$\frac{F \ A \ S \ C \ I \ C \ U \ L \ I \ M \ A \ T \ H \ E \ M \ A \ T \ I \ C \ I}{Nr \ 53} 2014}$

LUONG QUOC TUYEN

REMARKS ON SEQUENCE-COVERING CLOSED MAPS

ABSTRACT. In this paper, we prove that each sequence-covering closed map on spaces with point-countable weak bases is 1-sequence-covering (or weak-open).

KEY WORDS: g-metrizable space, weak base, boundary-compact map, sequence-covering map, 1-sequence-covering map, weak-open map, closed map.

AMS Mathematics Subject Classification: 54C10, 54D65, 54E40, 54E99.

1. Introduction and preliminaries

A study of images of topological spaces under certain sequence-covering maps is an important question in general topology ([1], [2], [6]-[9], [11], [13], [20], for example). In 2000, P. Yan, S. Lin and S.L. Jiang proved that each sequence-covering closed map on metric spaces is 1-sequence-covering ([20]). Recently, F.C. Lin and S. Lin proved that each sequence-covering closed map on g-metrizable spaces is 1-sequence-covering ([7]).

In this paper, we prove that each sequence-covering closed map on spaces with point-countable weak bases is 1-sequence-covering (or weak-open).

Throughout this paper, all spaces are assumed to be Hausdorff, all maps are continuous and onto, \mathbb{N} denotes the set of all natural numbers and ω denotes $\mathbb{N} \cup \{0\}$. Let \mathcal{P} be a collection of subsets of X, we denote $\bigcup \mathcal{P} = \bigcup \{P : P \in \mathcal{P}\}, \ \bigcap \mathcal{P} = \bigcap \{P : P \in \mathcal{P}\}.$

Definition 1. Let X be a space, and $P \subset X$.

(a) A sequence $\{x_n\}$ in X is called eventually in P, if $\{x_n\}$ converges to x, and there exists $m \in \mathbb{N}$ such that $\{x\} \bigcup \{x_n : n \ge m\} \subset P$.

(b) P is called a sequential neighborhood of x in X [5], if whenever $\{x_n\}$ is a sequence converging to x in X, then $\{x_n\}$ is eventually in P.

Definition 2. Let \mathcal{P} be a collection of subsets of X.

(a) \mathcal{P} is point-countable, if each point $x \in X$ belongs to only countably many members of \mathcal{P} .

(b) \mathcal{P} is locally finite (resp., locally countable), if for each $x \in X$, there exists a neighborhood V of x such that V meets only countably (resp., finite) many members of \mathcal{P} .

(c) \mathcal{P} is σ -locally finite (resp., σ -locally countable), if $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$, where each \mathcal{P}_n is locally finite (resp., locally countable).

(d) \mathcal{P} is compact-countable, if each compact subset of X meets only countably many members of \mathcal{P} .

(e) \mathcal{P} is a network at x in X, if $x \in P$ for every $P \in \mathcal{P}$, and whenever $x \in U$ with U open in X, then $x \in P \subset U$ for some $P \in \mathcal{P}$.

Definition 3 ([3]). Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a cover of a space X. Assume that \mathcal{P} satisfies the following (1) and (2) for every $x \in X$.

(a) \mathcal{P}_x is a network at x.

(b) If $P_1, P_2 \in \mathcal{P}_x$, then there exists $P \in \mathcal{P}_x$ such that $P \subset P_1 \cap P_2$.

 \mathcal{P} is called a weak base of X, if for $G \subset X$, G is open in X if and only if for every $x \in G$, there exists $P \in \mathcal{P}_x$ such that $P \subset G$; \mathcal{P}_x is said to be a weak neighborhood base at x in X.

Definition 4. Let X be a space.

(a) X is gf-countable [3], if X has a weak base $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ such that \mathcal{P}_x is countable for every $x \in X$.

(b) X is g-metrizable [14], if X is regular and has a σ -locally finite weak base.

Definition 5. Let $f : X \longrightarrow Y$ be a map.

