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Abstract. In this paper, we deal with the growth and the oscil-
lation of solutions of the linear difference equation

an (z) f (z + n) + an−1 (z) f (z + n− 1)

+ · · ·+ a1 (z) f (z + 1) + a0 (z) f (z) = 0,

where an(z), · · · , a0(z) are meromorphic functions of finite loga-
rithmic order such that an(z)a0(z) 6≡ 0.
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1. Introduction and main results

Throughout this paper, we assume that the reader is familiar with the
fundamental results and the standard notations of the Nevanlinna theory
of meromorphic functions ([6] , [12]). Recently, many articles focused on
complex difference equations. The back-ground for these studies lies in the
recent difference counterparts of Nevanlinna theory. The key result here is
the difference analogue of the lemma on the logarithmic derivative obtained
by Halburd-Korhonen [4, 5] and Chiang-Feng [3], independently.

Definition 1 ([6]). Let f be a meromorphic function of order ρ (f) = ρ
(0 < ρ <∞), the type of f is defined as

τ (f) = lim sup
r→+∞

T (r, f)

rρ
.

If f is an entire function of order ρ (0 < ρ <∞), we can define the M−type
by

τM (f) = lim sup
r→+∞

logM (r, f)

rρ
.
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Remark 1. We have not always the equality τM (f) = τ (f), for example
τ (ez) = 1

π < 1 = τM (ez). By T (r, f) ≤ log+M (r, f), it’s easy to obtain
the following

τ (f) ≤ τM (f) .

Definition 2 ([12]). Let f be a meromorphic function. Then the expo-
nent of convergence of the sequence of zeros and distinct zeros of f(z) are
defined respectively by

λ (f) = lim sup
r→+∞

logN
(
r, 1f

)
log r

,

λ (f) = lim sup
r→+∞

logN
(
r, 1f

)
log r

,

where N(r, 1f ) (N(r, 1f )) is the integrated counting function of zeros (distinct
zeros) of f (z) in {z : |z| ≤ r}.

In recent paper [3], Chiang and Feng investigated meromorphic solutions
of the linear difference equation

an (z) f (z + n) + an−1 (z) f (z + n− 1)(1)

+ · · ·+ a1 (z) f (z + 1) + a0 (z) f (z) = 0,

where an (z) , · · · , a0 (z) are entire functions such that an (z) a0 (z) 6≡ 0, and
proved the following result.

Theorem A ([3]) . Let a0 (z) , a1 (z) , · · · , an (z) be entire functions such
that there exists an integer l, 0 ≤ l ≤ n such that

ρ (al) > max
0≤j≤n,j 6=l

{ρ (aj)} .

If f (z) is a meromorphic solution of (1), then ρ (f) ≥ ρ (al) + 1.
Note that in Theorem A, equation (1) has only one dominating coefficient

al. For the case when there is more than one of coefficients which have the
maximal order, Laine and Yang [9] obtained the following result.

Theorem B ([9]). Let a0 (z) , a1 (z) , · · · , an (z) be entire functions of fi-
nite order such that among those having the maximal order ρ = max

0≤j≤n
{ρ (aj)},

one has exactly its type strictly greater than the others. Then for any mero-
morphic solution of (1), we have ρ (f) ≥ ρ+ 1.

Obviously, we have ρ (al) > 0 and ρ > 0 in Theorems A-B. Thus, a
natural problem which arises: How to express the growth of solutions of
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(1) when all coefficients a0 (z), a1 (z), · · · , an (z) are meromorphic functions
and of order zero in C. The main purpose of this paper is to adopt the idea
of finite logarithmic order due to Chern [2] to extend some results obtained
recently by the author and Latreuch in [10] for meromorphic solutions to
equation (1) of zero order in C.

Definition 3 ([2]). The logarithmic order of a meromorphic function f
is defined as

ρlog(f) = lim sup
r→+∞

log T (r, f)

log log r
.

If f is an entire function, then

ρlog(f) = lim sup
r→+∞

log T (r, f)

log log r
= lim sup

r→+∞

log logM(r, f)

log log r
.

