w∈Ω,n≥1
rn(w).

The following lemmas are useful for proving our main results.

Lemma 1 ([28]). Let {an}, {bn} and {mn} be nonnegative real sequences
satisfying

an+1 ≤ (1 +mn)an + bn, ∀n ≥ 1.

If
∞∑
n=1

mn <∞ and
∞∑
n=1

bn <∞, then

(a) lim
n→∞

an exists.

(b) lim
n→∞

an = 0 whenever lim inf
n→∞

an = 0.

Lemma 2 ([24]). Let E be a uniformly convex Banach space, and 0 ≤
p ≤ tn ≤ q < 1 for all positive integer n ≥ 1. Also suppose that {xn} and
{yn} are two sequences of E such that lim sup

n→∞
‖xn‖ ≤ r, lim sup

n→∞
‖yn‖ ≤ r and

lim
n→∞

‖tnxn + (1− tn)yn‖ = r hold for some r ≥ 0, then lim
n→∞

‖xn − yn‖ = 0.

Lemma 3 (Demiclosedness Principle, [11]). Let E be a uniformly convex
Banach space, C a nonempty closed convex subset of E and T : C → E be
asymptotically nonexpansive mapping. Then I − T is demiclosed at zero.
i.e., if xn → x weakly and ‖xn − Txn‖ → 0 strongly, then x ∈ F (T ), where
F (T ) is the set of fixed points of T .

Lemma 4 ([26]). Let E be a Banach space which satisfies Opial’s condi-
tion and let {xn} be sequence in E. Let u, v ∈ E be such that lim

n→∞
‖xn− u‖

and lim
n→∞

‖xn−v‖ exists. If {xnk
} and {xmk

} are subsequence of {xn} which

converge weakly to u and v, respectively, then u = v.

3. Main results

Before proving our main results, we shall prove the following crucial lem-
mas:

Lemma 5. Let E be a separable Banach space and C be a nonempty
closed convex subset of E. Let {Ti, Si : i ∈ I = {1, 2, . . . , N}} be 2N
asymptotically nonexpansive random mappings with sequences of measurable

mappings {rin} : Ω → [1,∞) such that
∞∑
n=1

(rin(w) − 1) < ∞, rin(w) → 1

as n → ∞, for all w ∈ Ω and i ∈ I = {1, 2, . . . , N}. Suppose that

F =
N⋂
i=1

(RF (Ti)∩RF (Si)) 6= ∅. Let {ξn(w)} be the sequence defined as in (6)
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with the additional assumption
∞∑
n=1

γn <∞,
∞∑
n=1

δn <∞ and lim sup
n→∞

αn < 1.

Then

(a) lim
n→∞

‖ξn(w)− ξ(w)‖ exists for all ξ(w) ∈ F =
N⋂
i=1

(RF (Ti)∩RF (Si)).

(b) lim
n→∞

d(ξn(w), F ) exists where d(ξn(w), F ) = inf
ξ(w)∈F

‖ξn(w)− ξ(w)‖.

Proof. Let ξ(w) ∈ F . Since {fn} and {gn} are bounded sequence of
measurable function from Ω to C, we can put for each w ∈ Ω

(7) M(w) = sup
n≥1
‖fn(w)− ξ(w)‖ ∨ sup

n≥1
‖gn(w)− ξ(w)‖.

Then M(w) < ∞ for each w ∈ Ω and n ≥ 1. For n ≥ 1, let rn(w) =
max{rin(w) : i ∈ I = {1, 2, . . . , N}}, then we can write

‖T k(n)
i(n) (w, x)− T k(n)

i(n) (w, y)‖ ≤ rn(w)‖x− y‖(8)

‖Sk(n)
i(n) (w, x)− Sk(n)

i(n) (w, y)‖ ≤ rn(w)‖x− y‖, w ∈ Ω.

Using (6), (7) and (8), we have for ξ(w) ∈ F and w ∈ Ω that

‖ξn(w)− ξ(w)‖(9)

= ‖(1− αn − γn)ξn−1(w) + αnT
k(n)
i(n) (w, ηn(w)) + γnfn(w)‖

= ‖(1− αn − γn)(ξn−1(w)− ξ(w))

+ αn(T
k(n)
i(n) (w, ηn(w))− ξ(w)) + γn(fn(w)− ξ(w))‖

≤ (1− αn − γn)‖ξn−1(w)− ξ(w)‖
+ αn‖T k(n)

i(n) (w, ηn(w))− ξ(w)‖+ γn‖fn(w)− ξ(w)‖
≤ (1− αn − γn)‖ξn−1(w)− ξ(w)‖

+ αnrn(w)‖ηn(w)− ξ(w)‖+ γnM(w)

