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OPERATOR VALUED MEASURES AS MULTIPLIERS

OF L1(I,X) WITH ORDER CONVOLUTION ∗

Abstract. Let I = (0,∞) with the usual topology and product
as max multiplication. Then I becomes a locally compact topo-
logical semigroup. Let X be a Banach Space. Let L1(I,X) be
the Banach space of X-valued measurable functions f such that∫∞
0
‖f(t)‖dt <∞. If f ∈ L1(I) and g ∈ L1(I,X), we define

f ∗ g(s) = f(s)

∫ s

0

g(t)dt+ g(s)

∫ s

0

f(t)dt.

It turns out that f ∗ g ∈ L1(I,X) and L1(I,X) becomes an
L1(I)-Banach module. A bounded linear operator T on L1(I,X)
is called a multiplier of L1(I,X) if T (f ∗ g) = f ∗ Tg for all
f ∈ L1(I) and g ∈ L1(I,X). We characterize the multipliers of
L1(I,X) in terms of operator valued measures with point-wise fi-
nite variation and give an easy proof of some results of Tewari[12].
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1. Notations and preliminaries

Throughout the paper, X denotes a separable Banach space and I denotes
the interval (0,∞) and we represent the vector valued functions with capital
alphabet letters, any set A as A and a family of sets or set of functions A
by the symbol A. Let M(I) denote the Banach space with total variation
norm of all finite regular complex-valued Borel measures on I. The linear
order on the interval I = (0,∞) determines a convolution on M(I) and it
becomes a commutative semi-simple Banach algebra with multiplication as

∗ The author is grateful to Prof. U. B. Tewari for many important discussions.
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order convolution defined by Lardy [7]. More specifically, if µ, ν ∈ M(I),
then µ ∗ ν ∈M(I) is defined by the equations∫

I
f(z)d(µ ∗ ν)(z) =

∫
I

[∫
I
f(x.y)dµ(x)

]
dν(y), (f ∈ C0(I)),

where C0(I) denotes the Banach space of continuous complex - valued func-
tions on I with usual supremum norm(‖.‖∞). The Banach subspace L1(I) of
M(I) consisting of the equivalence class of all Lebesgue integrable functions
on I is a subalgebra of M(I) with respect to order convolution and hence it
is itself a commutative Banach algebra. If f, g ∈ L1(I), we have

f ∗ g(s) = f(s)

∫ s

0
g(t)dt+ g(s)

∫ s

0
f(t)dt.

The maximal ideal space Î of L1(I) can be identified with the interval (0,∞]
and the Gelfand transform f of L1(I) is defined by

f̂(s) =

∫ s

0
f(t)dt (0 < s ≤ ∞).

For these and other results that may be used in the sequel, the reader is
referred to [7, 11]. The algebra L1(I) is without identity, but it does have
approximate identities. One such approximate identity is the sequence un
defined by

un(s) =

{
n, if 0 < s ≤ 1

n ,
0, if 1

n < s <∞. n = 1, 2, . . .

A bounded linear operator T on L1(I) is called a multiplier of L1(I) if
T (f ∗ g) = f ∗ Tg for all f, g ∈ L1(I). Johnson and Lahr [1] characterized
the multipliers of L1(I). In fact, they considered the interval (a, b) in place of
I, where a and b may be infinite and I may or may not include one or either
of the end points. In their paper, L1(a, b) was considered as a semisimple
convolution measure algebra(CMA) in the sense of Taylor [6]. Johnson and
Lahr [1] had proved that the multiplier algebra M(L1(a, b)) is the Banach
algebra obtained by adjoining the identity multiplier to the canonical image
of L1(a, b) in M(L1(a, b)). Slightly earlier, Larsen [11] had characterized the
multipliers of L1[0, 1] with order convolution using methods quite different.
In [11], Larsen mentions that his idea can be extended to any interval.
Using his techniques, in Section 2 we characterize the multiplier algebra of
L1(I). Similarly, in Section 3, we extend Larsen’s [11] approach to define the
positive multipliers of L1(I) and in Section 4, we characterize the isometric
multipliers of L1(I).
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Let X be a separable Banach Space. Let L1(I,X) be the Banach space of
X-valued measurable functions F such that

∫∞
0 ‖F (t)‖dt <∞. If f ∈ L1(I)

and F ∈ L1(I,X), we define

f ∗ F (s) = f(s)

∫ s

0
F (t)dt+ F (s)

∫ s

0
f(t)dt.

It turns out that f ∗ F ∈ L1(I,X) and L1(I,X) becomes an L1(I)-Banach
module. Let X and Y be Banach spaces. A bounded linear operator T
from L1(I,X) to L1(I, Y ) is called a multiplier of L1(I,X) to L1(I, Y ) if
T (f ∗ F ) = f ∗ TF for all f ∈ L1(I) and F ∈ L1(I,X).

The past thirty to forty years have seen major research efforts in the
general direction of ”vector valued multiplier operators”. The memoir [3] has
laid the foundation for the development of a general theory of convolution
operators and vector-valued Fourier multipliers.

Tewari [12] had characterized these multipliers in terms of operator val-
ued functions. In Section 5, using Larsen’s [11] ideas and the technique
of Tewari, Dutta and Vaidya [13], we characterize the multipliers of L1(I)
to L1(I,X) and then multipliers of L1(I,X) to L1(I, Y ). We characterize
these multipliers in terms of operator valued measures with point-wise finite
variation and give an easy proof of some results of Tewari [12].