Remark 2. It is evident that the logarithmic order of any non-constant
rational function f is one, and thus, any transcendental meromorphic func-
tion in the plane has logarithmic order no less than one. However, a function
of logarithmic order one is not necessarily a rational function. Constant func-
tions have zero logarithmic order, while there are no meromorphic functions
of logarithmic order between zero and one. Moreover, any meromorphic
function with finite logarithmic order in the plane is of order zero.

Definition 4 ([1]). The logarithmic type of a meromorphic function f
with 1 ≤ ρlog(f) < +∞ is defined by

τlog(f) = lim sup
r→+∞

T (r, f)

(log r)ρlog(f)
.

If f is an entire function with 1 ≤ ρlog(f) < +∞, then

τlog(f) = lim sup
r→+∞

T (r, f)

(log r)ρlog(f)
= lim sup

r→+∞

logM(r, f)

(log r)ρlog(f)
.

Remark 3. It is evident that the logarithmic type of any non-constant
polynomial Q equals its degree deg(Q); that any non-constant rational func-
tion is of finite logarithmic type, and that any transcendental meromorphic
function whose logarithmic order equals one in the plane must be of infinite
logarithmic type.

Definition 5 ([1],[2]). The logarithmic exponent of convergence of a−points
of a meromorphic function f is equal to the logarithmic order of n(r, f = a)
which is defined as

λlog(f, a) = lim sup
r→+∞

log n
(
r, 1
f−a

)
log log r

.
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The logarithmic exponent of convergence of zeros or distinct zeros of f are
defined by

λlog(f) = λlog(f, 0) = lim sup
r→+∞

log n
(
r, 1f

)
log log r

or

λlog(f) = λlog(f, 0) = lim sup
r→+∞

log n
(
r, 1f

)
log log r

.

respectively, where n
(
r, 1f

)
(or n

(
r, 1f

)
) denotes the number of zeros (or

distinct zeros) of f in the disc |z| ≤ r.

Remark 4. It is trivial that λ(f) (or λ(f))) can also be given by making
use of the notation of the counting function of zeros (or distinct zeros) of

f , N
(
r, 1f

)
(or N

(
r, 1f

)
, to replace the notations n

(
r, 1f

)
(or n

(
r, 1f

)
),

respectively (see e.g. [12], Theorem 2.1). However, it does not hold for

the case of logarithmic order. The logarithmic order of N
(
r, 1f

)
is equals

λlog(f) + 1, (see [2], Theorem 4.1).

Recently, the concept of logarithmic order has been used to investigate the
growth and the oscillation of solutions of linear differential equations in the
complex plane [1] and complex linear difference and q-difference equations
in the complex plane and in the unit disc ([7], [8], [11]). In this paper, we
obtain the following results.

Theorem 1. Let a0 (z) , a1 (z) , · · · , an (z) be meromorphic functions

such that there exists coefficient al satisfying λlog

(
1
al

)
< ρ

log
(al) = ρ

(1 ≤ ρ <∞). Suppose that

(2) max {ρlog (aj) : 0 ≤ j ≤ n, j 6= l} < ρ
log

(al) .

If f (z) is a meromorphic solution of (1), then ρlog (f) ≥ ρlog (al) + 1.

Theorem 2. Let a0 (z) , a1 (z) , · · · , an (z) be meromorphic functions

such that there exists coefficient al satisfying λlog

(
1
al

)
< ρ

log
(al) = ρ

(1 ≤ ρ <∞), τlog (al) = τ (0 < τ <∞). Suppose that

(3) max {ρlog (aj) : 0 ≤ j ≤ n, j 6= l} ≤ ρ

and

(4)
∑

ρlog(aj)=ρlog (al)
j 6=l

τlog (aj) < τ.

If f (z) is a meromorphic solution of (1), then ρlog (f) ≥ ρlog (al) + 1.
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Remark 5. If ρlog (aj) < ρ
log

(al) for all j = 0, 1, · · · , l − 1, l + 1, · · · , n,
then the sum in (4) is empty, and Theorem 2 reduces to Theorem 1.

Theorem 3. Let a0 (z), a1 (z) , · · · , an (z), F (z) (6≡ 0) be finite logarith-
mic order meromorphic functions. If f is a meromorphic solution of the
equation

(5) anf (z + n) + an−1f (z + n− 1) + · · ·+ a1f (z + 1) + a0f (z) = F

with

max {ρlog (aj) (j = 0, · · · , n) , ρlog (F )} < ρlog (f) ,

then ρlog (f) = λlog (f) + 1.