≤ (1− αn)‖ξn−1(w)− ξ(w)‖
+ αnrn(w)‖ηn(w)− ξ(w)‖+ γnM(w)

On the other hand,

‖ηn(w)− ξ(w)‖(10)

= ‖(1− βn − δn)ξn(w) + βnS
k(n)
i(n) (w, ξn(w)) + δngn(w)− ξ(w)‖

≤ (1− βn − δn)‖ξn(w)− ξ(w)‖+ βn‖Sk(n)
i(n) (w, ξn(w))− ξ(w)‖

+ δn‖gn(w)− ξ(w)‖
≤ (1− βn)‖ξn(w)− ξ(w)‖

+ βn‖Sk(n)
i(n) (w, ξn(w))− ξ(w)‖+ δn‖gn(w)− ξ(w)‖

≤ (1− βn)‖ξn(w)− ξ(w)‖+ βnrn(w)‖ξn(w)− ξ(w)‖+ δnM(w)
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= (1− βn + βnrn(w))‖ξn(w)− ξ(w)‖+ δnM(w)

≤ rn(w)‖ξn(w)− ξ(w)‖+ δnM(w),

where the last inequality follows from rn(w) ≥ 1. Putting (10) into (9), we
get

‖ξn(w)− ξ(w)‖ ≤ (1− αn)‖ξn−1(w)− ξ(w)‖(11)

+ αnrn(w) [rn(w)‖ξn(w)− ξ(w)‖
+ δnM(w)] + γnM(w)

= (1− αn)‖ξn−1(w)− ξ(w)‖
+ αnr

2
n(w)‖ξn(w)− ξ(w)‖

+ (αnrn(w)δn + γn)M(w)

Rearranging both sides, we obtain

‖ξn(w)− ξ(w)‖ ≤ 1− αn
1− αnr2

n(w)
‖ξn−1(w)− ξ(w)‖(12)

+
αnrn(w)δn + γn

1− αnr2
n(w)M(w)

= 1 +
αnr

2
n(w)− αn

1− αnr2
n(w)

‖ξn−1(w)− ξ(w)‖

+
αnrn(w)δn + γn

1− αnr2
n(w)

M(w)

= (1 +An(w))‖ξn−1(w)− ξ(w)‖+Bn(w).

Since lim sup
n→∞

αn < 1, then there exists λ < 1 such that αn ≤ λ for big n,

therefore

An(w) =
αnr

2
n(w)− αn

1− αnr2
n(w)

=
αn(r2

n(w)− 1)

1− αnr2
n(w)

≤ λ(r2
n(w)− 1)

1− λr2
n(w)

=
λ(rn(w) + 1)(rn(w)− 1)

1− λr2
n(w)

,

and since lim
n→∞

rn(w) = 1, we obtain lim
n→∞

λ(rn(w)+1)
1−λr2n(w)

≤ 2λ
1−λ , then there

exists a real constant k such that λ(rn(w)+1)
1−λr2n(w)

≤ k, ∀n ≥ 1. it follows that
∞∑
n=1

An(w) =
∞∑
n=1

αn(r2n(w)−1)
1−αnr2n(w)

<∞. Similarly, we can prove that
∞∑
n=1

Bn(w) =

∞∑
n=1

αnrn(w)δn+γn
1−αnr2n(w)

M(w) <∞. It follows by lemma 1 and inequality (12) that

lim
n→∞

‖ξn(w)−ξ(w)‖ exists for all ξ(w) ∈ F . To prove (2). Putting infξ∈F on
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both sides of (12), we get d(ξn(w), F ) ≤ (1 +An(w))d(ξn−1(w), F ) +Bn(w),
then also by lemma 1, we obtain that lim

n→∞
d(ξn(w), F ) exists and for all

w ∈ Ω �

Lemma 6. Let E be a uniformly convex separable Banach space and C
be a nonempty closed convex subset of E. Let {Ti, Si : i ∈ I = {1, 2, . . . , N}}
be 2N asymptotically nonexpansive random mappings with sequences of mea-

surable mappings {rin} ⊂ [1,∞) such that
∞∑
n=1

(rin(w)− 1) <∞, rin(w)→ 1

as n → ∞, for all w ∈ Ω and i ∈ I = {1, 2, . . . , N}. Suppose that

F =
N⋂
i=1

(RF (Ti)∩RF (Si)) 6= ∅. Let {ξn(w)} be the sequence defined as in (6)

with the additional assumption
∞∑
n=1

γn <∞,
∞∑
n=1

δn <∞ and lim sup
n→∞

αn < 1.