In [1], Johnson and Lahr had described the multipliers of L1(a, b), where
I = (a, b) is an interval contained in R, a or b may be infinite and the interval
I may or may not contain one or either of the end points. In the following
Section 2 we extend Larsen’s approach to any interval.

2. Multiplier of L1(I)

Johnson and Lahr [1] had proved the following theorem. The proof of
the theorem based on the ideas of Larsen [11], is quite different from [1] and
discussed in detail in [10].

Theorem 1. f T : L1(I)→ L1(I), then the following are equivalent:
(i) The mapping T is a multiplier of L1(I).
(ii) There exists a unique µ ∈M(I) of the form µ = αδ + h, α ∈ C, δ

the identity of M(I) and h ∈ L1(I), such that Tf = µ ∗ f ∀f ∈ L1(I).

Proof. Suppose (ii) holds, then it is easy to verify that T (f ∗ g) =
f ∗ Tg = Tf ∗ g, ∀ f , ∀ gL1(I). Hence T is a multiplier and (i) holds.

Suppose T is a multiplier of L1(I). Assume that φ is such that (Tf)∧ =
φf̂ , f ∈ L1(I). We have ‖Tun‖ ≤ ‖T‖, n = 1, 2, . . .. Thus (Tun) is a norm
bounded sequence in M(I). By the Banach - Alaglou’s Theorem and the
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separability of C0(I), there exists a subsequence (Tunk
) of (Tun) and a µ in

M(I) such that

lim
k
〈g, Tunk

〉 =

∫
I
g(y)dµ(y), (g ∈ C0(I)).

Since T is a multiplier and (un) is an approximate identity in L1(I), we have

lim
k
T (unk

∗ f) = Tf.

Taking g ∈ C0(I) and f ∈ L1(I) ⊆M(I), we have

〈g, Tf〉 = lim
k
〈g, (Tunk

∗ f)〉

= lim
k

{〈
g, f̂Tunk

〉
+ 〈g, f.φ ˆunk

〉
}
.

The sequence (ûn) converges to 1 point-wise on I and ‖ûn‖∞ = 1 for each
n. We have

〈g, Tf〉 =

∫
I
g(y)f̂(y)dµ(y) + 〈g, φf〉 .

For 0 < s <∞, we observe that

µ̂(s) =

∫
I
χ[0,s](t)dµ(t) = lim

k

∫
I
χ[0,s](t)Tunk

(t)dt

= lim
k

( ˆTunk
)(s),

= lim
k
φ(s) ˆunk

(s) = φ(s).

Thus, we have

〈g, Tf〉 =

∫
I
g(t)f̂(t)dµ(t) + 〈g, fµ̂〉 .

Since µ ∗ f ∈M(I),we have∫
I
g(u)d(µ ∗ f)(u) =

∫
I

(∫
I
g(st)f(s)ds

)
dµ(t)(1)

=

∫
I
g(t)f̂(t)dµ(t) +

∫
I
g(t)f(t)µ̂(t)dt.

Hence,

(2)

∫
I
g(u)d(µ ∗ f)(u) = 〈g, Tf〉 ∀ g ∈ C0(I).

Therefore, µ∗f ∈ L1(I). It follows from (1) and (2) that for each f ∈ L1(I),
the measure f̂dµ on I is absolutely continuous with respect to the Lebesgue
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measure on I. Thus for each k there exists some hk ∈ L1(I) such that
ˆunk
dµ = hk.
By Lebesgue’s Dominated Convergence Theorem we have for each g ∈

L∞(I), the sequence of numbers∫
I
g(t) ˆunk

(t)dµ(t) = 〈g, hk〉

is a Cauchy sequence, that is, hk is a Cauchy sequence in the weak topology
on L1(I). However, L1(I) is weakly sequentially complete and so there exists
some h ∈ L1(I) such that

lim
k
〈g, hk〉 = 〈g, h〉 (g ∈ L∞(I)).

In particular, if g ∈ C0(I), we have∫
I
g(t)h(t)dt = lim

k

∫
I
g(t)hk(t)dy

= lim
k

∫
I
g(t)ûn(t)dµ(t) =

∫
I
g(t)dµ(t).

Hence µ and h are seen to define the same measure on I. Therefore there
exists some α ∈ I such that µ = αδ + h, where δ is the identity of M(I)
and h can be considered as an element of L1(I). Hence, µ ∗ f ∈ L1(I) and
Tf = µ ∗ f ∀ f ∈ L1(I). To see that µ is unique, suppose ν ∈ M(I) such
that Tf = ν ∗ f, f ∈ L1(I). Then,∫ s

0
dν(t) = ν̂(s) = µ̂(s) = α+

∫ s

0
h(t)dt, 0 < s ≤ ∞

and ν(0) = α = µ(0). Suppose µ1 = µ − αδ and ν1 = ν − αδ, we have
µ̂1(s) = ν̂1(s) i.e. µ1([0, s)) = ν1([0, s)) i.e. (µ1 − ν1)([0, s)) = 0. It can be
easily seen that µ1([c, d)) = ν1([c, d)) for any arbitrary [c, d). Therefore, µ1

and ν1 agree on each element of the Borel σ−algebra B(I). Thus µ1 = ν1

i.e. µ = ν.
Similar to Larsen’s approach [11], we characterize multipliers on L1(I)

in terms of absolutely continuous functions on Î . Tewari [12] had also noted
this. If T is a multiplier of L1(I) then there exists a unique µ in M(I) of the
form µ = αδ + h, α ∈ C, h ∈ L1(I) such that Tf = µ ∗ f ∀f ∈ L1(I). Then
given 0 < s ≤ ∞, we have for each f ∈ L(I),

(Tf)∧(s) = µ̂(s)f̂(s) =
(
α+ ĥ(s)

)
f̂(s).

