P. K. Chaurasia

OPERATOR VALUED MEASURES AS MULTIPLIERS OF $L_{1}(I, X)$ WITH ORDER CONVOLUTION *

Abstract. Let $I=(0, \infty)$ with the usual topology and product as max multiplication. Then I becomes a locally compact topological semigroup. Let X be a Banach Space. Let $L_{1}(I, X)$ be the Banach space of X-valued measurable functions f such that $\int_{0}^{\infty}\|f(t)\| d t<\infty$. If $f \in L_{1}(I)$ and $g \in L_{1}(I, X)$, we define

$$
f * g(s)=f(s) \int_{0}^{s} g(t) d t+g(s) \int_{0}^{s} f(t) d t
$$

It turns out that $f * g \in L_{1}(I, X)$ and $L_{1}(I, X)$ becomes an $L_{1}(I)$-Banach module. A bounded linear operator T on $L_{1}(I, X)$ is called a multiplier of $L_{1}(I, X)$ if $T(f * g)=f * T g$ for all $f \in L_{1}(I)$ and $g \in L_{1}(I, X)$. We characterize the multipliers of $L_{1}(I, X)$ in terms of operator valued measures with point-wise finite variation and give an easy proof of some results of Tewari[12]. KEY words: vector valued multiplier, operator valued Measure, order convolution.
AMS Mathematics Subject Classification: 43A15, 42A45, 43A25, 42A16.

1. Notations and preliminaries

Throughout the paper, X denotes a separable Banach space and I denotes the interval $(0, \infty)$ and we represent the vector valued functions with capital alphabet letters, any set A as \mathbb{A} and a family of sets or set of functions A by the symbol \mathfrak{A}. Let $M(I)$ denote the Banach space with total variation norm of all finite regular complex-valued Borel measures on I. The linear order on the interval $I=(0, \infty)$ determines a convolution on $M(I)$ and it becomes a commutative semi-simple Banach algebra with multiplication as

[^0]order convolution defined by Lardy [7]. More specifically, if $\mu, \nu \in M(I)$, then $\mu * \nu \in M(I)$ is defined by the equations
$$
\int_{I} f(z) d(\mu * \nu)(z)=\int_{I}\left[\int_{I} f(x . y) d \mu(x)\right] d \nu(y), \quad\left(f \in C_{0}(I)\right)
$$
where $C_{0}(I)$ denotes the Banach space of continuous complex - valued functions on I with usual supremum norm $\left(\|\cdot\|_{\infty}\right)$. The Banach subspace $L_{1}(I)$ of $M(I)$ consisting of the equivalence class of all Lebesgue integrable functions on I is a subalgebra of $M(I)$ with respect to order convolution and hence it is itself a commutative Banach algebra. If $f, g \in L_{1}(I)$, we have
$$
f * g(s)=f(s) \int_{0}^{s} g(t) d t+g(s) \int_{0}^{s} f(t) d t
$$

The maximal ideal space \hat{I} of $L_{1}(I)$ can be identified with the interval $(0, \infty]$ and the Gelfand transform f of $L_{1}(I)$ is defined by

$$
\hat{f}(s)=\int_{0}^{s} f(t) d t \quad(0<s \leq \infty)
$$

For these and other results that may be used in the sequel, the reader is referred to $[7,11]$. The algebra $L_{1}(I)$ is without identity, but it does have approximate identities. One such approximate identity is the sequence u_{n} defined by

$$
u_{n}(s)=\left\{\begin{array}{lll}
n, & \text { if } & 0<s \leq \frac{1}{n}, \\
0, & \text { if } & \frac{1}{n}<s<\infty
\end{array} \quad n=1,2, \ldots\right.
$$

A bounded linear operator T on $L_{1}(I)$ is called a multiplier of $L_{1}(I)$ if $T(f * g)=f * T g$ for all $f, g \in L_{1}(I)$. Johnson and Lahr [1] characterized the multipliers of $L_{1}(I)$. In fact, they considered the interval (a, b) in place of I, where a and b may be infinite and I may or may not include one or either of the end points. In their paper, $L_{1}(a, b)$ was considered as a semisimple convolution measure algebra(CMA) in the sense of Taylor [6]. Johnson and Lahr [1] had proved that the multiplier algebra $M\left(L_{1}(a, b)\right)$ is the Banach algebra obtained by adjoining the identity multiplier to the canonical image of $L_{1}(a, b)$ in $M\left(L_{1}(a, b)\right)$. Slightly earlier, Larsen [11] had characterized the multipliers of $L_{1}[0,1]$ with order convolution using methods quite different. In [11], Larsen mentions that his idea can be extended to any interval. Using his techniques, in Section 2 we characterize the multiplier algebra of $L_{1}(I)$. Similarly, in Section 3, we extend Larsen's [11] approach to define the positive multipliers of $L_{1}(I)$ and in Section 4, we characterize the isometric multipliers of $L_{1}(I)$.

Let X be a separable Banach Space. Let $L_{1}(I, X)$ be the Banach space of X-valued measurable functions F such that $\int_{0}^{\infty}\|F(t)\| d t<\infty$. If $f \in L_{1}(I)$ and $F \in L_{1}(I, X)$, we define

$$
f * F(s)=f(s) \int_{0}^{s} F(t) d t+F(s) \int_{0}^{s} f(t) d t
$$

It turns out that $f * F \in L_{1}(I, X)$ and $L_{1}(I, X)$ becomes an $L_{1}(I)$-Banach module. Let X and Y be Banach spaces. A bounded linear operator T from $L_{1}(I, X)$ to $L_{1}(I, Y)$ is called a multiplier of $L_{1}(I, X)$ to $L_{1}(I, Y)$ if $T(f * F)=f * T F$ for all $f \in L_{1}(I)$ and $F \in L_{1}(I, X)$.

The past thirty to forty years have seen major research efforts in the general direction of "vector valued multiplier operators". The memoir [3] has laid the foundation for the development of a general theory of convolution operators and vector-valued Fourier multipliers.

Tewari [12] had characterized these multipliers in terms of operator valued functions. In Section 5, using Larsen's [11] ideas and the technique of Tewari, Dutta and Vaidya [13], we characterize the multipliers of $L_{1}(I)$ to $L_{1}(I, X)$ and then multipliers of $L_{1}(I, X)$ to $L_{1}(I, Y)$. We characterize these multipliers in terms of operator valued measures with point-wise finite variation and give an easy proof of some results of Tewari [12].

In [1], Johnson and Lahr had described the multipliers of $L_{1}(a, b)$, where $I=(a, b)$ is an interval contained in R, a or b may be infinite and the interval I may or may not contain one or either of the end points. In the following Section 2 we extend Larsen's approach to any interval.

2. Multiplier of $L_{1}(I)$

Johnson and Lahr [1] had proved the following theorem. The proof of the theorem based on the ideas of Larsen [11], is quite different from [1] and discussed in detail in [10].

Theorem 1. $f T: L^{1}(I) \rightarrow L^{1}(I)$, then the following are equivalent:
(i) The mapping T is a multiplier of $L_{1}(I)$.
(ii) There exists a unique $\mu \in M(I)$ of the form $\mu=\alpha \delta+h, \alpha \in \mathbb{C}, \delta$
the identity of $M(I)$ and $h \in L_{1}(I)$, such that $T f=\mu * f \forall f \in L_{1}(I)$.
Proof. Suppose (ii) holds, then it is easy to verify that $T(f * g)=$ $f * T g=T f * g, \forall f, \forall g L_{1}(I)$. Hence T is a multiplier and (i) holds.