Then
(a) lim

n→∞
‖ξn(w)− Tl(w, ξn(w)‖ = 0,

(b) lim
n→∞

‖ξn(w)− Sl(w, ξn(w)‖ = 0,

(c) lim
n→∞

‖Tl(w, ξn(w))− Sl(w, ξn(w))‖ = 0,

for all w ∈ Ω and for all l = 1, 2, . . . , N .

Proof. Let ξ(w) ∈ F . Since {fn} and {gn} are bounded sequence of
measurable function from Ω to C, we can put for each w ∈ Ω

M(w) = sup
n≥1
‖fn(w)− ξ(w)‖ ∨ sup

n≥1
‖gn(w)− ξ(w)‖.

Then M(w) < ∞ for each w ∈ Ω and n ≥ 1. By Lemma 5, we see that
limn→∞ ‖ξn(w)−ξ(w)‖ exists for each w ∈ Ω. Assume that limn→∞ ‖ξn(w)−
ξ(w)‖ = c. Similarly, by using (10), we have

‖ηn(w)− ξ(w)‖ ≤ rn(w)‖ξn(w)− ξ(w)‖+ δnM(w).

Taking lim supn→∞ on both sides of the inequality, (where lim
n→∞

δn = 0) we

have

(13) lim sup
n→∞

‖ηn(w)− ξ(w)‖ ≤ c.

In addition ‖T k(n)
i(n) (w, ηn(w))−ξ(w)‖ ≤ rn‖ηn(w)−ξ(w)‖, taking lim supn→∞

on both sides of the inequality, we have

(14) lim sup
n→∞

‖T k(n)
i(n) (w, ηn(w))− ξ(w)‖ ≤ c.

Since limn→∞ γn = 0, it follows from (14) that

‖T k(n)
i(n) (w, ηn(w))− ξ(w) + γn(fn(w)− ξn−1(w))‖(15)
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≤ ‖T k(n)
i(n) (w, ηn(w))− ξ(w)‖+ γn‖fn(w)− ξn−1(w)‖

⇒ lim sup
n→∞

‖T k(n)
i(n) (w, ηn(w))− ξ(w) + γn(fn(w)− ξn−1(w))‖ ≤ c.

Also,

lim sup
n→∞

‖ξn−1(w)− ξ(w) + γn(fn(w)− ξn−1(w))‖(16)

≤ lim sup
n→∞

‖ξn−1(w)− ξ(w)‖ = c.

Now, by using (6) we have

c = lim
n→∞

‖ξn(w)− ξ(w)‖ = lim
n→∞

‖(1− αn − γn)ξn−1(w)(17)

+ αnT
k(n)
i(n) (w, ηn(w)) + γnfn(w)− ξ(w)‖

= lim
n→∞

‖αnT k(n)
i(n) (w, ηn(w)) + (1− αn)ξn−1(w)

− γnξn−1(w) + γnfn(w)− (1− αn)ξ(w)− αnξ(w)‖
= lim

n→∞
‖αnT k(n)

i(n) (w, ηn(w))− αnξ(w) + αnγnfn(w)

− αnγnξn−1(w) + (1− αn)ξn−1(w)− (1− αn)ξ(w)

− γnξn−1(w) + γnfn(w)− αnγnfn(w) + αnγnξn−1(w)‖
= lim

n→∞
‖αn(T

k(n)
i(n) (w, ηn(w))− ξ(w) + γn(fn(w)− ξn−1(w)))

+ (1− αn)(ξn−1(w)− ξ(w) + γn(fn(w)− ξn−1(w)))‖

From (15), (16), (17) and Lemma 2, we obtain

(18) lim
n→∞

‖T k(n)
i(n) (w, ηn(w))− ξn−1(w)‖ = 0.

On the other hand,

‖ξn(w)− T k(n)
i(n) (w, ηn(w))‖

≤ ‖ξn(w)− ξn−1(w)‖+ ‖ξn−1(w)− T k(n)
i(n) (w, ηn(w))‖

= ‖(1− αn − γn)ξn−1(w) + αnT
k(n)
i(n) (w, ηn(w))

+ γnfn(w)− ξn−1(w)‖+ ‖ξn−1(w)− T k(n)
i(n) (w, ηn(w))‖

= ‖ξn−1(w)− αnξn−1(w)− γnξn−1(w) + αnT
k(n)
i(n) (w, ηn(w))

+ γnfn(w)− ξn−1(w)‖+ ‖ξn−1(w)− T k(n)
i(n) (w, ηn(w))‖

≤ αn‖T k(n)
i(n) (w, ηn(w))− ξn−1(w)‖+ γn‖fn(w)− ξn−1(w)‖

+ ‖ξn−1(w)− T k(n)
i(n) (w, ηn(w))‖

= (1 + αn)‖T k(n)
i(n) (w, ηn(w))− ξn−1(w)‖+ γn‖fn(w)− ξn−1(w)‖
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By (18), we have