Define φ by φ(s) = α + ĥ(s), 0 < s ≤ ∞ and φ(0) = α. Then φ is an
absolutely continuous function φ on (0,∞] which is of bounded variation.
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Conversely, if φ is an absolutely continuous function on (0,∞] which is
of bounded variation, then φ determines a multiplier of L1(I) with order
convolution. Indeed, since φ and f̂ are absolutely continuous functions on
(0,∞], so is φf̂ . Thus the derivative of φf̂ , (φf̂)′ exists almost everywhere
on (0,∞]. Since φf̂(0) = 0 for each f ∈ L1(I), we conclude that there exists
a g ∈ L1(I) such that ĝ = φf̂ and g is almost everywhere equal to the
derivative of φf̂ , i.e., g = (φf̂)′. Hence every function φ ∈ AC(0,∞] which
is of bounded variation defines a multiplier T of L1(I) such that (Tf)∧ =
φf̂ ∀f ∈ L1(I). Since φ is differentiable almost everywhere and φ′ ∈ L1(I),
limt→0+ φ(t) exists. Let φ(0) = limt→0+ φ(t), then Tf = φ(0)f + (φf̂)′.

We have ‖T‖ ≤ ‖µ‖. Since µ is weak-star limit of a sequence in M(I)
bounded in norm by ‖T‖, and so ‖µ‖ ≤ ‖T‖ as norm closed balls in M(I)
are weak-star closed. By the definition of φ, we have µ = φ(0)δ+ φ′. Hence

‖T‖ = ‖µ‖ = |φ(0)|+
∫
I
|φ′(t)|dt.

�

Remark 1. The inequality ‖φ‖∞ ≤ ‖T‖ = ‖µ‖ may be strict. For
example let φ(s) = e−s

2
then ‖φ‖∞ = 1 but ‖µ‖ = 2 as

∫
I |φ
′(s)|ds = 1.

Remark 2. Suppose T is a compact multiplier of L1(I). We show that
Tf = h ∗ f ∀f ∈ L1(I). Suppose Tf = αf + h ∗ f , where α 6= 0. Let
(un) is an approximate identity in L1(I). Since T is a compact operator,
there exists a subsequence Tunk

= αunk
+ h ∗ unk

which converges. Hence
αunk

= Tunk
− h ∗ unk

is convergent. Since L1(I) has no identity, unk
can

not converge in L1(I). Thus the assumption α 6= 0 is wrong.

It seems that there is no compact multiplier for L1(I). However we ob-
served the following:

Proposition 1. Let h be any integrable function with support (0, r] which
is properly contained in I. If Tf = h∗f ∀f ∈ L1(I), then T is non-compact.

Proof. Let K = {f : f ∈ L1(I), f = 0 on (0, r]}. Therefore K is an
infinite dimensional space. Hence, there exists a sequence fn such that
‖fn‖ ≤ 1 ∀ n and {fn} has no convergent subsequence. If s ∈ (0, r], we
have, f̂n(s) = 0 ∀ n, Let

∫ r
0 h(t)dt = c(6= 0), we have,

h ∗ fn(s) =

{
0, if s ∈ (0, r],
cfn(s), if s ∈ (0, r]′.

Thus h ∗ fn = cfn has no convergent subsequence. �
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3. Positive multipliers of L1(I)

In this section, we give a characterization of positive multipliers of L1(I).
Larsen [11] had characterized positive multipliers of L1([0, 1]) with order
convolution. Here we extend Larsen’s approach to any interval. It was
discussed in detail in [10].

Definition 1. A multiplier T of L1(I) is said to be a positive multiplier
if Tf(x) ≥ 0 almost everywhere on I, whenever f ∈ L1(I) and f(x) ≥ 0
almost everywhere.

In the next theorem, we extend Larsen’s approach [11] for a complete
description of the positive multipliers on L1(I). For details we refer to [10].

Theorem 2. Let T be a multiplier of L1(I). Then the following are
equivalent:

(i) The multiplier T is positive.
(ii) If φ is an absolutely continuous function on I which is of bounded

variation such that (Tf)∧ = φf̂ ∀f ∈ L1(I), then φ(x) ≥ 0 ∀x ∈ I
and φ′(x) ≥ 0 almost everywhere.

(iii) If µ = αδ + h, α ∈ C and h ∈ L1(I) is such that
Tf = µ ∗ f ∀f ∈ L1(I), then α ≥ 0 and h(x) ≥ 0 a.e.

Proof. For each n, we have

(Tun)∧(s) = φ(s)ûn(s) =

{
nφ(s)s, if 0 < s ≤ 1

n
φ(s), if 1

n < s ≤ ∞.

Since T is positive, it follows that φ(s) ≥ 0 ∀ s ∈ (0,∞]. Since φ is
continuous on Î and φ(0) = limt→0+ φ(t), thus φ(0) ≥ 0. Now for almost
every s ∈ I, if n is chosen so that 0 < 1

n < s, then

Tun(s) = (φûn)′(s) = φ′(s)ûn(s) + φ(s)un(s) = φ′(s).