Suppose T is a multiplier of $L_{1}(I)$. Assume that ϕ is such that $(T f)^{\wedge}=$ $\phi \hat{f}, f \in L_{1}(I)$. We have $\left\|T u_{n}\right\| \leq\|T\|, n=1,2, \ldots$. Thus $\left(T u_{n}\right)$ is a norm bounded sequence in $M(I)$. By the Banach - Alaglou's Theorem and the
separability of $C_{0}(I)$, there exists a subsequence $\left(T u_{n_{k}}\right)$ of $\left(T u_{n}\right)$ and a μ in $M(I)$ such that

$$
\lim _{k}\left\langle g, T u_{n_{k}}\right\rangle=\int_{I} g(y) d \mu(y), \quad\left(g \in C_{0}(I)\right)
$$

Since T is a multiplier and $\left(u_{n}\right)$ is an approximate identity in $L_{1}(I)$, we have

$$
\lim _{k} T\left(u_{n_{k}} * f\right)=T f
$$

Taking $g \in C_{0}(I)$ and $f \in L_{1}(I) \subseteq M(I)$, we have

$$
\begin{aligned}
\langle g, T f\rangle & =\lim _{k}\left\langle g,\left(T u_{n_{k}} * f\right)\right\rangle \\
& =\lim _{k}\left\{\left\langle g, \hat{f} T u_{n_{k}}\right\rangle+\left\langle g, f \cdot \phi \hat{n}_{n_{k}}\right\rangle\right\} .
\end{aligned}
$$

The sequence $\left(\hat{u_{n}}\right)$ converges to 1 point-wise on I and $\left\|\hat{u_{n}}\right\|_{\infty}=1$ for each n. We have

$$
\langle g, T f\rangle=\int_{I} g(y) \hat{f}(y) d \mu(y)+\langle g, \phi f\rangle
$$

For $0<s<\infty$, we observe that

$$
\begin{aligned}
& \qquad \begin{aligned}
& \hat{\mu}(s)=\int_{I} \chi_{[0, s]}(t) d \mu(t)=\lim _{k} \int_{I} \chi_{[0, s]}(t) T u_{n_{k}}(t) d t \\
&=\lim _{k}\left(T \hat{u}_{n_{k}}\right)(s), \\
&=\lim _{k} \phi(s) \hat{u_{n_{k}}}(s)=\phi(s)
\end{aligned}
\end{aligned}
$$

Thus, we have

$$
\langle g, T f\rangle=\int_{I} g(t) \hat{f}(t) d \mu(t)+\langle g, f \hat{\mu}\rangle
$$

Since $\mu * f \in M(I)$, we have

$$
\begin{align*}
\int_{I} g(u) d(\mu * f)(u) & =\int_{I}\left(\int_{I} g(s t) f(s) d s\right) d \mu(t) \tag{1}\\
& =\int_{I} g(t) \hat{f}(t) d \mu(t)+\int_{I} g(t) f(t) \hat{\mu}(t) d t
\end{align*}
$$

Hence,

$$
\begin{equation*}
\int_{I} g(u) d(\mu * f)(u)=\langle g, T f\rangle \quad \forall g \in C_{0}(I) \tag{2}
\end{equation*}
$$

Therefore, $\mu * f \in L_{1}(I)$. It follows from (1) and (2) that for each $f \in L_{1}(I)$, the measure $\hat{f} d \mu$ on I is absolutely continuous with respect to the Lebesgue
measure on I. Thus for each k there exists some $h_{k} \in L_{1}(I)$ such that $\hat{u_{n_{k}}} d \mu=h_{k}$.

By Lebesgue's Dominated Convergence Theorem we have for each $g \in$ $L_{\infty}(I)$, the sequence of numbers

$$
\int_{I} g(t) \hat{u_{n_{k}}}(t) d \mu(t)=\left\langle g, h_{k}\right\rangle
$$

is a Cauchy sequence, that is, h_{k} is a Cauchy sequence in the weak topology on $L_{1}(I)$. However, $L_{1}(I)$ is weakly sequentially complete and so there exists some $h \in L_{1}(I)$ such that

$$
\lim _{k}\left\langle g, h_{k}\right\rangle=\langle g, h\rangle \quad\left(g \in L_{\infty}(I)\right)
$$

In particular, if $g \in C_{0}(I)$, we have

$$
\begin{aligned}
\int_{I} g(t) h(t) d t & =\lim _{k} \int_{I} g(t) h_{k}(t) d y \\
& =\lim _{k} \int_{I} g(t) \hat{u_{n}}(t) d \mu(t)=\int_{I} g(t) d \mu(t)
\end{aligned}
$$

Hence μ and h are seen to define the same measure on I. Therefore there exists some $\alpha \in I$ such that $\mu=\alpha \delta+h$, where δ is the identity of $M(I)$ and h can be considered as an element of $L_{1}(I)$. Hence, $\mu * f \in L_{1}(I)$ and $T f=\mu * f \forall f \in L_{1}(I)$. To see that μ is unique, suppose $\nu \in M(I)$ such that $T f=\nu * f, f \in L_{1}(I)$. Then,

$$
\int_{0}^{s} d \nu(t)=\hat{\nu}(s)=\hat{\mu}(s)=\alpha+\int_{0}^{s} h(t) d t, \quad 0<s \leq \infty
$$

and $\nu(0)=\alpha=\mu(0)$. Suppose $\mu_{1}=\mu-\alpha \delta$ and $\nu_{1}=\nu-\alpha \delta$, we have $\hat{\mu_{1}}(s)=\hat{\nu_{1}}(s)$ i.e. $\mu_{1}([0, s))=\nu_{1}([0, s))$ i.e. $\left(\mu_{1}-\nu_{1}\right)([0, s))=0$. It can be easily seen that $\mu_{1}([c, d))=\nu_{1}([c, d))$ for any arbitrary $[c, d)$. Therefore, μ_{1} and ν_{1} agree on each element of the Borel σ-algebra $\mathfrak{B}(I)$. Thus $\mu_{1}=\nu_{1}$ i.e. $\mu=\nu$.

Similar to Larsen's approach [11], we characterize multipliers on $L_{1}(I)$ in terms of absolutely continuous functions on \hat{I}. Tewari [12] had also noted this. If T is a multiplier of $L_{1}(I)$ then there exists a unique μ in $\mathrm{M}(\mathrm{I})$ of the form $\mu=\alpha \delta+h, \alpha \in \mathbb{C}, h \in L_{1}(I)$ such that $T f=\mu * f \forall f \in L_{1}(I)$. Then given $0<s \leq \infty$, we have for each $f \in L(I)$,

$$
(T f)^{\wedge}(s)=\hat{\mu}(s) \hat{f}(s)=(\alpha+\hat{h}(s)) \hat{f}(s)
$$

Define ϕ by $\phi(s)=\alpha+\hat{h}(s), 0<s \leq \infty$ and $\phi(0)=\alpha$. Then ϕ is an absolutely continuous function ϕ on $(0, \infty]$ which is of bounded variation.