Theorem 4. Under the assumptions of Theorem 2, let ϕ be a meromor-
phic function such that one of the following conditions holds:

(i) ϕ is not a solution of (1) with ρlog (ϕ) < ρlog (f);
(ii) ϕ 6≡ 0 and ρlog (ϕ) < ρlog (al) + 1.

Then λlog (f − ϕ) + 1 = ρlog (f).

Corollary. Under the assumptions of Theorem 4, we have λlog (f − z)+
1 = ρlog (f).

2. Some lemmas

We need the following lemmas to prove our results.

Lemma 1. Let f be a meromorphic function with ρlog (f) = ρ ≥ 1. Then
there exists a set E1 ⊂ [1,+∞) with infinite logarithmic measure such that

lim
r→∞
r∈E1

log T (r, f)

log log r
= ρ.

Proof. Since ρlog (f) = ρ, then there exists a sequence {rn}∞n=1 tending
to ∞ satisfying

(
1 + 1

n

)
rn < rn+1 and

lim
rn→∞

log T (rn, f)

log log rn
= ρlog (f) .

So, there exists an integer n1 such that for all n ≥ n1, for any r∈
[
rn,
(
1 + 1

n

)
rn
]
,

we have

log T (rn, f)

log log
(
1 + 1

n

)
rn
≤ log T (r, f)

log log r
≤

log T
((

1 + 1
n

)
rn, f

)
log log rn

.
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Set E1 =
∞⋃

n=n1

[
rn,
(
1 + 1

n

)
rn
]
, we obtain

lim
r→∞
r∈E1

log T (r, f)

log log r
= lim

rn→∞

log T (rn, f)

log log rn
,

and lm (E1) =
∞∑

n=n1

(1+ 1
n)rn∫
rn

dt
t =

∞∑
n=n1

log
(
1 + 1

n

)
= ∞. Thus, the proof of

the lemma is completed. �

Lemma 2. Let f be a meromorphic function with finite logarithmic order
1 ≤ ρlog(f) < +∞ and finite logarithmic type 0 < τlog(f) < +∞. Then for
any given β < τlog(f) there exists a subset E2 of [1,+∞) that has infinite

logarithmic measure such that T (r, f) > β (log r)ρlog(f), holds for all r ∈ E2.

Proof. By Definition 4, there exists an increasing sequence {rm} (rm →
+∞) satisfying (1 + 1

m)rm < rm+1 and

lim
m→+∞

T (rm, f)

(log rm)ρlog(f)
= τlog(f).

So, there exists a positive integer m0 such that for all m ≥ m0 and for any
given 0 < ε < τlog(f)− β, we have

(6) T (rm, f) > (τlog(f)− ε) (log rm)ρlog(f) .

Since

lim
m→+∞

(
log m

m+1r

log r

)ρlog(f)
= 1,

then for any given β < τlog(f) − ε, there exists a positive integer m1 such
that for all m ≥ m1 we have

(7)

(
log m

m+1r

log r

)ρlog(f)
>

β

τlog(f)− ε
.

Take m ≥ m2 = max{m1,m0}. By (6) and (7), for any r ∈
[
rm, (1 + 1

m)rm
]

T (r, f) ≥ T (rm, f) > (τlog(f)− ε) (log rm)ρlog(f)

≥ (τlog(f)− ε)
(

log
m

m+ 1
r

)ρlog(f)
> β (log r)ρlog(f) .
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Set E2 =
+∞⋃
m=m2

[rm, (1 + 1
m)rm]. Then there holds

lm(E2) =
+∞∑
m=m2

(1+ 1
m
)rm∫

rm

dt

t
=

+∞∑
m=m2

log(1 +
1

m
) = +∞.

�

Lemma 3. Let f1, f2 be meromorphic functions satisfying ρlog (f1) >
ρlog (f2). Then there exists a set E3 ⊂ (1,+∞) having infinite logarithmic
measure such that for all r ∈ E3, we have

lim
r→∞

T (r, f2)

T (r, f1)
= 0.