Since T is positive, we conclude that φ′(s) ≥ 0 almost everywhere. Thus (i)
implies (ii). Since α = φ(0) and h = φ′ we see that (ii) implies (iii). It is
easy to see (iii) implies (i). �

Similar to Larsen’s remark [11], we see that in the case of a positive
multiplier, equality holds in Remark 1.

Corollary 1. Let T be a positive multiplier of L1(I) such that (Tf)∧ =
φf̂ ∀f ∈ L1(I). Then ‖φ‖∞ = ‖T‖.
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Proof. As T is a positive multiplier we see that φ(s) ≥ 0 on I and
φ′(s) ≥ 0 almost everywhere on I, hence ‖φ‖∞ = limx→∞ φ(s). Moreover
by Theorem 1, we have

‖T‖ = |φ(0)|+
∫
I
|φ′(t)|dt

= φ(0) +

∫
I
φ′(t)dt = lim

s→∞
φ(s).

�

In [11] Larsen had shown that the converse of the above corollary fails
even in the case of I being the closed unit interval (see Corollary 3, [11].)

4. Isometric multipliers of L1(I)

For each s ∈ I, the translation operator τs on L1(I) is defined by τsf(t) =
f(s.y). In [11], Larsen had shown that the translation operator is not a
multiplier. It is easy to see that every multiple of the identity operator by a
constant α of absolute value one, that is, Tf = αf, f ∈ L1(I), |α| = 1 is an
isometric multiplier of L1(I). Larsen [11] had shown that these are the only
isometric multipliers of L1([0, 1]) with order convolution. Here we extend
Larsen’s result to any interval. The proof of the following theorem is based
on the ideas of Larsen [11] and discussed in detail in [10] .

Lemma. Let T be an isometric multiplier of L1(I). Let µ ∈ M(I) such
that Tf = µ ∗ f ∀ f ∈ L1(I). If f ∈ L1(I) then |µ ∗ f(s)| = |µ| ∗ |f |(s) for
almost every s ∈ I.

Theorem 3. Let T be an isometric multiplier of L1(I) such that Tf =
µ ∗ f ∀f ∈ L1(I) and (Tf)∧ = φf̂ ∀f ∈ L1(I), then T is an isometric
multiplier if and only if there exists some α ∈ C, |α| = 1 such that µ = αδ
or φ(s) = α ∀s ∈ I.

Proof. The Sufficiency is obvious. Suppose T is an isometry. We shall
show first that φ′(s) = 0 almost everywhere on I and since φ is absolutely
continuous, therefore it is constant. For r ∈ R such that 0 < r <∞, define

fr(s) =

{
ieis, 0 ≤ s ≤ r,
0, otherwise.

And for 0 ≤ s ≤ r, where r < ∞, we have f̂r(s) = eis − 1. By Lemma,
for almost every s ∈ I, we have φ(s)φ′(s) ≥ 0 and therefore, ∀ s such that
0 ≤ s ≤ r, we have

|(φf̂r)′(s)|2 = |φ′(s)(eis − 1) + φ(s)ieis|2 = |φ′(s)|2|eis − 1|2

−2Re
{
φ′(s)φ(s)(eis − 1)i(e−is − 1)

}
+ |φ(s)|2
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= 2|φ′(s)|2(1− coss) + 2φ(s)φ′(s)sins+ |φ(s)|2

= 4|φ′(s)|2(sin
s

2
)2 + 2φ(s)φ′(s)sins+ |φ(s)|2.

Since |fr| = 1, for 0 ≤ s ≤ r, where r <∞, we have{
(|φ||fr|∧)′(s)

}2
=
{
|φ′(s)|s+ |φ(s)|

}2

= |φ′(s)|2s2 + 2φ(s)φ′(s)s+ |φ(s)|2.

Since this holds ∀ r such that r <∞, by the lemma, for almost every s ∈ I,
we have

4|φ′(s)|2
{

(sin
s

2
)2 − (

s

2
)2
}

+ 2φ(s)φ′(s)[sins− s] = 0.

And since ( s2)2 − (sin s2)2 ≥ 0 and s − sins ≥ 0 ∀ s ∈ I, it follows that

|φ′(s)|2 = φ(s)φ′(s) = 0 almost everywhere on I. Thus there exists some
α ∈ C such that φ(s) = α ∀ s ∈ I. Therefore, Tf = αf ∀ f ∈ L1(I) and
since ‖Tf‖ = ‖f‖ ∀ f ∈ L1(I) we have |α| = 1. �

5. Multipliers of L1(I,X)

Let X be a separable Banach space and the interval I = (0,∞) be with
the usual topology and max multiplication. Let L1(I,X) be the Banach
space of X-valued measurable functions F such that

∫
I ‖F (t)‖dt < ∞. For

integration of vector-valued set functions, we follow [3, 5]. Using such in-
tegrals, it is possible to define order convolution between various spaces of
vector-valued functions and measures on I. If f ∈ L1(I) and F ∈ L1(I,X),
for s ∈ I,we define

f ∗ F (s) = f(s)

∫ s

0
F (t)dt+ F (s)

∫ s

0
f(t)dt.

It turns out that f ∗F ∈ L1(I,X) and L1(I,X) becomes an L1(I) − Banach
module.