Conversely, if ϕ is an absolutely continuous function on $(0, \infty]$ which is of bounded variation, then ϕ determines a multiplier of $L_{1}(I)$ with order convolution. Indeed, since ϕ and \hat{f} are absolutely continuous functions on $(0, \infty]$, so is $\phi \hat{f}$. Thus the derivative of $\phi \hat{f},(\phi \hat{f})^{\prime}$ exists almost everywhere on $(0, \infty]$. Since $\phi \hat{f}(0)=0$ for each $f \in L_{1}(I)$, we conclude that there exists a $g \in L_{1}(I)$ such that $\hat{g}=\phi \hat{f}$ and g is almost everywhere equal to the derivative of $\phi \hat{f}$, i.e., $g=(\phi \hat{f})^{\prime}$. Hence every function $\phi \in A C(0, \infty]$ which is of bounded variation defines a multiplier T of $L_{1}(I)$ such that $(T f)^{\wedge}=$ $\phi \hat{f} \forall f \in L_{1}(I)$. Since ϕ is differentiable almost everywhere and $\phi^{\prime} \in L_{1}(I)$, $\lim _{t \rightarrow 0^{+}} \phi(t)$ exists. Let $\phi(0)=\lim _{t \rightarrow 0^{+}} \phi(t)$, then $T f=\phi(0) f+(\phi \hat{f})^{\prime}$.

We have $\|T\| \leq\|\mu\|$. Since μ is weak-star limit of a sequence in $M(I)$ bounded in norm by $\|T\|$, and so $\|\mu\| \leq\|T\|$ as norm closed balls in $M(I)$ are weak-star closed. By the definition of ϕ, we have $\mu=\phi(0) \delta+\phi^{\prime}$. Hence

$$
\|T\|=\|\mu\|=|\phi(0)|+\int_{I}\left|\phi^{\prime}(t)\right| d t
$$

Remark 1. The inequality $\|\phi\|_{\infty} \leq\|T\|=\|\mu\|$ may be strict. For example let $\phi(s)=e^{-s^{2}}$ then $\|\phi\|_{\infty}=1$ but $\|\mu\|=2$ as $\int_{I}\left|\phi^{\prime}(s)\right| d s=1$.

Remark 2. Suppose T is a compact multiplier of $L_{1}(I)$. We show that $T f=h * f \forall f \in L_{1}(I)$. Suppose $T f=\alpha f+h * f$, where $\alpha \neq 0$. Let $\left(u_{n}\right)$ is an approximate identity in $L_{1}(I)$. Since T is a compact operator, there exists a subsequence $T u_{n_{k}}=\alpha u_{n_{k}}+h * u_{n_{k}}$ which converges. Hence $\alpha u_{n_{k}}=T u_{n_{k}}-h * u_{n_{k}}$ is convergent. Since $L_{1}(I)$ has no identity, $u_{n_{k}}$ can not converge in $L_{1}(I)$. Thus the assumption $\alpha \neq 0$ is wrong.

It seems that there is no compact multiplier for $L_{1}(I)$. However we observed the following:

Proposition 1. Let h be any integrable function with support ($0, r$] which is properly contained in I. If $T f=h * f \forall f \in L_{1}(I)$, then T is non-compact.

Proof. Let $\mathfrak{K}=\left\{f: f \in L_{1}(I), f=0\right.$ on $\left.(0, r]\right\}$. Therefore \mathfrak{K} is an infinite dimensional space. Hence, there exists a sequence f_{n} such that $\left\|f_{n}\right\| \leq 1 \forall n$ and $\left\{f_{n}\right\}$ has no convergent subsequence. If $s \in(0, r]$, we have, $\hat{f}_{n}(s)=0 \forall n$, Let $\int_{0}^{r} h(t) d t=c(\neq 0)$, we have,

$$
h * f_{n}(s)= \begin{cases}0, & \text { if } \quad s \in(0, r] \\ c f_{n}(s), & \text { if } \quad s \in(0, r]^{\prime}\end{cases}
$$

Thus $h * f_{n}=c f_{n}$ has no convergent subsequence.

3. Positive multipliers of $L_{1}(I)$

In this section, we give a characterization of positive multipliers of $L_{1}(I)$. Larsen [11] had characterized positive multipliers of $L_{1}([0,1])$ with order convolution. Here we extend Larsen's approach to any interval. It was discussed in detail in [10].

Definition 1. A multiplier T of $L_{1}(I)$ is said to be a positive multiplier if $T f(x) \geq 0$ almost everywhere on I, whenever $f \in L_{1}(I)$ and $f(x) \geq 0$ almost everywhere.

In the next theorem, we extend Larsen's approach [11] for a complete description of the positive multipliers on $L_{1}(I)$. For details we refer to [10].

Theorem 2. Let T be a multiplier of $L_{1}(I)$. Then the following are equivalent:
(i) The multiplier T is positive.
(ii) If ϕ is an absolutely continuous function on I which is of bounded variation such that $(T f)^{\wedge}=\phi \hat{f} \forall f \in L_{1}(I)$, then $\phi(x) \geq 0 \forall x \in I$ and $\phi^{\prime}(x) \geq 0$ almost everywhere.
(iii) If $\mu=\alpha \delta+h, \alpha \in \mathbb{C}$ and $h \in L_{1}(I)$ is such that $T f=\mu * f \forall f \in L_{1}(I)$, then $\alpha \geq 0$ and $h(x) \geq 0$ a.e.

Proof. For each n, we have

$$
\left(T u_{n}\right)^{\wedge}(s)=\phi(s) \hat{u_{n}}(s)=\left\{\begin{array}{lll}
n \phi(s) s, & \text { if } 0<s \leq \frac{1}{n} \\
\phi(s), & \text { if } \frac{1}{n}<s \leq \infty
\end{array}\right.
$$

Since T is positive, it follows that $\phi(s) \geq 0 \forall s \in(0, \infty]$. Since ϕ is continuous on \hat{I} and $\phi(0)=\lim _{t \rightarrow 0^{+}} \phi(t)$, thus $\phi(0) \geq 0$. Now for almost every $s \in I$, if n is chosen so that $0<\frac{1}{n}<s$, then

$$
T u_{n}(s)=\left(\phi \hat{u_{n}}\right)^{\prime}(s)=\phi^{\prime}(s) \hat{u_{n}}(s)+\phi(s) u_{n}(s)=\phi^{\prime}(s)
$$

Since T is positive, we conclude that $\phi^{\prime}(s) \geq 0$ almost everywhere. Thus (i) implies ($i i$). Since $\alpha=\phi(0)$ and $h=\phi^{\prime}$ we see that (ii) implies (iii). It is easy to see (iii) implies (i).

Similar to Larsen's remark [11], we see that in the case of a positive multiplier, equality holds in Remark 1.

Corollary 1. Let T be a positive multiplier of $L_{1}(I)$ such that $(T f)^{\wedge}=$ $\phi \hat{f} \forall f \in L_{1}(I)$. Then $\|\phi\|_{\infty}=\|T\|$.

Proof. As T is a positive multiplier we see that $\phi(s) \geq 0$ on I and $\phi^{\prime}(s) \geq 0$ almost everywhere on I, hence $\|\phi\|_{\infty}=\lim _{x \rightarrow \infty} \phi(s)$. Moreover by Theorem 1, we have

$$
\begin{aligned}
\|T\| & =|\phi(0)|+\int_{I}\left|\phi^{\prime}(t)\right| d t \\
& =\phi(0)+\int_{I} \phi^{\prime}(t) d t=\lim _{s \rightarrow \infty} \phi(s)
\end{aligned}
$$

In [11] Larsen had shown that the converse of the above corollary fails even in the case of I being the closed unit interval (see Corollary 3, [11].)