Proof. Set ρ1 = ρlog (f1) , ρ2 = ρlog (f2) (ρ1 > ρ2) . By Lemma 1, there
exists a set E3 ⊂ (1,+∞) having infinite logarithmic measure such that for
any given 0 < ε < ρ1−ρ2

2 and all sufficiently large r ∈ E3

T (r, f1) > (log r)ρ1−ε

and for all sufficiently large r, we have

T (r, f2) < (log r)ρ2+ε .

From this we can get

T (r, f2)

T (r, f1)
<

(log r)ρ2+ε

(log r)ρ1−ε
=

1

(log r)ρ1−ρ2−2ε
, r ∈ E3.

Since 0 < ε < ρ1−ρ2
2 , then we obtain

lim
r→∞

T (r, f2)

T (r, f1)
= 0, r ∈ E3.

�

Lemma 4 ([3]). Let α,R,R′ be real numbers such that 0 < α < 1, R > 0,
and let η be a non-zero complex number. Then there is a positive constant
Cα depending only on α such that for a given meromorphic function f(z)
we have, when |z| = r, max{1, r + |η|} < R < R′, the estimate

m

(
r,
f (z + η)

f (z)

)
+m

(
r,

f (z)

f (z + η)

)
(8)

≤ 2|η|R
(R− r − |η|)2

(
m (R, f) +m

(
R,

1

f

))
+

2R′

(R′ −R)

(
|η|

R− r − |η|
+

Cα |η|α

(1− α) rα

)(
N (R′, f) +N

(
R′,

1

f

))
.
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Remark 6. We note that the estimate (8) follows from the proof of
Theorem 2.4 in [3].

Lemma 5. Let η1, η2 be two arbitrary complex numbers such that η1 6= η2
and let f (z) be a finite logarithmic order meromorphic function. Let ρ be
the logarithmic order of f (z). Then for each ε > 0, we have

(9) m

(
r,
f (z + η1)

f (z + η2)

)
= O

(
(log r)ρ−1+ε

)
.

Proof. We have

m

(
r,
f (z + η1)

f (z + η2)

)
≤ m

(
r,
f (z + η1)

f (z)

)
+m

(
r,

f (z)

f (z + η2)

)
(10)

≤ m

(
r,
f (z + η1)

f (z)

)
+m

(
r,

f (z)

f (z + η1)

)
+ m

(
r,

f (z)

f (z + η2)

)
+m

(
r,
f (z + η2)

f (z)

)
.

Since f(z) has finite logarithmic order ρlog(f) = ρ < +∞, so given ε,
0 < ε < 2, we have

(11) T (r, f) = O
(

(log r)ρ+
ε
2

)
for all r. By using (8) , we obtain from (10)

m

(
r,
f (z + η1)

f (z + η2)

)
≤ 2|η1|R

(R− r − |η1|)2

(
m (R, f) +m

(
R,

1

f

))
(12)

+
2R′

(R′ −R)

(
|η1|

R− r − |η1|
+

Cα |η1|α

(1− α) rα

)(
N (R′, f) +N

(
R′,

1

f

))
+

2|η2|R
(R− r − |η2|)2

(
m (R, f) +m

(
R,

1

f

))
+

2R′

(R′ −R)

(
|η2|

R− r − |η2|
+

Cα |η2|α

(1− α) rα

)(
N (R′, f) +N

(
R′,

1

f

))
=

(
2|η1|R

(R− r − |η1|)2
+

2|η2|R
(R− r − |η2|)2

)(
m (R, f) +m

(
R,

1

f

))
+

2R′

(R′ −R)

(
|η1|

R− r − |η1|
+

Cα |η1|α

(1− α) rα

+
|η2|

R− r − |η2|
+

Cα |η2|α

(1− α) rα

)(
N (R′, f) +N

(
R′,

1

f

))
.