We shall make use of the concept of module tensor product and its rela-
tion to multipliers (see [8]. Let A be a commutative Banach algebra. If V
and W are A-modules, the A-module tensor product V ⊗A W is defined to
be quotient Banach space V⊗γ W/K, where K is the closed linear subspace
of the projective tensor product V ⊗γ W, spanned by the elements of the
form av ⊗ w − v ⊗ aw with a ∈ A, v ∈ V and w ∈ W. A continuous
linear transformation from V to W is called an A - module homomorphism
if T (a ∗ v) = a ∗ T (v) for all a ∈ A and v ∈ V.
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The theory of vector measures and integration lets us identify the dual
of C0(I,X) with M(I,X∗) where X∗ is the dual of X. The identification is
given by 〈µ, F 〉 =

∫
I Fdµ, for F ∈ C0(I,X) and µ ∈M(I,X∗), (see([3, 9]).

The ”integral”
∫
I Fdµ ∈ C is defined via a continuous extension proce-

dure from Cc(I)⊗X to C0(I,X), where for F =
∑n

j=1 fjxj with fj ∈ Cc(I)
and xj ∈ X ∫

I
Fdµ =

n∑
j=1

∫
I
fjd 〈xj , µ〉

here 〈xj , µ〉 : B(I) → C is the complex measure, E → 〈xj , µ(E)〉 for E ∈
B(I), (see [3]).

A bounded linear operator T on L1(I,X) to L1(I,X) is called a multi-
plier of L1(I,X) to L1(I,X) if T (f ∗ F ) = f ∗ TF for all f ∈ L1(I) and
F ∈ L1(I,X). Tewari [12] had characterized these multipliers in terms of
operator valued functions. In this section, using Larsen’s [11] ideas and the
technique of Tewari,Dutta and Vaidya [13], we characterize the multipliers
of L1(I) to L1(I,X) and then multipliers of L1(I,X) to L1(I,X) in terms
of operator valued measures with point-wise finite variation.

We know that {un} is an approximate identity for L1(I). The following
proposition tells us that {un} acts as an approximate identity for L1(I,X)
(see Proposition 3.1, [12]).

Proposition 2. Let {un} be the approximate identity of L1(I) defined
earlier. Suppose F ∈ L1(I,X). Then

‖un ∗ F − F‖1 → 0 as n→∞.

Definition 2. Let F ∈ L1(I,X) and for each s ∈ (0,∞], define

F̂ (s) =

∫ s

0
F (t)dt.

The function F̂ is called the Gelfand transform of F . Clearly F̂ is absolutely
continuous. Also (F̂ )′(s) = F (s) almost everywhere.

Note that F̂ (s) → 0 as s → 0. Further, if F̂ (s) = 0 for all s ∈ (0,∞]
then F (s) = 0 almost everywhere.

The following proposition follows immediately from Proposition 3.2, [12].

Proposition 3. Suppose T is a multiplier of L1(I) into L1(I,X). Then
there exists an X-valued bounded continuous function Φ on (0,∞) such that
(Tf)∧(s) = Φ(s)f̂(s) for all s ∈ (0,∞) and f ∈ L1(I).

Using the technique of Larsen [11], we characterize the multipliers T :
L1(I)→ L1(I,X) as follows:
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Theorem 4. Let X be a Banach Space which has the Radon Nikodym
property. If T : L1(I) → L1(I,X) is a linear map, then following are
equivalent:

(i) T is a multiplier of L1(I) to L1(I,X) with the order convolution.
(ii) There exists a unique measure µ ∈M(I,X) of the form µ = xδ + J ,

x ∈ X, J ∈ L1(I,X), δ the identity of M(I) such that Tf = µ ∗ f
∀f ∈ L1(I) and ‖T‖ = ‖µ‖.

Proof. Let {un} be the approximate identity for L1(I) defined earlier.
Considering the natural embedding of X into its second dual X∗∗, L1(I,X)
can be embedded isometrically in M(I,X∗∗) and since ‖Tun‖1 ≤ ‖T‖,
{Tun} is a norm bounded sequence in M(I,X∗∗). By the Banach Alaglou’s
Theorem and separability of C0(I,X∗) (see [9]), there exists a subsequence
{Tunk

} and a µ ∈M(I,X∗∗) such that

lim
k

∫
I
〈L(s), Tunk

(s)〉 ds =

∫
I
L(s)dµ(I) ∀L ∈ C0(I,X∗).

Since T is a multiplier and {un} is an approximate identity, hence by Propo-
sition 2, we have

lim
k
T (unk

∗ f) = lim
k
unk
∗ Tf = Tf.

Let L ∈ C0(I,X∗). Since Tunk
∗f(s) = Tunk

(s)f̂(s)+f(s)(Tunk
)∧(s), hence

by Proposition 3, we have

〈L, Tunk
∗ f〉 =

∫
I
〈L(s), Tunk

(s)〉 f̂(s)ds

+

∫
I
〈L(s), f(s)Φ(s)〉 ˆunk

(s)ds.

Since {ûn} converges point-wise to 1, on taking limits, Lebesgue’s Domi-
nated Convergence Theorem implies that

lim
k
〈L, Tunk

∗ f〉 = lim
k

∫
I
〈L(s), Tunk

(s)〉 f̂(s)ds

+

∫
I
〈L(s), f(s)Φ(s)〉 ds.

If x∗ ∈ X∗, then

lim
k

∫
I
χ[0,s](t) 〈x∗, Tunk

(t)〉 dt =

∫
I
χ[0,s](t)d 〈x∗, µ〉 (t) = 〈x∗, µ̂(s)〉 .
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Hence

〈x∗, µ̂(s)〉 = lim
k

∫
I
χ[0,s](t) 〈x∗, Tunk

(t)〉 dt = lim
k

〈
x∗, ˆTunk

(s)
〉

= lim
k
〈x∗,Φ(s) ˆunk

(s)〉 = 〈x∗,Φ(s)〉 .