(a) f is a weak-open map [18], if there exists a weak base $\mathcal{P} = \bigcup \{\mathcal{P}_y : y \in Y\}$ for Y, and for $y \in Y$, there exists $x_y \in f^{-1}(y)$ such that for each open neighborhood U of x_y , $P_y \subset f(U)$ for some $P_y \in \mathcal{P}_y$.

(b) f is an 1-sequence-covering map [8], if for each $y \in Y$, there is $x_y \in f^{-1}(y)$ such that whenever $\{y_n\}$ is a sequence converging to y in Y, there is a sequence $\{x_n\}$ converging to x_y in X with $x_n \in f^{-1}(y_n)$ for every $n \in \mathbb{N}$.

(c) f is a sequence-covering map [14], if every convergent sequence of Y is the image of some convergent sequence of X.

(d) f is a boundary-compact map [4], if each $\partial f^{-1}(y)$ is compact in X.

2. Main results

Lemma 1. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a point-countable weak base for X, and K be a compact subset of X. If $x \in K$, then $x \in int_K(P \cap K)$ for all $P \in \mathcal{P}_x$.

Proof. By Lemma 7(2) in [10], \mathcal{P} is a point-countable k-network for X. Since K is compact, it follows that K is metrizable. Let $P \in \mathcal{P}_x$ and

 $\{V_n : n \in \mathbb{N}\}\$ be a local base at the point x in K. Then $x \in V_n \subset P \cap K$ for some $n \in \mathbb{N}$. If not, for each $n \in \mathbb{N}$, there exists $x_n \in V_n - (P \cap K)$. It implies that the sequence $\{x_n\}$ converges to x in X. Since P is a weak neighborhood of x in X, $\{x_n\}$ is eventually in P. This contradicts to $x_n \notin P$ for all $n \in \mathbb{N}$.

Therefore, $V_n \subset P \cap K$ for some $n \in \mathbb{N}$, and $x \in \operatorname{int}_K(P \cap K)$.

Lemma 2. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a point-countable weak base for X. If K is a compact subset of X, then $\bigcup \{\mathcal{P}_x : x \in K\}$ is countable.

Proof. Similar the proof of Lemma 1, it implies that K is a metrizable compact subset for X. Thus, there exists a countable subset $D \subset K$ such that $K = cl_K(D)$. Now, let $P \in \bigcup \{\mathcal{P}_x : x \in K\}$. Then $P \in \mathcal{P}_x$ for some $x \in K$. By Lemma 1, $x \in Int_K(P \cap K)$. Therefore, $D \cap Int_K(P \cap K) \neq \emptyset$, it implies that $P \cap D \neq \emptyset$. This follows that

$$\big| \{\mathcal{P}_x : x \in K\} \subset \{P \in \mathcal{P} : P \cap D \neq \emptyset\}.$$

Finally, since \mathcal{P} is point-countable and D is countable, it implies that $\bigcup \{\mathcal{P}_x : x \in K\}$ is countable.

Theorem 1. Let $f : X \longrightarrow Y$ be a sequence-covering closed map. If X has a point-countable weak base, then f is 1-sequence-covering.

Proof. Let $\mathcal{B} = \bigcup \{ \mathcal{B}_x : x \in X \}$ be a point-countable weak base for X. By Lemma 3.1 in [12], Y is gf-countable. Furthermore, since Y is gf-countable and f is a closed map, it follows from Corollary 8 in [10] and Corollary 10 in [19] that Y contains no closed copy of S_{ω} . By Lemma 3.2 in [12], f is a boundary-compact map.