(19) lim
n→∞

‖ξn(w)− T k(n)
i(n) (w, ηn(w))‖ = 0

Also, we have

‖ξn(w)− ξ(w)‖ ≤ ‖ξn(w)− T k(n)
i(n) (w, ηn(w))‖+ ‖T k(n)

i(n) (w, ηn(w))− ξ(w)‖

≤ ‖ξn(w)− T k(n)
i(n) (w, ηn(w))‖+ rn(w)‖ηn(w)− ξ(w)‖,

which implies by (19) that

c = lim
n→∞

‖ξn(w)− ξ(w)‖ ≤ lim inf
n→∞

‖ηn(w)− ξ(w)‖.

Since c ≤ lim inf
n→∞

‖ηn(w)− ξ(w)‖ ≤ lim sup
n→∞

‖ηn(w)− ξ(w)‖ ≤ c, Thus,

(20) lim
n→∞

‖ηn(w)− ξ(w)‖ = c.

Now, we have

lim sup
n→∞

‖Sk(n)
i(n) (w, ξn(w))− ξ(w)‖(21)

≤ lim sup
n→∞

rn(w)‖ξn(w)− ξ(w)‖ = c

Also,

‖Sk(n)
i(n) (w, ξn(w))− ξ(w) + δn(gn(w)− ξ(w))‖

≤ ‖Sk(n)
i(n) (w, ξn(w))− ξ(w)‖+ δn‖gn(w)− ξ(w)‖

Using (21), we have

(22) lim
n→∞

‖Sk(n)
i(n) (w, ξn(w))− ξ(w) + δn(gn(w)− ξ(w))‖ ≤ c.

In addition,

lim sup
n→∞

‖ξn(w)− ξ(w) + δn(gn(w)− ξ(w))‖(23)

≤ lim sup
n→∞

‖ξn(w)− ξ(w)‖ = c.

On the other hand,

c = lim
n→∞

‖ηn(w)− ξ(w)‖ = lim
n→∞

‖(1− βn − δn)ξn(w)(24)

+ βnS
k(n)
i(n) (w, ξn(w)) + δngn(w)− ξ(w)‖

= lim
n→∞

‖βnSk(n)
i(n) (w, ξn(w)) + (1− βn)ξn(w)− δnξn(w)

+ δngn(w)− (1− βn)ξ(w)− βnξ(w)‖
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= lim
n→∞

‖βnSk(n)
i(n) (w, ξn(w))− βnξ(w) + βnδngn(w)

− βnδnξn(w) + (1− βn)ξn(w)− (1− βn)ξ(w)− δnξn(w)

+ δngn(w)− βnδngn(w) + βnδnξn(w)‖
= lim

n→∞
‖βn(S

k(n)
i(n) (w, ξn(w))− ξ(w) + δn(gn(w)− ξn(w)))

+ (1− βn)(ξn(w)− ξ(w) + δn(gn(w)− ξn(w)))‖

From (22), (23), (24) and Lemma 2, we obtain

(25) lim
n→∞

‖Sk(n)
i(n) (w, ξn(w))− ξn(w)‖ = 0.

Notice that,

‖ηn(w)− ξn(w)‖
= ‖(1− βn − δn)ξn(w) + βnS

k(n)
i(n) (w, ξn(w)) + δngn(w)− ξn(w)‖

≤ βn‖Sk(n)
i(n) (w, ξn(w))− ξn(w)‖+ δn‖gn(w)− ξn(w)‖,

Using (25) we obtain

(26) lim
n→∞

‖ηn(w)− ξn(w)‖ = 0,

Since,

‖T k(n)
i(n) (w, ξn(w))− ξn(w)‖

≤ ‖T k(n)
i(n) (w, ξn(w))− T k(n)

i(n) (w, ηn(w))‖+ ‖T k(n)
i(n) (w, ηn(w))− ξn(w)‖

≤ rn‖ξn(w)− ηn(w)‖+ ‖T k(n)
i(n) (w, ηn(w))− ξn(w)‖.

By using (19), (26), we get

(27) lim
n→∞

‖T k(n)
i(n) (w, ξn(w))− ξn(w)‖ = 0.

also,

‖ξn−1(w)− T k(n)
i(n) (w, ξn(w))‖

≤ ‖ξn−1(w)− T k(n)
i(n) (w, ηn(w))‖+ ‖T k(n)

i(n) (w, ηn(w))− T k(n)
i(n) (w, ξn(w))‖.