Hence, for each L ∈ C0(I,X∗), we have

lim
k
〈L, Tunk

∗ f〉 =

∫
I
L(s)f̂(s)dµ(s) +

∫
I
〈L(s), f(s)µ̂(s)〉 ds.

On the other hand, we have

〈L, µ ∗ f〉 =

∫
I
L(u)d(µ ∗ f)(u) =

∫
I

[L(s.t)f(s)] dµ(t)

=

∫
I
L(t)

(∫ t

0
f(s)ds

)
+

∫
I

(∫ ∞
t

L(s)f(s)ds

)
dµ(t)

=

∫
I
L(t)f̂(t)dµ(t) +

∫
I
L(s)f(s)

(∫ s

0
dµ(t)

)
ds

=

∫
I
L(t)f̂(t)dµ(t) +

∫
I
〈L(t), f(t)µ̂(t)〉 dt.

Hence, we have ∫
I
L(t)d(µ ∗ f)(t) =

∫
I
L(t)Tf(t)dt.

Since this holds for each L ∈ C0(I,X∗), we conclude that µ ∗ f ∈ L1(I,X).
Thus the above expressions imply that for each f ∈ L1(I), the measure f̂dµ
on I is absolutely continuous. Therefore, by the Radon Nikodym property
of X, for each k there exists some Jk ∈ L1(I,X) such that ˆunk

dµ = Jk. Now
suppose L ∈ L∞(I,X∗). Since the sequence { ˆunk

} converges to 1 point-wise
on I and ‖ ˆunk

‖∞ = 1, Lebesgue’s Dominated Convergence Theorem tells us
that the sequence of numbers∫

I
L(t) ˆunk

dµ(t) =

∫
I
〈L(t), Jk(t)〉 dt

is a Cauchy sequence, i.e. {Jk} is a Cauchy sequence in the weak topology
on L1(I,X). Since L1(I,X) is weakly sequentially complete there exists
some J ∈ L1(I,X) such that

lim
k

∫
I
〈L(t), Jk(t)〉 dt =

∫
I
〈L(t), J(t)〉 dt ∀L ∈ L∞(I,X∗).
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In particular, if L ∈ C0(I,X∗) then∫
I
〈L(t), J(t)〉 dt = lim

k

∫
I
〈L(t), Jk(t)〉 dt

= lim
k

∫
I
L(t) ˆunk

(t)dµ(t) =

∫
I
L(t)dµ(t).

Hence, µ and J are seen to define the same measure on I. Therefore, there
exists some x ∈ X such that µ = xδ+J. This also tells us that µ is X-valued.
Moreover, since δ is the identity of M(I), it is obvious that µ ∗ f ∈ L1(I,X)
for each f ∈ L1(I) and so Tf = µ ∗ f ∀f ∈ L1(I). An easy argument shows
that µ is unique.

Let T be a multiplier from L1(I) to L1(I,X) and Tf = µ ∗ f, f ∈
L1(I), µ ∈ M(I,X). Since ‖µ ∗ f‖ ≤ ‖µ‖‖f‖, ‖T‖ ≤ ‖µ‖. Also since µ
is the weak-star limit of a sequence in M(I,X) bounded in norm by ‖T‖,
we have ‖µ‖ ≤ ‖T‖. �

The following definition is taken from Hille and Phillips [2].

Definition 3. Let Φ be an X-valued function on (0,∞]. Φ is said to
be absolutely continuous if ∀ε > 0 there exists a δ > 0 such that whenever
{(si, ti)} is a finite sequence of disjoint open intervals such that

∑
(ti −

si) < δ, we have
n∑
i=1

‖Φ(ti)− Φ(si)‖ < ε.

The following characterization is a special case of Theorem 3.9, [12]. We
are giving an easy proof.

Theorem 5. If T : L1(I) → L1(I,X) is a multiplier with order convo-
lution then there exists a unique, bounded, continuous X-valued function Φ
such that

(i) The function s→ Φ(s) is absolutely continuous.
(ii) The function s→ Φ(s) is differentiable almost everywhere.

(iii) If MΦ′(f) = Φ′f̂ then MΦ′ : L1(I)→ L1(I,X) is a bounded linear
map.

(iv) (Tf)∧ = Φf̂ ∀s ∈ (0,∞) and f ∈ L1(I).
Conversely, if Φ is a bounded X-valued function on (0,∞) satisfying (i) to
(iii). Then there exists a multiplier T of L1(I) to L1(I,X) satisfying (iv).

Proof. Suppose there exists µ ∈ M(I,X) of the form µ = xδ + J ,
x ∈ X, J ∈ L1(I,X) such that Tf = µ ∗ f ∀f ∈ L1(I). Then for s ∈ Î and
f ∈ L1(I), we have

(Tf)∧(s) = µ̂(s)f̂(s)
(
x+ Ĵ(s)

)
f̂(s)
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where µ̂(s) =
∫ s

0 dµ(t). Define Φ on Î by Φ(s) = x + Ĵ(s) ∀s ∈ Î and
Φ(0) = x. Since J ∈ L1(I,X), (i), (ii) and (iv) follow immediately.