Let $\mathcal{P} = \bigcup \{\mathcal{P}_y : y \in Y\}$ be a weak base for Y with each \mathcal{P}_y is countable. Firstly, we prove that each non-isolated point $y \in Y$, there exists $x_y \in \partial f^{-1}(y)$ such that for each $B \in \mathcal{B}_{x_y}$, there exists $P \in \mathcal{P}_y$ satisfying $P \subset f(B)$. Otherwise, there exists a non-isolated point $y \in Y$ so that for each $x \in \partial f^{-1}(y)$, there exists $B_x \in \mathcal{B}_x$ such that $P \not\subset f(B_x)$ for all $P \in \mathcal{P}_y$. Since \mathcal{P}_y is a weak neighborhood base at y, we can choose a decreasing countable network $\{P_{y,n} : n \in \mathbb{N}\} \subset \mathcal{P}_y$ at y. Furthermore, since \mathcal{B} is a point-countable weak base, it follows from Lemma 2 that $\bigcup \{\mathcal{B}_x : x \in \partial f^{-1}(y)\}$ is countable. Thus, $\{B_x : x \in \partial f^{-1}(y)\}$ is countable. Assume that

$$\{B_x : x \in \partial f^{-1}(y)\} = \{B_m : m \in \mathbb{N}\}.$$

Hence, for each $m, n \in \mathbb{N}$, there exists $x_{n,m} \in P_{y,n} - f(B_m)$. For $n \ge m$, we denote $y_k = x_{n,m}$ with k = m + n(n-1)/2. Since $\{P_{y,n} : n \in \mathbb{N}\}$ is a decreasing network at $y, \{y_k\}$ is a sequence converging to y in Y. On

the other hand, because f is a sequence-covering map, $\{y_k\}$ is an image of some sequence $\{x_n\}$ converging to $x \in \partial f^{-1}(y)$ in X. Furthermore, since $B_x \in \{B_m : m \in \mathbb{N}\}$, there exists $m_0 \in \mathbb{N}$ such that $B_x = B_{m_0}$. Because B_{m_0} is a weak neighborhood of x, $\{x\} \bigcup \{x_k : k \ge k_0\} \subset B_{m_0}$ for some $k_0 \in \mathbb{N}$. Thus, $\{y\} \bigcup \{y_k : k \ge k_0\} \subset f(B_{m_0})$. But if we take $k \ge k_0$, then there exists $n \ge m_0$ such that $y_k = x_{n,m_0}$, and it implies that $x_{n,m_0} \in f(B_{m_0})$. This contradicts to $x_{n,m_0} \in P_{y,n} - f(B_{m_0})$.

We now prove that f is an 1-sequence-covering map. Suppose $y \in Y$, by the above proof there is $x_y \in \partial f^{-1}(y)$ such that whenever $B \in \mathcal{B}_{x_y}$, there exists $P \in \mathcal{P}_y$ satisfying $P \subset f(B)$. Let $\{y_n\}$ be an any sequence in Y, which converges to y. Since \mathcal{B}_{x_y} is a weak neighborhood base at x_y , we can choose a decreasing countable network $\{B_{y,n} : n \in \mathbb{N}\} \subset \mathcal{B}_{x_y}$ at x_y . We choose a sequence $\{z_n\}$ in X as follows.

Since $B_{y,n} \in \mathcal{B}_{xy}$, by the above argument, there exists $P_{y,k_n} \in \mathcal{P}_y$ satisfying $P_{y,k_n} \subset f(B_{y,n})$ for all $n \in \mathbb{N}$. On the other hand, since each element of \mathcal{P}_y is a sequential neighborhood of y, it follows that for each $n \in \mathbb{N}$, $f(B_{y,n})$ is a sequential neighborhood of y in Y. Hence, for each $n \in \mathbb{N}$, there exists $i_n \in \mathbb{N}$ such that $y_i \in f(B_{y,n})$ for every $i \geq i_n$. Assume that $1 < i_n < i_{n+1}$ for each $n \in \mathbb{N}$. Then for each $j \in \mathbb{N}$, we take

$$z_j = \begin{cases} z_j \in f^{-1}(y_j) & \text{if } j < i_1 \\ z_{j,n} \in f^{-1}(y_j) \cap B_{y,n} & \text{if } i_n \le j < i_{n+1}. \end{cases}$$

If we put $S = \{z_j : j \ge 1\}$, then S converges to x_y in X, and $f(S) = \{y_n\}$. Therefore, f is 1-sequence-covering.