Both (18) and (26) imply that

(28) lim
n→∞

‖ξn−1(w)− T k(n)
i(n) (w, ξn(w))‖ = 0.
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Now,

‖ξn(w)− ξn−1(w)‖
≤ αn‖T k(n)

i(n) (w, ηn(w))− ξn−1(w)‖+ γn‖fn(w)− ξn−1(w)‖.

Using (18), we get limn→∞ ‖ξn(w)− ξn−1(w)‖ = 0. Hence

(29) lim
n→∞

‖ξn(w)− ξn+l(w)‖ = 0,

for all w ∈ Ω and for all l ∈ I. Since

‖T k(n)
i(n) (w, ξn(w))− Sk(n)

i(n) (w, ξn(w))‖

≤ ‖T k(n)
i(n) (w, ξn(w))− ξn(w)‖+ ‖ξn(w)− Sk(n)

i(n) (w, ξn(w))‖,

By (25) and (27), we get

(30) lim
n→∞

‖T k(n)
i(n) (w, ξn(w))− Sk(n)

i(n) (w, ξn(w))‖ = 0.

Notice that

‖ξn−1(w)− Ti(n)(w, ξn(w))‖(31)

≤ ‖ξn−1(w)− T k(n)
i(n) (w, ξn(w))‖

+ ‖T k(n)
i(n) (w, ξn(w))− Ti(n)(w, ξn(w))‖

≤ ‖ξn−1(w)− T k(n)
i(n) (w, ξn(w))‖

+ L‖T k(n)−1
i(n) (w, ξn(w))− ξn(w)‖

≤ ‖ξn−1(w)− T k(n)
i(n) (w, ξn(w))‖

+ L[‖T k(n)−1
i(n) (w, ξn(w))− T k(n)−1

i(n−N)(w, ξn−N (w))‖

+ ‖T k(n)−1
i(n−N)(w, ξn−N (w))− ξ(n−N)−1(w)‖

+ ‖ξ(n−N)−1(w)− ξn(w)‖].

Since for each n > N , n = (n − N)(modN) and n = (K(n) − 1)N + i(n),
we have k(n−N) = k(n)− 1 and i(n−N) = i(n).

(32) ‖T k(n)−1
i(n) (w, ξn(w))− T k(n)−1

i(n−N)(w, ξn−N (w))‖ ≤ L‖ξn(w)− ξn−N (w)‖,

and

‖T k(n)−1
i(n−N)(w, ξn−N (w))− ξ(n−N)−1(w)‖(33)

= ‖T k(n−N)
i(n−N) (w, ξn−N (w))− ξ(n−N)−1(w)‖.
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Substituting (33) and (32) into (31), we obtain

‖ξn−1(w)− Ti(n)(w, ξn(w))‖

≤ ‖ξn−1(w)− T k(n)
i(n) (w, ξn(w))‖+ L2‖ξn(w)− ξn−N (w)‖

+ L‖T k(n−N)
i(n−N) (w, ξn−N (w))− ξ(n−N)−1(w)‖

+ L‖ξ(n−N)−1(w)− ξn(w)‖

It follows by (28) and (29) that

(34) lim
n→∞

‖ξn−1(w)− Ti(n)(w, ξn(w))‖ = 0.

and

‖ξn(w)− Ti(n)(w, ξn(w))‖(35)

≤ ‖ξn(w)− ξn−1(w)‖+ ‖ξn−1(w)− Ti(n)(w, ξn(w))‖ → 0 as (n→∞).

Now for each l = 1, 2, . . . , N , we have

‖ξn(w)− Tn+l(w, ξn(w))‖(36)

≤ ‖ξn(w)− ξn+l(w)‖+ ‖ξn+l(w)− Tn+l(w, ξn+l(w)))‖
+ ‖Tn+l(w, ξn+l(w))− Tn+l(w, ξn(w)))‖
≤ ‖ξn(w)− ξn+l(w)‖+ ‖ξn+l(w)− Tn+l(w, ξn+l(w)))‖

+ L‖ξn+l(w)− ξn(w)‖ → 0 as n→∞ for each w ∈ Ω.