4. Isometric multipliers of $L_{1}(I)$

For each $s \in I$, the translation operator τ_{s} on $L_{1}(I)$ is defined by $\tau_{s} f(t)=$ $f(s . y)$. In [11], Larsen had shown that the translation operator is not a multiplier. It is easy to see that every multiple of the identity operator by a constant α of absolute value one, that is, $T f=\alpha f, f \in L_{1}(I),|\alpha|=1$ is an isometric multiplier of $L_{1}(I)$. Larsen [11] had shown that these are the only isometric multipliers of $L_{1}([0,1])$ with order convolution. Here we extend Larsen's result to any interval. The proof of the following theorem is based on the ideas of Larsen [11] and discussed in detail in [10] .

Lemma. Let T be an isometric multiplier of $L_{1}(I)$. Let $\mu \in M(I)$ such that $T f=\mu * f \forall f \in L_{1}(I)$. If $f \in L_{1}(I)$ then $|\mu * f(s)|=|\mu| *|f|(s)$ for almost every $s \in I$.

Theorem 3. Let T be an isometric multiplier of $L_{1}(I)$ such that $T f=$ $\mu * f \forall f \in L_{1}(I)$ and $(T f)^{\wedge}=\phi \hat{f} \forall f \in L_{1}(I)$, then T is an isometric multiplier if and only if there exists some $\alpha \in \mathbb{C},|\alpha|=1$ such that $\mu=\alpha \delta$ or $\phi(s)=\alpha \forall s \in I$.

Proof. The Sufficiency is obvious. Suppose T is an isometry. We shall show first that $\phi^{\prime}(s)=0$ almost everywhere on I and since ϕ is absolutely continuous, therefore it is constant. For $r \in \mathbb{R}$ such that $0<r<\infty$, define

$$
f_{r}(s)= \begin{cases}i e^{i s}, & 0 \leq s \leq r \\ 0, & \text { otherwise }\end{cases}
$$

And for $0 \leq s \leq r$, where $r<\infty$, we have $\hat{f}_{r}(s)=e^{i s}-1$. By Lemma, for almost every $s \in I$, we have $\overline{\phi(s)} \phi^{\prime}(s) \geq 0$ and therefore, $\forall s$ such that $0 \leq s \leq r$, we have

$$
\begin{aligned}
\left|\left(\phi \hat{f}_{r}\right)^{\prime}(s)\right|^{2}= & \left|\phi^{\prime}(s)\left(e^{i s}-1\right)+\phi(s) i e^{i s}\right|^{2}=\left|\phi^{\prime}(s)\right|^{2}\left|e^{i s}-1\right|^{2} \\
& -2 \operatorname{Re}\left\{\phi^{\prime}(s) \overline{\phi(s)}\left(e^{i s}-1\right) i\left(e^{-i s}-1\right)\right\}+|\phi(s)|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =2\left|\phi^{\prime}(s)\right|^{2}(1-\cos s)+2 \overline{\phi(s)} \phi^{\prime}(s) \sin s+|\phi(s)|^{2} \\
& =4\left|\phi^{\prime}(s)\right|^{2}\left(\sin \frac{s}{2}\right)^{2}+2 \overline{\phi(s)} \phi^{\prime}(s) \sin s+|\phi(s)|^{2}
\end{aligned}
$$

Since $\left|f_{r}\right|=1$, for $0 \leq s \leq r$, where $r<\infty$, we have

$$
\begin{aligned}
\left\{\left(|\phi|\left|f_{r}\right|^{\wedge}\right)^{\prime}(s)\right\}^{2} & =\left\{\left|\phi^{\prime}(s)\right| s+|\phi(s)|\right\}^{2} \\
& =\left|\phi^{\prime}(s)\right|^{2} s^{2}+2 \overline{\phi(s)} \phi^{\prime}(s) s+|\phi(s)|^{2}
\end{aligned}
$$

Since this holds $\forall r$ such that $r<\infty$, by the lemma, for almost every $s \in I$, we have

$$
4\left|\phi^{\prime}(s)\right|^{2}\left\{\left(\sin \frac{s}{2}\right)^{2}-\left(\frac{s}{2}\right)^{2}\right\}+2 \overline{\phi(s)} \phi^{\prime}(s)[\sin s-s]=0
$$

And since $\left(\frac{s}{2}\right)^{2}-\left(\sin \frac{s}{2}\right)^{2} \geq 0$ and $s-\sin s \geq 0 \forall s \in I$, it follows that $\left|\phi^{\prime}(s)\right|^{2}=\overline{\phi(s)} \phi^{\prime}(s)=0$ almost everywhere on I. Thus there exists some $\alpha \in \mathbb{C}$ such that $\phi(s)=\alpha \forall s \in I$. Therefore, $T f=\alpha f \forall f \in L_{1}(I)$ and since $\|T f\|=\|f\| \forall f \in L_{1}(I)$ we have $|\alpha|=1$.

5. Multipliers of $L_{1}(I, X)$

Let X be a separable Banach space and the interval $I=(0, \infty)$ be with the usual topology and max multiplication. Let $L_{1}(I, X)$ be the Banach space of X-valued measurable functions F such that $\int_{I}\|F(t)\| d t<\infty$. For integration of vector-valued set functions, we follow [3,5]. Using such integrals, it is possible to define order convolution between various spaces of vector-valued functions and measures on I. If $f \in L_{1}(I)$ and $F \in L_{1}(I, X)$, for $s \in I$, we define

$$
f * F(s)=f(s) \int_{0}^{s} F(t) d t+F(s) \int_{0}^{s} f(t) d t
$$

It turns out that $f * F \in L_{1}(I, X)$ and $L_{1}(I, X)$ becomes an $L_{1}(I)$ - Banach module.

We shall make use of the concept of module tensor product and its relation to multipliers (see [8]. Let \mathbb{A} be a commutative Banach algebra. If \mathbb{V} and \mathbb{W} are \mathbb{A}-modules, the \mathbb{A}-module tensor product $\mathbb{V} \otimes_{\mathbb{A}} \mathbb{W}$ is defined to be quotient Banach space $\mathbb{V} \otimes_{\gamma} \mathbb{W} / \mathbb{K}$, where \mathbb{K} is the closed linear subspace of the projective tensor product $\mathbb{V} \otimes_{\gamma} \mathbb{W}$, spanned by the elements of the form $a v \otimes w-v \otimes a w$ with $a \in \mathbb{A}, v \in \mathbb{V}$ and $w \in \mathbb{W}$. A continuous linear transformation from \mathbb{V} to \mathbb{W} is called an \mathbb{A} - module homomorphism if $T(a * v)=a * T(v)$ for all $a \in \mathbb{A}$ and $v \in \mathbb{V}$.

The theory of vector measures and integration lets us identify the dual of $C_{0}(I, X)$ with $M\left(I, X^{*}\right)$ where X^{*} is the dual of X. The identification is given by $\langle\mu, F\rangle=\int_{I} F d \mu$, for $F \in C_{0}(I, X)$ and $\mu \in M\left(I, X^{*}\right)$, (see([3, 9]).

The "integral" $\int_{I} F d \mu \in \mathbb{C}$ is defined via a continuous extension procedure from $C_{c}(I) \otimes X$ to $C_{0}(I, X)$, where for $F=\sum_{j=1}^{n} f_{j} x_{j}$ with $f_{j} \in C_{c}(I)$ and $x_{j} \in X$

$$
\int_{I} F d \mu=\sum_{j=1}^{n} \int_{I} f_{j} d\left\langle x_{j}, \mu\right\rangle
$$

here $\left\langle x_{j}, \mu\right\rangle: \mathfrak{B}(I) \rightarrow \mathbb{C}$ is the complex measure, $\mathbb{E} \rightarrow\left\langle x_{j}, \mu(\mathbb{E})\right\rangle$ for $\mathbb{E} \in$ $\mathfrak{B}(I)$, (see [3]).