By Theorem 1, the following corollary holds.

Corollary 1. Let $f : X \longrightarrow Y$ be a sequence-covering closed map. If one of the following properties holds, then f is 1-sequence-covering.

- (a) X has a compact-countable weak base;
- (b) X has a locally countable weak base;
- (c) X has a σ -locally countable weak base;
- (d) X is g-metrizable.

Remark 1. By Corollary 2, we obtain Theorem 4.5 in [7].

By Theorem 1 and Corollary 3.6 in [18], we have the following corollary.

Corollary 2. Let $f : X \longrightarrow Y$ be a sequence-covering closed map. If one of the following properties holds, then f is weak-open.

(a) X has a point-countable weak base;

(b) X has a compact-countable weak base;

- (c) X has a locally countable weak base;
- (d) X has a σ -locally countable weak base;
- (e) X is g-metrizable.

References

- AN T.V., TUYEN L.Q., Further properties of 1-sequence-covering maps, Comment. Math. Univ. Carolin., 49(3)(2008), 477-484.
- [2] AN T.V., TUYEN L.Q., On π-images of separable metric spaces and a problem of Shou Lin, Mat. Vesnik, 64(4)(2012), 297-302.
- [3] ARHANGEL'SKII A.V., Mappings and spaces, Russian Math. Surveys, 21(4)(1966), 115-162.
- [4] ENGELKING R., General Topology (revised and completed edition), *Helder*mann Verlag, Berlin 1989.
- [5] FRANKLIN S.P., Spaces in which sequences suffice, Fund. Math., 57(1965), 107-115.
- [6] LIN F.C., LIN S., On sequence-covering boundary compact maps of metric spaces, Adv. Math. (China), 39(1)(2010), 71-78.
- [7] LIN F.C., LIN S., Sequence-coveringmaps on generalized metric spaces, in: arXiv: 1106.3806..
- [8] LIN S., On sequence-covering s-mappings, Adv. Math. (China), 25(6)(1996), 548-551.
- [9] LIN S., Point-Countable Covers and Sequence-Covering Mappings, *Chinese Science Press*, Beijing, 2002.
- [10] LIN S., TANAKA Y., Point-countable k-networks, closed maps, and related results, *Topology Appl.*, 59(1994), 79-86.
- [11] LIN S., YAN P., Sequence-covering maps of metric spaces, *Topology Appl.*, 109(2001), 301-314.
- [12] LIU C., On weak bases, *Topology Appl.*, 150(2005), 91-99.
- [13] SIWIEC F., Sequence-covering and countably bi-quotient maps, General Topology Appl., 1(1971), 143-154.
- [14] SIWIEC F., On defining a space by a weak base, Pacific J. Math., 52(1974), 233-245.
- [15] TUYEN L.Q., A new characterization of spaces with locally countable sn-networks, Mat. Vesnik, 65(1)(2013), 8-13.
- [16] TUYEN L.Q., Some characterizations of spaces with locally countable networks, Mat. Vesnik, (2012), to appear.
- [17] TUYEN L.Q., Remarks on sequence-covering maps, Comment. Math. Univ. Carolin., 53(4)(2012), 645-650.
- [18] XIA S., Characterizations of certain g-first countable spaces, Adv. Math., 29(2000), 61-64.
- [19] YAN P., LIN S., Point-countable k-networks, cs^* -network and α_4 -spaces, Topology Proc., 24(1999), 345-354.
- [20] YAN P.F., LIN S., JIANG S.L., Metrizability is preserved by closed sequence-covering maps, Acta Math. Sinica, 47(1)(2004), 87-90.

LUONG QUOC TUYEN DEPARTMENT OF MATHEMATICS DA NANG UNIVERSITY, VIET NAM *e-mail:* luongtuyench12@yahoo.com

Received on 10.04.2013 and, in revised form, on 10.07.2013.