By choosing α = 1 − ε

2
, R = 2r, R′ = 3r and r > max{|η1|, |η2|, 1/2} in

(12), we get

m

(
r,
f (z + η1)

f (z + η2)

)
≤
(

4|η1|r
(r − |η1|)2

+
4|η2|r

(r − |η2|)2

)(
m (2r, f) +m

(
2r,

1

f

))
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+ 6

(
|η1|

r − |η1|
+

2Cα |η1|1−
ε
2

εr1−
ε
2

+
|η2|

r − |η2|
+

2Cα |η2|1−
ε
2

εr1−
ε
2

)

×
(
N (3r, f) +N

(
3r,

1

f

))
≤ 4

[
4|η1|r

(r − |η1|)2
+

4|η2|r
(r − |η2|)2

+ 6

 |η1|
r − |η1|

+
|η2|

r − |η2|
+

2Cα

(
|η1|1−

ε
2 + |η2|1−

ε
2

)
εr1−

ε
2

T (3r, f) .

By using the estimate (11), we have

m

(
r,
f (z + η1)

f (z + η2)

)
≤ 4K

[
4|η1‖r

(r − |η1|)2
+

4|η2|r
(r − |η2|)2

+ 6

 |η1|
r − |η1|

+
|η2|

r − |η2|
+

2Cα

(
|η1|1−

ε
2 + |η2|1−

ε
2

)
εr1−

ε
2

 (log 3r)
ρ+ ε

2

≤M (log r)
ρ+ε−1

,

where K > 0, M > 0 are some constants. This completes the proof. �

Lemma 6 ([2]). Let f be a meromorphic function of finite logarithmic
order, and let a ∈ C. Then the logarithmic order of n(r, 1/(f −a)) equals to
λlog(f, a). Moreover, N(r, 1/(f − a)) is of logarithmic order λlog(f, a) + 1.

Remark 7. We point out that the first assertion of Lemma 6 is Theo-
rem 3.1 in [2], while the second one is in Theorem 4.1 of the same paper.

Lemma 7. Let f and g be non-constant meromorphic functions of log-
arithmic order. Then we have

ρlog (f + g) ≤ max {ρlog (f) , ρlog (g)}

and
ρlog (fg) ≤ max {ρlog (f) , ρlog (g)} .

Furthermore, if ρlog (f) > ρlog (g), then we obtain

ρlog (f + g) = ρlog (fg) = ρlog (f) .

Proof. Set ρlog (f) = ρ1 and ρlog (g) = ρ2. For any given ε > 0, we have

T (r, f + g) ≤ T (r, f) + T (r, g) +O (1)(13)

≤ (log r)ρ1+ε + (log r)ρ2+ε +O (1)

≤ 2 (log r)max{ρ1,ρ2}+ε +O (1)
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and

(14) T (r, fg) ≤ T (r, f) + T (r, g) ≤ 2 (log r)max{ρ1,ρ2}+ε

for all r sufficiently large. Since ε > 0 is arbitrary, from (13) and (14), we
easily obtain

(15) ρlog (f + g) ≤ max {ρlog (f) , ρlog (g)}

and

(16) ρlog (fg) ≤ max {ρlog (f) , ρlog (g)} .

Suppose now that ρlog (f) > ρlog (g). Considering that

(17) T (r, f) = T (r, f + g − g) ≤ T (r, f + g) + T (r, g) +O (1)

and

T (r, f) = T

(
r,
fg

g

)
≤ T (r, fg) + T

(
r,

1

g

)
(18)

= T (r, fg) + T (r, g) +O (1) .

By (17) and (18), by the same method as above we obtain that

(19) ρlog (f) ≤ max {ρlog (f + g) , ρlog (g)} = ρlog (f + g) ,

(20) ρlog (f) ≤ max {ρlog (fg) , ρlog (g)} = ρlog (fg) .

By using (15) and (19) we obtain ρlog (f + g) = ρlog (f) and by (16) and
(20), we get ρlog (fg) = ρlog (f). �

Lemma 8. Let f and g be meromorphic functions in the complex plane
such that 1 ≤ ρlog (f) , ρlog (g) < ∞ and 0 < τlog(f), τlog (g) < ∞. Then we
have

(i) If ρlog (f) > ρlog (g), then we obtain

(21) τlog (f + g) = τlog (fg) = τlog (f) .