A bounded linear operator T on $L_{1}(I, X)$ to $L_{1}(I, X)$ is called a multiplier of $L_{1}(I, X)$ to $L_{1}(I, X)$ if $T(f * F)=f * T F$ for all $f \in L_{1}(I)$ and $F \in L_{1}(I, X)$. Tewari [12] had characterized these multipliers in terms of operator valued functions. In this section, using Larsen's [11] ideas and the technique of Tewari,Dutta and Vaidya [13], we characterize the multipliers of $L_{1}(I)$ to $L_{1}(I, X)$ and then multipliers of $L_{1}(I, X)$ to $L_{1}(I, X)$ in terms of operator valued measures with point-wise finite variation.

We know that $\left\{u_{n}\right\}$ is an approximate identity for $L_{1}(I)$. The following proposition tells us that $\left\{u_{n}\right\}$ acts as an approximate identity for $L_{1}(I, X)$ (see Proposition 3.1, [12]).

Proposition 2. Let $\left\{u_{n}\right\}$ be the approximate identity of $L_{1}(I)$ defined earlier. Suppose $F \in L_{1}(I, X)$. Then

$$
\left\|u_{n} * F-F\right\|_{1} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Definition 2. Let $F \in L_{1}(I, X)$ and for each $s \in(0, \infty]$, define

$$
\hat{F}(s)=\int_{0}^{s} F(t) d t
$$

The function \hat{F} is called the Gelfand transform of F. Clearly \hat{F} is absolutely continuous. Also $(\hat{F})^{\prime}(s)=F(s)$ almost everywhere.

Note that $\hat{F}(s) \rightarrow 0$ as $s \rightarrow 0$. Further, if $\hat{F}(s)=0$ for all $s \in(0, \infty]$ then $F(s)=0$ almost everywhere.

The following proposition follows immediately from Proposition 3.2, [12].
Proposition 3. Suppose T is a multiplier of $L_{1}(I)$ into $L_{1}(I, X)$. Then there exists an X-valued bounded continuous function Φ on $(0, \infty)$ such that $(T f)^{\wedge}(s)=\Phi(s) \hat{f}(s)$ for all $s \in(0, \infty)$ and $f \in L_{1}(I)$.

Using the technique of Larsen [11], we characterize the multipliers T : $L_{1}(I) \rightarrow L_{1}(I, X)$ as follows:

Theorem 4. Let X be a Banach Space which has the Radon Nikodym property. If $T: L_{1}(I) \rightarrow L_{1}(I, X)$ is a linear map, then following are equivalent:
(i) T is a multiplier of $L_{1}(I)$ to $L_{1}(I, X)$ with the order convolution.
(ii) There exists a unique measure $\mu \in M(I, X)$ of the form $\mu=x \delta+J$, $x \in X, J \in L_{1}(I, X), \delta$ the identity of $M(I)$ such that $T f=\mu * f$ $\forall f \in L_{1}(I)$ and $\|T\|=\|\mu\|$.

Proof. Let $\left\{u_{n}\right\}$ be the approximate identity for $L_{1}(I)$ defined earlier. Considering the natural embedding of X into its second dual $X^{* *}, L_{1}(I, X)$ can be embedded isometrically in $M\left(I, X^{* *}\right)$ and since $\left\|T u_{n}\right\|_{1} \leq\|T\|$, $\left\{T u_{n}\right\}$ is a norm bounded sequence in $M\left(I, X^{* *}\right)$. By the Banach Alaglou's Theorem and separability of $C_{0}\left(I, X^{*}\right)$ (see [9]), there exists a subsequence $\left\{T u_{n_{k}}\right\}$ and a $\mu \in M\left(I, X^{* *}\right)$ such that

$$
\lim _{k} \int_{I}\left\langle L(s), T u_{n_{k}}(s)\right\rangle d s=\int_{I} L(s) d \mu(I) \quad \forall L \in C_{0}\left(I, X^{*}\right)
$$

Since T is a multiplier and $\left\{u_{n}\right\}$ is an approximate identity, hence by Proposition 2, we have

$$
\lim _{k} T\left(u_{n_{k}} * f\right)=\lim _{k} u_{n_{k}} * T f=T f
$$

Let $L \in C_{0}\left(I, X^{*}\right)$. Since $T u_{n_{k}} * f(s)=T u_{n_{k}}(s) \hat{f}(s)+f(s)\left(T u_{n_{k}}\right)^{\wedge}(s)$, hence by Proposition 3, we have

$$
\begin{aligned}
\left\langle L, T u_{n_{k}} * f\right\rangle= & \int_{I}\left\langle L(s), T u_{n_{k}}(s)\right\rangle \hat{f}(s) d s \\
& +\int_{I}\langle L(s), f(s) \Phi(s)\rangle \hat{n}_{n_{k}}(s) d s
\end{aligned}
$$

Since $\left\{\hat{u_{n}}\right\}$ converges point-wise to 1 , on taking limits, Lebesgue's Dominated Convergence Theorem implies that

$$
\begin{aligned}
\lim _{k}\left\langle L, T u_{n_{k}} * f\right\rangle= & \lim _{k} \int_{I}\left\langle L(s), T u_{n_{k}}(s)\right\rangle \hat{f}(s) d s \\
& +\int_{I}\langle L(s), f(s) \Phi(s)\rangle d s
\end{aligned}
$$

If $x^{*} \in X^{*}$, then

$$
\lim _{k} \int_{I} \chi_{[0, s]}(t)\left\langle x^{*}, T u_{n_{k}}(t)\right\rangle d t=\int_{I} \chi_{[0, s]}(t) d\left\langle x^{*}, \mu\right\rangle(t)=\left\langle x^{*}, \hat{\mu}(s)\right\rangle
$$

Hence

$$
\begin{aligned}
\left\langle x^{*}, \hat{\mu}(s)\right\rangle & =\lim _{k} \int_{I} \chi_{[0, s]}(t)\left\langle x^{*}, T u_{n_{k}}(t)\right\rangle d t=\lim _{k}\left\langle x^{*}, T \hat{u}_{n_{k}}(s)\right\rangle \\
& =\lim _{k}\left\langle x^{*}, \Phi(s) \hat{u_{n_{k}}}(s)\right\rangle=\left\langle x^{*}, \Phi(s)\right\rangle
\end{aligned}
$$

Hence, for each $L \in C_{0}\left(I, X^{*}\right)$, we have

$$
\lim _{k}\left\langle L, T u_{n_{k}} * f\right\rangle=\int_{I} L(s) \hat{f}(s) d \mu(s)+\int_{I}\langle L(s), f(s) \hat{\mu}(s)\rangle d s
$$

On the other hand, we have

$$
\begin{aligned}
\langle L, \mu * f\rangle & =\int_{I} L(u) d(\mu * f)(u)=\int_{I}[L(s . t) f(s)] d \mu(t) \\
& =\int_{I} L(t)\left(\int_{0}^{t} f(s) d s\right)+\int_{I}\left(\int_{t}^{\infty} L(s) f(s) d s\right) d \mu(t) \\
& =\int_{I} L(t) \hat{f}(t) d \mu(t)+\int_{I} L(s) f(s)\left(\int_{0}^{s} d \mu(t)\right) d s \\
& =\int_{I} L(t) \hat{f}(t) d \mu(t)+\int_{I}\langle L(t), f(t) \hat{\mu}(t)\rangle d t
\end{aligned}
$$