Consequently, we have

(37) ‖ξn(w)− Tl(w, ξn(w))‖ → 0,

for each w ∈ Ω and for each l = 1, 2, . . . , N . Similarly, we can prove that

(38) lim
n→∞

‖ξn(w)− Sl(w, ξn(w))‖ = 0,

for each w ∈ Ω and for each l = 1, 2, . . . , N . Finally, since

‖Tl(w, ξn(w))− Sl(w, ξn(w))‖
≤ ‖Tl(w, ξn(w))− ξn(w)‖+ ‖ξn(w)− Sl(w, ξn(w))‖

Thus by (37) and (38), we obtain

(39) lim
n→∞

‖Tl(w, ξn(w))− Sl(w, ξn(w))‖ = 0,

for each w ∈ Ω and for each l = 1, 2, . . . , N . �

In the next, we study strong convergence of the sequence {ξn(w)} defined
by (6) to a common random fixed point of {Ti, Si : i = 1, 2, . . . , N}.
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Theorem 1. Let E be a separable Banach space and C be a nonempty
closed convex subset of E. Let {Ti, Si : i ∈ I = {1, 2, . . . , N}} be 2N
asymptotically nonexpansive random mappings with sequences of measur-

able mappings {rin} ⊂ [1,∞) such that
∞∑
n=1

(rin(w) − 1) < ∞, rin(w) → 1

as n → ∞, for all w ∈ Ω and i ∈ {1, 2, . . . , N}. Suppose that F =
N⋂
i=1

(RF (Ti) ∩ RF (Si)) 6= ∅. Let {ξn(w)} be the sequence defined as in (6)

with the additional assumption
∞∑
n=1

γn <∞,
∞∑
n=1

δn <∞ and lim sup
n→∞

αn < 1.

Then {ξn(w)} converges to a common random fixed point of {Ti, Si : i =
1, 2, . . . , N} if and only if

(40) lim inf
n→∞

d(ξn(w), F ) = 0, w ∈ Ω.

Proof. The necessity of (40) is obvious. To prove the sufficiency of (40),
we have by Lemma 5, that lim

n→∞
d(ξn(w), F ) exists for w ∈ Ω and we have

from the hypothesis of the Theorem that lim inf
n→∞

d(ξn(w), F ) = 0, w ∈ Ω,

then lim
n→∞

d(ξn(w), F ) = 0. Now, since 1 + x ≤ ex for x > 0 and from (12),

we have that

‖ξn+m(w)− ξ(w)‖(41)

≤ (1 +An+m(w))‖ξn+m−1(w)− ξ(w)‖+Bn+m(w)

≤ eAn+m(w)‖ξn+m−1(w)− ξ(w)‖+Bn+m(w)

≤ eAn+m(w)+An+m−1(w)‖ξn+m−2(w)− ξ(w)‖
+ eAn+m(w)Bn+m−1(w) +Bn+m(w)

...

≤ e
n+m∑
i=n+1

Ai(w)

‖ξn(w)− ξ(w)‖

+

n+m−1∑
k=n+1

Bk(w)e

n+m∑
i=k+1

Ai(w)

+Bn+m(w)

≤ R(w)‖ξn(w)− ξ(w)‖+R(w)

∞∑
k=n+1

Bk(w),

for each w ∈ Ω and for all natural numbersm,n whereR(w) = e

∞∑
n=1

An(w)
< ∞.

Therefore, for any ξ(w) ∈ F , (41) implies that

‖ξn+m(w)− ξn(w)‖(42)

≤ ‖ξn+m(w)− ξ(w)‖+ ‖ξn(w)− ξ(w)‖
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≤ R(w)‖ξn(w)− ξ(w)‖+R(w)
∞∑

k=n+1

Bk(w) + ‖ξn(w)− ξ(w)‖

= (R(w) + 1)‖ξn(w)− ξ(w)‖+R(w)

∞∑
k=n+1

Bk(w).

Since lim
n→∞

d(ξn(w), F ) = 0, and
∞∑
n=1

Bn(w) <∞, given ε > 0, there exists a

natural number n0 such that d(ξn(w), F ) < ε
2(R(w)+1) and

∞∑
n=1

Bn(w) < ε
2R(w)

for all n ≥ n0. So there exists ξ∗(w) ∈ F such that ‖ξn(w) − ξ∗(w)‖ <
ε

2(R(w)+1) for all n ≥ n0. Therefore from (42), we have for all n ≥ n0 that

‖ξn+m(w)− ξn(w)‖ ≤ (R(w) + 1)‖ξn(w)− ξ∗(w)‖+R(w)
∞∑

k=n+1

Bk(w)

< (R(w) + 1)
ε

2(R(w) + 1)
+R(w)

ε

2R(w)
= ε,

which implies that {ξn(w)} is a Cauchy sequence in C for each w ∈ Ω.
Since C is closed subset of E, then there exists p(w) such that lim

n→∞
ξn(w) =

p(w), where p being the limit of measurable functions is also measurable.
Now we show that p(w) ∈ F . Since for each w ∈ Ω, lim

n→∞
ξn(w) = p(w),

there exists n1 ∈ N such that ‖ξn(w) − p(w)‖ < ε
2(1+rl(w) for all n ≥ n1.