(ii) If ρlog (f) = ρlog (g) and τlog (f) 6= τlog (g), then we get

(22) ρlog (f + g) = ρlog (fg) = ρlog (f) = ρlog (g) .
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Proof. (i) Suppose that ρlog (f) > ρlog (g). By using the definition of
the type and since ρlog (f + g) = ρlog (f), we get

τlog (f + g) = lim sup
r→+∞

T (r, f + g)

(log r)
ρlog(f+g)

(23)

≤ lim sup
r→+∞

T (r, f) + T (r, g) +O (1)

(log r)
ρlog(f)

≤ lim sup
r→+∞

T (r, f)

(log r)
ρlog(f)

+ lim sup
r→+∞

T (r, g) +O (1)

(log r)
ρlog(f)

= lim sup
r→+∞

T (r, f)

(log r)
ρlog(f)

+ lim sup
r→+∞

(
T (r, g)

(log r)
ρlog(g)

(log r)
ρlog(g)

(log r)
ρlog(f)

)

≤ lim sup
r→+∞

T (r, f)

(log r)
ρlog(f)

+ lim sup
r→+∞

(log r)
ρlog(g)

(log r)
ρlog(f)

lim sup
r→+∞

T (r, g)

(log r)
ρlog(g)

= τlog (f) .

Since ρlog (f + g) = ρlog (f) > ρlog (g), then by (23), we obtain

τlog (f) = τlog (f + g − g) ≤ τlog (f + g) .

Hence τlog (f + g) = τlog (f). By the same method as before, we have

τlog (fg) = lim sup
r→+∞

T (r, fg)

(log r)
ρlog(fg)

≤ lim sup
r→+∞

T (r, f) + T (r, g)

(log r)
ρlog(f)

(24)

≤ lim sup
r→+∞

T (r, f)

(log r)
ρlog(f)

+ lim sup
r→+∞

T (r, g)

(log r)
ρlog(f)

≤ τlog (f) .

Since ρlog (fg) = ρlog (f) > ρlog (g) = ρlog

(
1
g

)
, then by (24), we obtain

τlog (f) = τlog

(
fg

1

g

)
≤ τlog (fg) .

Thus, τlog (fg) = τlog (f).

(ii) Without loss of generality, we suppose that τlog (f) > τlog (g). It’s
easy to see that

ρlog (f + g) ≤ ρlog (f) = ρlog (g) .

If we suppose that ρlog (f + g) < ρlog (f) = ρlog (g), then by (21)

τlog (g) = τlog (f + g − f) = τlog (f)

which is a contradiction. Hence ρlog (f + g) = ρlog (f) = ρlog (g). Also, we
have

ρlog (fg) ≤ ρlog (f) = ρlog (g) .
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If we suppose ρlog (fg) < ρlog (f) = ρlog

(
1
f

)
= ρlog (g), then by (21), we can

write

τlog (g) = τlog

(
fg

1

f

)
= τlog (f) ,

which is a contradiction. Hence ρlog (fg) = ρlog (f) = ρlog (g). �

3. Proof of the theorems and corollary

Proof. of Theorem 1. If ρlog (f) =∞, then the result is trivial. Next
we suppose ρlog (f) < ∞. We divide through equation (1) by f (z + l) to
get

al (z) = −
(
an (z)

f (z + n)

f (z + l)
+ · · ·+ al−1 (z)

f (z + l − 1)

f (z + l)
(25)

+ al+1 (z)
f (z + l + 1)

f (z + l)
+ · · ·+ a1 (z)

f (z + 1)

f (z + l)

+ a0 (z)
f (z)

f (z + l)

)
.

It follows that

T (r, al) = m (r, al) +N (r, al)(26)

≤
n∑
j=0
j 6=l

m (r, aj) +

n∑
j=0
j 6=l

m

(
r,
f (z + j)

f (z + l)

)
+N (r, al) +O (1)

≤
n∑
j=0
j 6=l

T (r, aj) +

n∑
j=0
j 6=l

m

(
r,
f (z + j)

f (z + l)

)
+N (r, al) +O (1) .

By Lemma 5, we have for sufficiently large r and any given ε > 0

(27) m

(
r,
f (z + j)

f (z + l)

)
= O

(
(log r)ρlog(f)−1+ε

)
, j = 0, · · · , n, j 6= l.

Let us choose σ such that λlog

(
1
al

)
< σ < ρlog (al) = ρ. Then we have for

any given ε (0 < ε < ρ− σ) and for sufficiently large r

(28) N (r, al) ≤ (log r)
λlog

(
1
al

)
+ε ≤ (log r)σ+ε .