Hence, we have

$$
\int_{I} L(t) d(\mu * f)(t)=\int_{I} L(t) T f(t) d t
$$

Since this holds for each $L \in C_{0}\left(I, X^{*}\right)$, we conclude that $\mu * f \in L_{1}(I, X)$. Thus the above expressions imply that for each $f \in L_{1}(I)$, the measure $\hat{f} d \mu$ on I is absolutely continuous. Therefore, by the Radon Nikodym property of X, for each k there exists some $J_{k} \in L_{1}(I, X)$ such that $\hat{u_{n_{k}}} d \mu=J_{k}$. Now suppose $L \in L_{\infty}\left(I, X^{*}\right)$. Since the sequence $\left\{\hat{u}_{n_{k}}\right\}$ converges to 1 point-wise on I and $\left\|\hat{u_{n}}\right\|_{\infty}=1$, Lebesgue's Dominated Convergence Theorem tells us that the sequence of numbers

$$
\int_{I} L(t) \hat{u_{n_{k}}} d \mu(t)=\int_{I}\left\langle L(t), J_{k}(t)\right\rangle d t
$$

is a Cauchy sequence, i.e. $\left\{J_{k}\right\}$ is a Cauchy sequence in the weak topology on $L_{1}(I, X)$. Since $L_{1}(I, X)$ is weakly sequentially complete there exists some $J \in L_{1}(I, X)$ such that

$$
\lim _{k} \int_{I}\left\langle L(t), J_{k}(t)\right\rangle d t=\int_{I}\langle L(t), J(t)\rangle d t \quad \forall L \in L_{\infty}\left(I, X^{*}\right)
$$

In particular, if $L \in C_{0}\left(I, X^{*}\right)$ then

$$
\begin{aligned}
\int_{I}\langle L(t), J(t)\rangle d t & =\lim _{k} \int_{I}\left\langle L(t), J_{k}(t)\right\rangle d t \\
& =\lim _{k} \int_{I} L(t) \hat{u_{n_{k}}}(t) d \mu(t)=\int_{I} L(t) d \mu(t)
\end{aligned}
$$

Hence, μ and J are seen to define the same measure on I. Therefore, there exists some $x \in X$ such that $\mu=x \delta+J$. This also tells us that μ is X-valued. Moreover, since δ is the identity of $M(I)$, it is obvious that $\mu * f \in L_{1}(I, X)$ for each $f \in L_{1}(I)$ and so $T f=\mu * f \forall f \in L_{1}(I)$. An easy argument shows that μ is unique.

Let T be a multiplier from $L_{1}(I)$ to $L_{1}(I, X)$ and $T f=\mu * f, f \in$ $L_{1}(I), \mu \in M(I, X)$. Since $\|\mu * f\| \leq\|\mu\|\|f\|,\|T\| \leq\|\mu\|$. Also since μ is the weak-star limit of a sequence in $M(I, X)$ bounded in norm by $\|T\|$, we have $\|\mu\| \leq\|T\|$.

The following definition is taken from Hille and Phillips [2].
Definition 3. Let Φ be an X-valued function on $(0, \infty]$. Φ is said to be absolutely continuous if $\forall \epsilon>0$ there exists a $\delta>0$ such that whenever $\left\{\left(s_{i}, t_{i}\right)\right\}$ is a finite sequence of disjoint open intervals such that $\sum\left(t_{i}-\right.$ $\left.s_{i}\right)<\delta$, we have

$$
\sum_{i=1}^{n}\left\|\Phi\left(t_{i}\right)-\Phi\left(s_{i}\right)\right\|<\epsilon
$$

The following characterization is a special case of Theorem 3.9, [12]. We are giving an easy proof.

Theorem 5. If $T: L_{1}(I) \rightarrow L_{1}(I, X)$ is a multiplier with order convolution then there exists a unique, bounded, continuous X-valued function Φ such that
(i) The function $s \rightarrow \Phi(s)$ is absolutely continuous.
(ii) The function $s \rightarrow \Phi(s)$ is differentiable almost everywhere.
(iii) If $M_{\Phi^{\prime}}(f)=\Phi^{\prime} \hat{f}$ then $M_{\Phi^{\prime}}: L_{1}(I) \rightarrow L_{1}(I, X)$ is a bounded linear map.
(iv) $(T f)^{\wedge}=\Phi \hat{f} \forall s \in(0, \infty)$ and $f \in L_{1}(I)$.

Conversely, if Φ is a bounded X-valued function on $(0, \infty)$ satisfying (i) to (iii). Then there exists a multiplier T of $L_{1}(I)$ to $L_{1}(I, X)$ satisfying (iv).

Proof. Suppose there exists $\mu \in M(I, X)$ of the form $\mu=x \delta+J$, $x \in X, J \in L_{1}(I, X)$ such that $T f=\mu * f \forall f \in L_{1}(I)$. Then for $s \in \hat{I}$ and $f \in L_{1}(I)$, we have

$$
(T f)^{\wedge}(s)=\hat{\mu}(s) \hat{f}(s)(x+\hat{J}(s)) \hat{f}(s)
$$

where $\hat{\mu}(s)=\int_{0}^{s} d \mu(t)$. Define Φ on \hat{I} by $\Phi(s)=x+\hat{J}(s) \forall s \in \hat{I}$ and $\Phi(0)=x$. Since $J \in L_{1}(I, X),(i)$, (ii) and (iv) follow immediately.

For $f \in L_{1}(I)$, we have $(T f)^{\wedge}(s)=\Phi(s) \hat{f}(s)$. Therefore,

$$
\Phi(s) \hat{f}(s)=\int_{0}^{s}(T f)(t) d t
$$

Differentiating, we have

$$
\Phi(s) f(s)+\Phi^{\prime}(s) \hat{f}(s)=T f(s) \quad \text { a.e. }
$$

Hence $M_{\Phi^{\prime}}(f)=T f-\Phi f$. Since Φ is bounded $\Phi f \in L_{1}(I, X)$. It follows that $M_{\Phi^{\prime}}(f) \in L_{1}(I, X)$. We also have

$$
\left\|M_{\Phi^{\prime}}(f)\right\|_{1} \leq\left(\|T\|+\|\Phi\|_{\infty}\right)\|f\|_{1}
$$

Conversely, suppose Φ is a bounded X-valued function on $(0, \infty)$ satisfying (i) to (iii). We define

$$
T: L_{1}(I) \rightarrow L_{1}(I, X)
$$

by

$$
T f(s)=\Phi(s) f(s)+\Phi^{\prime}(s) \hat{f}(s) \quad \text { a.e. } \quad \forall f \in L_{1}(I)
$$

It is easy to see that $\|T f\|_{1} \leq\left[\|\Phi\|_{\infty}+\left\|M_{\Phi^{\prime}}\right\|\right]\|f\|_{1}$. Hence T is a bounded linear map of $L_{1}(I)$ to $L_{1}(I, X)$. We also see that the derivative of $(\Phi \hat{f})$ equals $\Phi(s) f(s)+\Phi^{\prime}(s) \hat{f}(s)=T f(s)$ almost everywhere. Hence $(T f)^{\wedge}(s)=$ $\Phi(s) \hat{f}(s)$ for all $s \in(0, \infty]$. This completes the proof of the theorem.