Since lim
n→∞

d(ξn(w), F ) = 0 for each w ∈ Ω there exists n2 ∈ N such that

d(ξn(w), F ) < ε
2(1+rl(w)) for all n ≥ n2. So there exists q ∈ F such that

‖ξn(w) − q(w)‖ < ε
2(1+rl(w) for all n ≥ n2. Let n3 = max{n1, n2}. For all

l ∈ I = {1, 2, ..., N} and for all n ≥ n3

‖Tl(w, p(w))− p(w)‖(43)

≤ ‖Tl(w, p(w))− q(w)‖+ ‖q(w)− p(w)‖
≤ ‖Tl(w, p(w))− Tl(w, q(w))‖+ ‖q(w)− p(w)‖
≤ rl(w)‖q(w)− p(w)‖+ ‖q(w)− p(w)‖
= (1 + rl(w))‖q(w)− p(w)‖
≤ (1 + rl(w))‖q(w)− ξn(w)‖

+ (1 + r(w))‖ξn(w)− p(w)‖

< (1 + r(w))
ε

2(1 + rl(w)

+ (1 + rl(w))
ε

2(1 + rl(w)
= ε,

which implies that Tl(w, p(w)) = p(w) for all l ∈ {1, 2, . . . , N} and for all
w ∈ Ω. In addition, by (38), we have Sl(w, ξn(w)) → ξn(w), then there
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exists n4 ∈ N such that ‖Sl(w, ξn(w)) − ξn(w)‖ < ε
2 for all n ≥ n4. Let

n5 = max{n1, n4}, then we have

‖Sl(w, p(w))− p(w)‖(44)

≤ ‖Sl(w, p(w))− Sl(w, ξn(w))‖+ ‖Sl(w, ξn(w))− ξn(w)‖
+ ‖ξn(w)− p(w)‖

≤ rl(w)‖ξn(w)− p(w)‖+ ‖Sl(w, ξn(w))− ξn(w)‖
+ ‖ξn(w)− p(w)‖

= (1 + rl(w))‖ξn(w)− p(w)‖+ ‖Sl(w, ξn(w))− ξn(w)‖

< (1 + rl(w))
ε

2(1 + rl(w)
+
ε

2
= ε,

which implies that Sl(w, p(w)) = p(w) for all l ∈ {1, 2, . . . , N} and for all

w ∈ Ω. Thus p ∈ F =
N⋂
i=1

(RF (Ti) ∩RF (Si)). �

Theorem 2. Let E be a uniformly convex separable Banach space and C
be a nonempty closed convex subset of E. Let {Ti, Si : i ∈ I = {1, 2, . . . , N}}
be 2N asymptotically nonexpansive random mappings with sequences of mea-

surable mappings {rin} ⊂ [1,∞) such that
∞∑
n=1

(rin(w)− 1) <∞, rin(w)→ 1

as n → ∞, for all w ∈ Ω and i ∈ I = {1, 2, . . . , N}. Suppose that

F =
N⋂
i=1

(RF (Ti)∩RF (Si)) 6= ∅. Let {ξn(w)} be the sequence defined as in (6)

with the additional assumption
∞∑
n=1

γn <∞,
∞∑
n=1

δn <∞ and lim sup
n→∞

αn < 1.

If one of the families {Ti : i ∈ I} or {Si : i ∈ I} satisfy the condition B
for all w ∈ Ω. Then {ξn(w)} converges strongly to a common random fixed
point of {Ti, Si : i = 1, 2, . . . , N}.

Proof. By Lemma 6, we have lim
n→∞

‖ξn(w) − Ti(w, ξn(w))‖ = 0, i =

1, 2, . . . , N . Suppose {Ti : i = 1, 2, . . . , N} satisfy the condition B, then

f(d(ξn(w), F )) ≤ max
1≤i≤N

{‖ξn(w)− Ti(w, ξn(w))‖}

⇒ lim
n→∞

f(d(ξn(w), F )) = 0.

Lemma 5, says that lim
n→∞

d(ξn(w), F ) exists and since f : [0,∞)→ [0,∞) is

a nondecreasing function satisfying f(0) = 0, f(r) > 0 for all r ∈ (0,∞), we
obtain that lim

n→∞
d(ξn(w), F ) = 0 and hence the result follows from Theo-

rem 1.
We can get the same result if {Si : i = 1, 2, . . . , N} satisfy the condi-

tion B. �
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Theorem 3. Let E be a uniformly convex separable Banach space and C
be a nonempty closed convex subset of E. Let {Ti, Si : i ∈ I = {1, 2, . . . , N}}
be 2N asymptotically nonexpansive random mappings with sequences of mea-

surable mappings {rin} ⊂ [1,∞) such that
∞∑
n=1

(rin(w)− 1) <∞, rin(w)→ 1

as n → ∞, for all w ∈ Ω and i ∈ {1, 2, . . . , N}. Suppose that F =
N⋂
i=1

(RF (Ti) ∩ RF (Si)) 6= ∅. Let {ξn(w)} be the sequence defined as in (6)

with the additional assumption
∞∑
n=1

γn <∞,
∞∑
n=1

δn <∞ and lim sup
n→∞

αn < 1.