Thus, by (27) and (28), we obtain from (26)

(29) T (r, al) ≤
n∑
j=0
j 6=l

T (r, aj) +O
(

(log r)ρlog(f)−1+ε
)

+ (log r)σ+ε .
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Since max {ρlog (aj) (j = 0, · · · , n) , j 6= l} < ρ
log

(al) , then by Lemma 3,
there exists a set E3 ⊂ [1,+∞) with infinite logarithmic measure such that

(30) max

{
T (r, aj)

T (r, al)
(j = 0, · · · , n) , j 6= l

}
→ 0, r → +∞, r ∈ E3.

Thus, by (29) and (30), we have for all r ∈ E3, r → +∞

(31) (1− o (1))T (r, al) ≤ O
(

(log r)ρlog(f)−1+ε
)

+ (log r)σ+ε .

Since 0 < ε < ρ− σ, then it follows from (31) that ρlog (f) ≥ ρ
log

(al) + 1. �

Proof. of Theorem 2. If ρlog (f) =∞, then the result is trivial. Next
we suppose ρlog (f) <∞. Recall that we have max

0≤j≤n,j 6=l
{ρlog (aj)} ≤ ρlog (al)

and
∑

ρlog(aj)=ρ
j 6=l

τlog (aj) < τlog (al). If ρlog (aj) < ρlog (al) for all j = 0, 1, · · · , l−

1, l + 1, · · · , n, then Theorem 2 reduces to Theorem 1. Thus, we assume
that at least one of aj (j = 0, 1, · · · , l − 1, l + 1, · · · , n) satisfies ρlog (aj) =
ρlog (al) = ρ. So, there exists a set J1 ⊆ {0, 1, · · · , l−1, l+1, · · · , n} such that
for j ∈ J1 we have ρlog (aj) = ρlog (al) = ρ and

∑
j∈J1

τlog (aj) < τlog (al) = τ

and for i ∈ {0, 1, · · · , l− 1, l+ 1, · · · , n}\J1 we have ρlog (ai) < ρlog (al) = ρ.
Hence, we can choose α1, α2 satisfying

∑
j∈J1

τlog (aj) < α1 < α2 < τ such

that for any given ε
(
0 < ε < α2−α1

n

)
and for sufficiently large r, we have

(32) T (r, aj) ≤ (τlog (aj) + ε) (log r)ρ , j ∈ J1

and

(33) T (r, ai) ≤ (log r)ρ0 , i ∈ {0, 1, · · · , l − 1, l + 1, · · · , n} \J1,

where 1 ≤ ρ0 < ρ. By applying Lemma 2, there exists a subset E2 of [1,∞)
that has infinite logarithmic measure such that for all r ∈ E2, we have

(34) T (r, al) > α2 (log r)ρ .

By using the assumptions (27), (28), (32), (33) and (34), we obtain from
(26) for any given ε

(
0 < ε < min

{
α2−α1
n , ρ− σ

})
and for all r ∈ E2

α2 (log r)
ρ ≤

∑
j∈J1

(τlog (aj) + ε) (log r)
ρ

+
∑

i∈{0,1,··· ,l−1,l+1,··· ,n}\J1

(log r)
ρ0

+ O
(

(log r)
ρlog(f)−1+ε

)
+ (log r)

σ+ε

≤ (α1 + εn) (log r)
ρ

+ n (log r)
ρ0 +O

(
(log r)

ρlog(f)−1+ε
)

+ (log r)
σ+ε

.
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It follows that

(α2 − α1 − εn) (log r)ρ ≤ n (log r)ρ0(35)

+ O
(

(log r)ρlog(f)−1+ε
)

+ (log r)σ+ε .

Since 0 < ε < min
{
α2−α1
n , ρ− σ

}
, we obtain from (35) that ρlog (al) = ρ ≤

ρlog (f)− 1. �

Proof. of Theorem 3. If f is a non-constant rational function, then f
has logarithmic order 1 and λlog (f) = 0. Thus, the conclusion of the theorem
follows immediately. Suppose now that f is transcendental meromorphic
function. By (5) we have

(36)
1

f (z)
=

1

F

(
an
f (z + n)

f (z)
+ · · ·+ a1

f (z + 1)

f (z)
+ a0

)
.