We now characterize the multipliers on $L_{1}(I, X)$ with respect to order convolution using the technique of Tewari, Dutta and Vaidya [13].

Let $T: L_{1}(I, X) \rightarrow L_{1}(I, X)$ be a multiplier, i.e. $T(f * F)=f * T F \forall f \in$ $L_{1}(I)$ and $F \in L_{1}(I, X)$. For $x \in X$, define $T_{x}: L_{1}(I) \rightarrow L_{1}(I, X)$ by $T_{x}(f)=T(f x)$. It is easy to see that T_{x} is a multiplier from $L_{1}(I)$ to $L_{1}(I, X)$ and $\left\|T_{x}\right\| \leq\|T\|\|x\|$.

Therefore, by Theorem (4), there exists a measure $\mu_{x} \in M(I, X)$ of the form $\mu_{x}=\alpha_{x} \delta+J_{x}$ where $\alpha_{x} \in X$, and $J_{x} \in L_{1}(I, X)$ such that $T_{x}(f)=\mu_{x} * f$ and $\left\|\mu_{x}\right\| \leq\|T\|\|x\|$. The map $M: X \rightarrow M(I, X)$ defined by $M(x)=\mu_{x}$ is a bounded linear map with $\|M\| \leq\|T\|$ and $T(f x)=$ $M(x) * f \forall x \in X$ and $f \in L_{1}(I)$.

Conversely, let M be a bounded linear operator from X into $M(I, X)$. $M(x)=\alpha_{x} \delta+J_{x}$ where $\alpha_{x} \in X$ and $J_{x} \in L_{1}(I, X)$. Consider the map $L_{1}(I) \times X \rightarrow L_{1}(I, X)$ defined by $(f, x) \rightarrow M(x) * f \forall f \in L_{1}(I)$ and $x \in X$. It is easy to see that this is a bilinear map and $\|M(x) * f\| \leq$ $\|M(x)\|\|f\|_{1} \leq\|M\|\|x\|\|f\|_{1}$. Hence, by the universal property of tensor products, we get a bounded linear map T^{\prime} from $L_{1}(I) \otimes_{\gamma} X$ into $L_{1}(I, X)$
with $\left\|T^{\prime}\right\| \leq\|M\|$ such that $T^{\prime}(f \otimes x)=M(x) * f$ for any $f \in L_{1}(I)$ and $x \in X$. However, $L_{1}(I) \otimes_{\gamma} X$ is isometrically isomorphic to $L_{1}(I, X)$ (see [8]). Hence we get a bounded linear operator T of $L_{1}(I, X)$ with $\|T\| \leq\|M\|$ and $T(f x)=M(x) * f \forall f \in L_{1}(I)$ and $x \in X$. Let $g \in L_{1}(I)$. We have

$$
\begin{aligned}
T(g * f x) & =T((g * f) x)=T_{x}(g * f) \\
& =M(x) *(g * f)=g *(M(x) * f)=g * T(f x)
\end{aligned}
$$

Since functions of the form $\sum_{i=1}^{n} f_{i} x_{i}$ with $f_{i} \in L_{1}(I)$ and $x_{i} \in X$ are dense in $L_{1}(I, X)$, it follows that T is multiplier on $L_{1}(I, X)$. It is easy to see that the bounded linear transformation from X into $M(I, X)$ associated with T is nothing but M and $\|M\| \leq\|T\|$. Therefore $\|T\|=\|M\|$.

Thus we have proved the following.
Theorem 6. The set of all ultipliers on $L_{1}(I, X)$ with respect to order convolution is isometrically isomorphic to $L(X, M(I, X))$, the space of bounded linear operators from X into $M(I, X)$ in the following sense. Let T be any multiplier on $L_{1}(I, X)$ with order convolution such that $T(f x)=$ $\mu_{x} * f$. Then there exists a bounded linear map M from X into $M(I, X)$ such that $M(x)=\mu_{x}=\alpha_{x} \delta+J_{x}$ where $\alpha_{x} \in X$ and $J_{x} \in L_{1}(I, X)$ and $\|T\|=\|M\|$.

Now for an operator $M \in L(X, M(I, X))$ where $M(x)=\mu_{x}$, define μ from the Borel σ - algebra $\mathfrak{B}(I)$ into the space of bounded linear operators on X by $\mu(\mathbb{E}) x=\mu_{x}(\mathbb{E}) \forall \mathbb{E} \in \mathfrak{B}(I)$. It is easy to see that $\mu(\mathbb{E})$ is a linear operator. Since

$$
\|\mu(\mathbb{E}) x\|=\left\|\mu_{x}(\mathbb{E})\right\|=\|M(x)(\mathbb{E})\| \leq\|M\|\|x\|
$$

So, $\mu(\mathbb{E}) \in L(X)$.
Corollary 2. The set of all multipliers on $L_{1}(I, X)$ with respect to order convolution is isometrically isomorphic to the space of operator valued measures on I with point-wise finite variation such that $\mu(\mathbb{E}) x=\alpha_{x} \delta(\mathbb{E})+$ $\int_{\mathbb{E}} J_{x}(t) d t$, where $x, \alpha_{x} \in X$ and $J_{x} \in L_{1}(I, X)$.

The following definition is taken from Gaudry [3].
Definition 4. For any regular operator-valued measure $\mu: \mathfrak{B}(I) \rightarrow$ $L(X)$, the operator-valued function $\hat{\mu}: \hat{I} \rightarrow \mathfrak{L}(X)$ defined by $\hat{\mu}(s)=\int_{0}^{s} d \mu(t)$ is called the Fourier-Stieltjes transform of μ.

Note. The definition of regularity of an operator valued measure is equivalent to the regularity of the scalar measure $\left\langle\mu x_{1}, x_{2}^{*}\right\rangle$ for each $x_{1} \in X$ and $x_{2}^{*} \in X^{*}$.

The following definitions are taken from Hille and Phillips [2].

Definition 5. Let $\Phi(s)$ be an operator valued function on $(0, \infty]$. We say that Φ is of strong bounded variation on $(0, \infty)$ if for each $x \in X$ the function $s \rightarrow \Phi(s) x$ is of strong bounded variation, that is,

$$
\sup \sum_{i=1}^{n}\left\|\Phi\left(t_{i}\right) x-\Phi\left(t_{i-1}\right) x\right\|<\infty
$$

where the supremum is taken over all possible finite sets

$$
\left\{t_{0}, t_{1}, \ldots, t_{n} \subset(0, \infty): t_{0}<t_{1}<\ldots<t_{n}\right\}
$$

Φ is called strongly absolutely continuous if $\forall \epsilon>0$ there exists a $\delta>0$ such that whenever $\left\{\left(s_{i}, t_{i}\right)\right\}$ is a finite sequence of disjoint open intervals for which $\sum\left(t_{i}-s_{i}\right)<\delta$, we have

$$
\sum_{i=1}^{n}\left\|\Phi\left(t_{i}\right) x-\Phi\left(s_{i}\right) x\right\|<\epsilon
$$

Tewari [12] had proved the following theorem (see Theorem 3.9, [12]). We are giving an easy proof here.