If one of {Ti : i = 1, 2, . . . , N} is semicompact. Then {ξn(w)} converge
strongly to a common random fixed point of {Ti, Si : i = 1, 2, . . . , N}.

Proof. Suppose that T1 is semicompact. By Lemma 6, we have lim
n→∞

‖ξn(w)−
T1(w, ξn(w))‖ = 0 and lim

n→∞
‖ξn(w) − S1(w, ξn(w))‖ = 0, so there exists

subsequence {ξnj (w)} of {ξn(w)} such that {ξnj (w)} converge strongly to
{ξ(w)} for all w ∈ Ω, where {ξ(w)} is a measurable mapping from Ω to C.
Again by Lemma 6, we have

‖ξ(w)− Tl(w, ξ(w))‖ = lim
j→∞

‖ξnj (w)− Tl(w, ξnj (w))‖ = 0,

for all w ∈ Ω and for all l ∈ I, and

‖ξ(w)− Sl(w, ξ(w))‖ = lim
j→∞

‖ξnj (w)− Sl(w, ξnj (w))‖ = 0,

for all w ∈ Ω and for all l ∈ I. It follows that ξ ∈ F =
N⋂
i=1

(RF (Ti)∩RF (Si)).

From Lemma 5, we see that ‖ξn(w) − ξ(w)‖ exists and since {ξn(w)} has
a subsequence {ξnj (w)} such that {ξnj (w)} converge strongly to {ξ(w)} for
all w ∈ Ω, then we have lim

n→∞
‖ξn(w) − ξ(w)‖ = 0 for all w ∈ Ω and hence

{ξn(w)} converges strongly to a common random fixed point of {Ti, Si : i =
1, 2, ..., N}. �

Finally, we prove weak convergence of the iterative scheme (6) for 2N
asymptotically nonexpansive random mappings in a uniformly convex sep-
arable Banach space satisfying Opial’s condition.

Theorem 4. Let E be a uniformly convex separable Banach space which
satisfy Opial’s condition and C be a nonempty closed convex subset of E. Let
{Ti, Si : i ∈ I = {1, 2, . . . , N}} be 2N asymptotically nonexpansive random
mappings with sequences of measurable mappings {rin} ⊂ [1,∞) such that
∞∑
n=1

(rin(w) − 1) < ∞, rin(w) → 1 as n → ∞, for all w ∈ Ω and i ∈
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{1, 2, . . . , N}. Suppose that F =
N⋂
i=1

(RF (Ti) ∩ RF (Si)) 6= ∅. Let {ξn(w)}

be the sequence defined as in (6) with the additional assumption
∞∑
n=1

γn <

∞,
∞∑
n=1

δn < ∞ and lim sup
n→∞

αn < 1. Then {ξn(w)} converges weakly to a

common random fixed point of {Ti, Si : i = 1, 2, . . . , N}.

Proof. From Lemma 6, we have that lim
n→∞

‖ξn(w) − Tl(w, ξn(w))‖ =

0 and lim
n→∞

‖ξn(w) − Sl(w, ξn(w))‖ = 0 for l = 1, 2, . . . , N . Since E is

uniformly convex and {ξn(w)} is bounded, we may assume that ξn(w) →
ξ(w) weakly as n → ∞, without loss of generality. Hence by Lemma 3, we

have ξ(w) ∈ F =
N⋂
i=1

(RF (Ti)∩RF (Si)). Suppose that subsequences ξnk
(w)

and ξmk
(w) of ξn(w) converge weakly to u(w) and v(w), respectively. by

Lemma 3, we have u(w), v(w) ∈ F =
N⋂
i=1

(RF (Ti)∩RF (Si)), and by lemma 5,

lim
n→∞

‖ξn(w)− u(w)‖ and lim
n→∞

‖ξn(w)− v(w)‖ exist. It follows from lemma

4, that u(w) = v(w). Therefore {ξn(w)} converges weakly to a common
fixed point of {Ti, Si : i = 1, 2, . . . , N}. �

Remark.
1. Our results improve and extend the corresponding results in [1] to the

case of two finite families of asymptotically nonexpansive random mappings.
2. Our results also improve and extend the results in [16] to the case of

two finite families of implicit random iterative process.
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