By (36) and Lemma 5, we have

T (r, f) = T

(
r,

1

f

)
+O (1) = m

(
r,

1

f

)
+N

(
r,

1

f

)
+O (1)(37)

≤ N

(
r,

1

f

)
+m

(
r,

1

F

)
+

n∑
j=0

m (r, aj)

+

n∑
j=1

m

(
r,
f (z + j)

f (z)

)
+O (1)

≤ N

(
r,

1

f

)
+ T

(
r,

1

F

)
+

n∑
j=0

T (r, aj)

+

n∑
j=1

m

(
r,
f (z + j)

f (z)

)
+O (1)

≤ N

(
r,

1

f

)
+O

(
(log r)

ρlog(f)−1+ε
)

+ T (r, F ) +

n∑
j=0

T (r, aj) .

Set max {ρlog (aj) (j = 0, · · · , n) , ρlog (F )} < ρlog (f) . Then, by Lemma 3,
there exists a set E3 ⊂ [1,+∞) with infinite logarithmic measure such that

(38) max

{
T (r, aj)

T (r, f)
(j = 0, . . . , n) ,

T (r, F )

T (r, f)

}
→ 0, r → +∞, r ∈ E3.

Thus, by (37) and (38), we have for all r ∈ E3, r → +∞

(39) (1− o (1))T (r, f) ≤ N
(
r,

1

f

)
+O

(
(log r)ρlog(f)−1+ε

)
.
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By (39), we obtain that ρlog (f) ≤ λlog (f) + 1 and by Lemma 6, we have
λlog (f)+1 ≤ ρlog (f) for every transcendental meromorphic function. Hence,
we deduce that ρlog (f) = λlog (f) + 1. �

Proof. of Theorem 4. Set w (z) = f (z) − ϕ (z). (i) If ρlog (f) >
ρlog (ϕ), then by Lemma 7 we have ρlog (w) = ρlog (f). Substituting w into
equation (1), we obtain

an w (z + n) + an−1w (z + n− 1) + · · ·+ a1w (z + 1) + a0w (z)

= − (anϕ (z + n) + an−1ϕ (z + n− 1) + · · ·+ a1ϕ (z + 1) + a0ϕ (z))

= A (z) .

Since ϕ is not a solution of (1) , then A 6≡ 0. By Theorem 2, we have

ρlog (f) ≥ max
0≤j≤n

{ρlog (aj)}+ 1

which implies

(40) ρlog (w) = ρlog (f) > max {ρlog (A) , ρlog (aj) (j = 0, · · · , n)} .

Therefore, by Theorem 3 we have ρlog (w) = λlog (w) + 1, i.e., λlog (f − ϕ) +
1 = ρlog (f)

(ii) Suppose now that ϕ 6≡ 0 and ρlog (ϕ) < ρlog (al) + 1. Since ϕ 6≡ 0 and

ρlog (ϕ) < ρlog (al) + 1 = max
0≤j≤n

{ρlog (aj)}+ 1 ≤ ρlog (f) ,

then A 6≡ 0. By (40) and Theorem 3, we obtain λlog (w) + 1 = ρlog (w), i.e.,
λlog (f − ϕ) + 1 = ρlog (f). This completes the proof of Theorem 4. �

Proof. of Corollary Setting g (z) = f (z)−z. It is clear that ρlog (g) =
ρlog (f) because ρlog (f) ≥ ρlog (al)+1 > ρlog (z) = 1. Substituting f = g+z
into equation (1), we obtain

n∑
j=0

aj (z) g (z + j) = −
n∑
j=0

(z + j) aj (z) .

In order to prove ρlog (f − z) = λlog (f − z)+1 we need to prove
n∑
j=0

(z + j)

×aj (z) 6≡ 0. Suppose that
n∑
j=0

(z + j) aj (z) ≡ 0. Then, by the conditions

(3), (4) and Lemma 8 we have

ρlog (0) = ρlog

( n∑
j=0

(z + j) aj (z)
)

= ρlog (al) ≥ 1



20 Benharrat Beläıdi

which is a contradiction. Hence, by applying Theorem 4 we obtain

λlog (f − z) + 1 = ρlog (f − z) = ρlog (f) .
�
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