For f ∈ L1(I), we have (Tf)∧(s) = Φ(s)f̂(s). Therefore,

Φ(s)f̂(s) =

∫ s

0
(Tf)(t)dt.

Differentiating, we have

Φ(s)f(s) + Φ′(s)f̂(s) = Tf(s) a.e.

Hence MΦ′(f) = Tf − Φf. Since Φ is bounded Φf ∈ L1(I,X). It follows
that MΦ′(f) ∈ L1(I,X). We also have

‖MΦ′(f)‖1 ≤ (‖T‖+ ‖Φ‖∞)‖f‖1.

Conversely, suppose Φ is a bounded X-valued function on (0,∞) satisfying
(i) to (iii). We define

T : L1(I)→ L1(I,X)

by
Tf(s) = Φ(s)f(s) + Φ′(s)f̂(s) a.e. ∀f ∈ L1(I).

It is easy to see that ‖Tf‖1 ≤ [‖Φ‖∞ + ‖MΦ′‖] ‖f‖1. Hence T is a bounded
linear map of L1(I) to L1(I,X). We also see that the derivative of (Φf̂)
equals Φ(s)f(s) + Φ′(s)f̂(s) = Tf(s) almost everywhere. Hence (Tf)∧(s) =
Φ(s)f̂(s) for all s ∈ (0,∞]. This completes the proof of the theorem. �

We now characterize the multipliers on L1(I,X) with respect to order
convolution using the technique of Tewari, Dutta and Vaidya [13].

Let T : L1(I,X)→ L1(I,X) be a multiplier, i.e. T (f ∗F ) = f ∗TF ∀f ∈
L1(I) and F ∈ L1(I,X). For x ∈ X, define Tx : L1(I) → L1(I,X) by
Tx(f) = T (fx). It is easy to see that Tx is a multiplier from L1(I) to
L1(I,X) and ‖Tx‖ ≤ ‖T‖‖x‖.

Therefore, by Theorem (4), there exists a measure µx ∈ M(I,X) of
the form µx = αxδ + Jx where αx ∈ X, and Jx ∈ L1(I,X) such that
Tx(f) = µx ∗ f and ‖µx‖ ≤ ‖T‖‖x‖. The map M : X → M(I,X) defined
by M(x) = µx is a bounded linear map with ‖M‖ ≤ ‖T‖ and T (fx) =
M(x) ∗ f ∀x ∈ X and f ∈ L1(I).

Conversely, let M be a bounded linear operator from X into M(I,X).
M(x) = αxδ + Jx where αx ∈ X and Jx ∈ L1(I,X). Consider the map
L1(I) × X → L1(I,X) defined by (f, x) → M(x) ∗ f ∀f ∈ L1(I) and
x ∈ X. It is easy to see that this is a bilinear map and ‖M(x) ∗ f‖ ≤
‖M(x)‖‖f‖1 ≤ ‖M‖‖x‖‖f‖1. Hence, by the universal property of tensor
products, we get a bounded linear map T ′ from L1(I) ⊗γ X into L1(I,X)
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with ‖T ′‖ ≤ ‖M‖ such that T ′(f ⊗ x) = M(x) ∗ f for any f ∈ L1(I) and
x ∈ X. However, L1(I) ⊗γ X is isometrically isomorphic to L1(I,X) (see
[8]). Hence we get a bounded linear operator T of L1(I,X) with ‖T‖ ≤ ‖M‖
and T (fx) = M(x) ∗ f ∀f ∈ L1(I) and x ∈ X. Let g ∈ L1(I). We have

T (g ∗ fx) = T ((g ∗ f)x) = Tx(g ∗ f)

= M(x) ∗ (g ∗ f) = g ∗ (M(x) ∗ f) = g ∗ T (fx).

Since functions of the form
∑n

i=1 fixi with fi ∈ L1(I) and xi ∈ X are dense
in L1(I,X), it follows that T is multiplier on L1(I,X). It is easy to see that
the bounded linear transformation from X into M(I,X) associated with T
is nothing but M and ‖M‖ ≤ ‖T‖. Therefore ‖T‖ = ‖M‖.

Thus we have proved the following.

Theorem 6. The set of all ultipliers on L1(I,X) with respect to or-
der convolution is isometrically isomorphic to L(X,M(I,X)), the space of
bounded linear operators from X into M(I,X) in the following sense. Let
T be any multiplier on L1(I,X) with order convolution such that T (fx) =
µx ∗ f . Then there exists a bounded linear map M from X into M(I,X)
such that M(x) = µx = αxδ + Jx where αx ∈ X and Jx ∈ L1(I,X) and
‖T‖ = ‖M‖.

Now for an operator M ∈ L(X,M(I,X)) where M(x) = µx, define µ
from the Borel σ- algebra B(I) into the space of bounded linear operators
on X by µ(E)x = µx(E) ∀E ∈ B(I). It is easy to see that µ(E) is a linear
operator. Since

‖µ(E)x‖ = ‖µx(E)‖ = ‖M(x)(E)‖ ≤ ‖M‖‖x‖.

So, µ(E) ∈ L(X).

Corollary 2. The set of all multipliers on L1(I,X) with respect to or-
der convolution is isometrically isomorphic to the space of operator valued
measures on I with point-wise finite variation such that µ(E)x = αxδ(E) +∫
E Jx(t)dt, where x, αx ∈ X and Jx ∈ L1(I,X).

The following definition is taken from Gaudry [3].