Theorem 7. Let T be a multiplier of $L_{1}(I, X)$ into itself with order convolution. Then there exists an operator valued bounded strongly continuous function Φ on $(0, \infty]$ such that
(i) The function $s \rightarrow \Phi(s) x$ is strongly absolutely continuous and hence of strong bounded variation on $(0, \infty)$,
(ii) The function $s \rightarrow \Phi(s) x$ is strongly differentiable almost everywhere,
(iii) If $M_{\Phi^{\prime}}(F)=\Phi^{\prime} \hat{F}$ then $M_{\Phi^{\prime}}: L_{1}(I, X) \rightarrow L_{1}(I, X)$ is a bounded linear map,
(iv) $(T F)^{\wedge}(s)=\Phi(s)(\hat{F}(s))$ for all $s \in(0, \infty)$ and $F \in L_{1}(I, X)$.

Conversely, if Φ is a bounded $\mathfrak{L}(X)$ - valued function on $(0, \infty)$ satisfying (i) to (iii) then there exists a multiplier T of $L_{1}(I, X)$ to itself satisfying (iv).

Proof. Suppose there exists an operator-valued measure μ of the form $\mu(\mathbb{E}) x=\mu_{x}(\mathbb{E})$, where $\mu_{x}=\alpha_{x} \delta+J_{x}, \alpha_{x} \in X, J_{x} \in L_{1}(I, X)$ such that $T F=\mu * F \forall F \in L_{1}(I, X)$. Then for for each $s \in I$ and $F \in L_{1}(I, X)$, we have $(T F)^{\wedge}(s)=\hat{\mu}(s) \hat{F}(s)$ where $\hat{\mu}(s)=\int_{0}^{s} d \mu(t)$. Define $\Phi(s)=\hat{\mu}(s)$. Therefore, $\Phi(s) x=(\hat{\mu}(s))(x)=\int_{0}^{s} d \mu_{x}(t)=\hat{\mu_{x}}(s)=\alpha_{x}+\int_{0}^{s} J_{x}(t) d t$. Since J_{x} belongs to $L_{1}(I, X),(i)$ and (ii) follow immediately. Since $\Phi(s) \hat{F}(s)=$ $\int_{0}^{s}(T F)(t) d t$, we have $\Phi(s) F(s)+\Phi^{\prime}(s) \hat{F}(s)=T F(s)$ almost everywhere. Hence $M_{\Phi^{\prime}}(F)=T F-\Phi F$ and since Φ is bounded we have $M_{\Phi^{\prime}}(F) \in$
$L_{1}(I, X)$ and $\left\|M_{\Phi^{\prime}}(F)\right\|_{1} \leq\left(\|T\|+\|\Phi\|_{\infty}\right)\|F\|_{1}$. Thus (iii) holds. Moreover, (iv) is a consequence of the relationship between T and Φ.

Conversely, suppose Φ is a bounded operator valued function on $(0, \infty)$ which satisfies all conditions from (i) to (iii). We define

$$
T: L_{1}(I, X) \rightarrow L_{1}(I, X)
$$

by $T F(s)=\Phi(s) F(s)+\Phi^{\prime}(s) \hat{F}(s)$ a.e. for $F \in L_{1}(I, X)$. Since Φ is bounded and continuous in the strong operator topology, the function $\Phi(s) F(s)$ is strongly measurable and

$$
\int_{0}^{\infty}\|\Phi(s) F(s)\| d s \leq\|\phi\|_{\infty}\|F\|_{1}
$$

Therefore, $\|T F\|_{1} \leq\left[\|\Phi\|_{\infty}+\left\|M_{\Phi^{\prime}}\right\|\right]\|F\|_{1}$ and we conclude that T is a bounded linear map.

We can easily see that the derivative of ($\Phi \hat{F}$) equals $\Phi(s) F(s)+\Phi^{\prime}(s) \hat{F}(s)$ $=T F(s)$ almost everywhere. Hence, it follows that $(T F)^{\wedge}(s)=\Phi(s) \hat{F}(s)$ $\forall s \in(0, \infty]$.

This completes the proof of the theorem.
Remark 3. Let T be a compact multiplier from $L_{1}(I, X)$ with order convolution into itself. We show that $T(f x)=J_{x} * f, J_{x} \in L_{1}(I, X)$. Suppose $T(f x)=\alpha_{x} f+J_{x}, \alpha_{x}(\neq 0) \in X$ and $J_{x} \in L_{1}(I, X)$. Let $\left(u_{n}\right)$ be an approximate identity in $L_{1}(I)$ and $x \in X$. Since T is a compact operator, there exists a subsequence $T\left(u_{n_{k}} x\right)=\alpha_{x} u_{n_{k}}+J_{x} * u_{n_{k}}$ which converges. Hence $\alpha_{x} u_{n_{k}}=T u_{n_{k}}-J_{x} * u_{n_{k}}$ is convergent, which is a contradiction. Therefore, $\alpha_{x}=0$.

Remark 4. Finally, we remark that the characterization of isometric multipliers of $L_{1}(I, X)$ with order convolution will be quite interesting. Let $T: L_{1}(I, X) \rightarrow L_{1}(I, X)$ such that $T(f . x)=\alpha_{x} f$, where $\alpha_{x} \in X,\left\|\alpha_{x}\right\|=1$ and $f \in L_{1}(I)$. Then T is an isometric multiplier of $L_{1}(I, X)$ into itself. We feel that these are the only isometric multipliers of $L_{1}(I, X)$ with order convolution. The characterization of isometric multipliers of $L_{1}(I, X)$ is an open problem.

References

[1] Johnson D.L., Lahr C.D., Multipliers of $L_{1}-$ algebra with order convolution, Publ. Math. Debrecen, 28(1981), 153-161.
[2] Hille E., Phillips R.S., Functional Analysis and Semigroups, Amer. Math. Soc. Colloq. Publ., 31, 1957.
[3] Gaudry G.I., Jefferies B.R.F., Ricker W.J., Vector-valued multipliers: Convolution with operator valued measures, Dissertaiones Mathematicae (Rozprawy Mathmatyczne), Warszawa, 2000.
[4] J. Diestel J., Uhl. Jr.,J.J., Vector Measures, Surveys 15, Amer. Math. Soc., Providence, RI, 1977.
[5] Huneycutt, Jr., J.E., Products and convolutions of vector valued set functions, Studia Math., 41(1972), 101-129.
[6] Taylor J.L., Measure Algebras, Regional Conference Series in Math., No. 16, Amer. Math. Soc., 1973.
[7] Lardy L.J., $L_{1}(a, b)$ with order convolution, Studia Math., 27(1966), 1-8.
[8] Rieffel M., Multipliers and tensor products of L_{p} - spaces of locally compact groups, Studia Math., 33(1969), 71-82.
[9] Dinculeanu N., Vector Measures, Pergamon Press, London, 1967.
[10] Chaurasia P.K., Some Results on Vector Valued Function Spaces and Multipliers, Dissertation, IIT, Kanpur, 2007.
[11] R. Larsen, The multipliers of $L_{1}[0,1]$ with order convolution, Publ. Math. Debrecen, 23(1976), 239-248.
[12] Tewari U.B., Order Convolution and Vector-Valued Multipliers, Colloquim Mathematicum, 108(2007), 53-61.
[13] Tewari U.B., Dutta M., Vaidya D.P., Multipliers of group algebras of vector-valued functions, Proc. Amer. Math. Soc., 81(1981), 223-229.

P. K. Chaurasia
Department of Education in Science and Mathematics
Regional Institute of Education (NCERT)
305004 AJMER, IndiA
e-mail: praveenc1@gmail.com

Received on 03.08.2013 and, in revised form, on 26.01.2015.

[^0]: * The author is grateful to Prof. U. B. Tewari for many important discussions.