Definition 4. For any regular operator-valued measure µ : B(I) →
L(X), the operator-valued function µ̂ : Î → L(X) defined by µ̂(s) =

∫ s
0 dµ(t)

is called the Fourier-Stieltjes transform of µ.

Note. The definition of regularity of an operator valued measure is
equivalent to the regularity of the scalar measure 〈µx1, x

∗
2〉 for each x1 ∈ X

and x∗2 ∈ X∗.
The following definitions are taken from Hille and Phillips [2].
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Definition 5. Let Φ(s) be an operator valued function on (0,∞]. We
say that Φ is of strong bounded variation on (0,∞) if for each x ∈ X the
function s→ Φ(s)x is of strong bounded variation, that is,

sup
n∑
i=1

‖Φ(ti)x− Φ(ti−1)x‖ <∞,

where the supremum is taken over all possible finite sets

{t0, t1, . . . , tn ⊂ (0,∞) : t0 < t1 < . . . < tn} .

Φ is called strongly absolutely continuous if ∀ε > 0 there exists a δ > 0
such that whenever {(si, ti)} is a finite sequence of disjoint open intervals
for which

∑
(ti − si) < δ, we have

n∑
i=1

‖Φ(ti)x− Φ(si)x‖ < ε.

Tewari [12] had proved the following theorem (see Theorem 3.9, [12]).
We are giving an easy proof here.

Theorem 7. Let T be a multiplier of L1(I,X) into itself with order con-
volution. Then there exists an operator valued bounded strongly continuous
function Φ on (0,∞] such that

(i) The function s→ Φ(s)x is strongly absolutely continuous and hence
of strong bounded variation on (0,∞),

(ii) The function s→ Φ(s)x is strongly differentiable almost everywhere,

(iii) If MΦ′(F ) = Φ′F̂ then MΦ′ : L1(I,X)→ L1(I,X) is a bounded
linear map,

(iv) (TF )∧(s) = Φ(s)(F̂ (s)) for all s ∈ (0,∞) and F ∈ L1(I,X).

Conversely, if Φ is a bounded L(X) - valued function on (0,∞) satisfying
(i) to (iii) then there exists a multiplier T of L1(I,X) to itself satisfying
(iv).

Proof. Suppose there exists an operator-valued measure µ of the form
µ(E)x = µx(E), where µx = αxδ + Jx, αx ∈ X,Jx ∈ L1(I,X) such that
TF = µ ∗ F ∀F ∈ L1(I,X). Then for for each s ∈ I and F ∈ L1(I,X),
we have (TF )∧(s) = µ̂(s)F̂ (s) where µ̂(s) =

∫ s
0 dµ(t). Define Φ(s) = µ̂(s).

Therefore, Φ(s)x = (µ̂(s))(x) =
∫ s

0 dµx(t) = µ̂x(s) = αx +
∫ s

0 Jx(t)dt. Since

Jx belongs to L1(I,X), (i) and (ii) follow immediately. Since Φ(s)F̂ (s) =∫ s
0 (TF )(t)dt, we have Φ(s)F (s) + Φ′(s)F̂ (s) = TF (s) almost everywhere.

Hence MΦ′(F ) = TF − ΦF and since Φ is bounded we have MΦ′(F ) ∈
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L1(I,X) and ‖MΦ′(F )‖1 ≤ (‖T‖+‖Φ‖∞)‖F‖1. Thus (iii) holds. Moreover,
(iv) is a consequence of the relationship between T and Φ.

Conversely, suppose Φ is a bounded operator valued function on (0,∞)
which satisfies all conditions from (i) to (iii). We define

T : L1(I,X)→ L1(I,X).

by TF (s) = Φ(s)F (s)+Φ′(s)F̂ (s) a.e. for F ∈ L1(I,X). Since Φ is bounded
and continuous in the strong operator topology, the function Φ(s)F (s) is
strongly measurable and∫ ∞

0
‖Φ(s)F (s)‖ds ≤ ‖φ‖∞‖F‖1.

Therefore, ‖TF‖1 ≤ [‖Φ‖∞ + ‖MΦ′‖]‖F‖1 and we conclude that T is a
bounded linear map.

We can easily see that the derivative of (ΦF̂ ) equals Φ(s)F (s)+Φ′(s)F̂ (s)
= TF (s) almost everywhere. Hence, it follows that (TF )∧(s) = Φ(s)F̂ (s)
∀s ∈ (0,∞].

This completes the proof of the theorem. �

Remark 3. Let T be a compact multiplier from L1(I,X) with order
convolution into itself. We show that T (fx) = Jx ∗ f, Jx ∈ L1(I,X).
Suppose T (fx) = αxf + Jx, αx(6= 0) ∈ X and Jx ∈ L1(I,X). Let (un) be
an approximate identity in L1(I) and x ∈ X. Since T is a compact operator,
there exists a subsequence T (unk

x) = αxunk
+ Jx ∗ unk

which converges.
Hence αxunk

= Tunk
− Jx ∗ unk

is convergent, which is a contradiction.
Therefore, αx = 0.

Remark 4. Finally, we remark that the characterization of isometric
multipliers of L1(I,X) with order convolution will be quite interesting. Let
T : L1(I,X) → L1(I,X) such that T (f.x) = αxf, where αx ∈ X, ‖αx‖ = 1
and f ∈ L1(I). Then T is an isometric multiplier of L1(I,X) into itself.
We feel that these are the only isometric multipliers of L1(I,X) with order
convolution. The characterization of isometric multipliers of L1(I,X) is an
open problem.
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