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ABSTRACT. Let I = (0,00) with the usual topology and product
as max multiplication. Then I becomes a locally compact topo-
logical semigroup. Let X be a Banach Space. Let Li(I, X) be
the Banach space of X-valued measurable functions f such that
S If@)||dt < co. If f € Li(I) and g € L1 (I, X), we define

Frals) = 1(s) / g(t)dt + g(s) / (.

It turns out that fxg € L1(I,X) and Li(I,X) becomes an
Ly (I)-Banach module. A bounded linear operator T' on L;(I, X)
is called a multiplier of Li(I,X) if T(f x g) = f * Tg for all
f € Li(I) and g € Ly1(I,X). We characterize the multipliers of
Ly(I, X) in terms of operator valued measures with point-wise fi-
nite variation and give an easy proof of some results of Tewari[12].
KEY WORDS: vector valued multiplier, operator valued Measure,
order convolution.
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1. Notations and preliminaries

Throughout the paper, X denotes a separable Banach space and I denotes
the interval (0, 00) and we represent the vector valued functions with capital
alphabet letters, any set A as A and a family of sets or set of functions A
by the symbol . Let M(I) denote the Banach space with total variation
norm of all finite regular complex-valued Borel measures on I. The linear
order on the interval I = (0,00) determines a convolution on M (I) and it
becomes a commutative semi-simple Banach algebra with multiplication as

* The author is grateful to Prof. U. B. Tewari for many important discussions.
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order convolution defined by Lardy [7]. More specifically, if u,v € M(I),
then p* v € M(I) is defined by the equations

[ 1@t /{/fxymtﬂdm> (f € Co(D)).

where Cy(I) denotes the Banach space of continuous complex - valued func-
tions on I with usual supremum norm(||.||). The Banach subspace L;(I) of
M(I) consisting of the equivalence class of all Lebesgue integrable functions
on [ is a subalgebra of M (I) with respect to order convolution and hence it
is itself a commutative Banach algebra. If f, g € L(I), we have

f*ﬂ@:ﬂ@AEwﬁ+m@A7ww

The maximal ideal space I of L;(I) can be identified with the interval (0, <]
and the Gelfand transform f of Li([) is defined by

5) :/Osf(t)dt (0 < s < o0).

For these and other results that may be used in the sequel, the reader is
referred to [7, 11]. The algebra L;(I) is without identity, but it does have
approximate identities. One such approximate identity is the sequence u,,
defined by

| n, if O<s§%, -
un(s)—{07 if L<s<oo. n=12...

A bounded linear operator 7" on L;(I) is called a multiplier of Ly([) if
T(fxg)=fx*Tg for all f,g € L1(I). Johnson and Lahr [1] characterized
the multipliers of L1 (I). In fact, they considered the interval (a, b) in place of
I, where a and b may be infinite and I may or may not include one or either
of the end points. In their paper, Lj(a,b) was considered as a semisimple
convolution measure algebra(CMA) in the sense of Taylor [6]. Johnson and
Lahr [1] had proved that the multiplier algebra M(Li(a,b)) is the Banach
algebra obtained by adjoining the identity multiplier to the canonical image
of Li(a,b) in M(L;(a,b)). Slightly earlier, Larsen [11] had characterized the
multipliers of L1[0, 1] with order convolution using methods quite different.
In [11], Larsen mentions that his idea can be extended to any interval.
Using his techniques, in Section 2 we characterize the multiplier algebra of
Li(I). Similarly, in Section 3, we extend Larsen’s [11] approach to define the
positive multipliers of L;(I) and in Section 4, we characterize the isometric
multipliers of L;([).
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Let X be a separable Banach Space. Let Ly (I, X) be the Banach space of
X-valued measurable functions F such that [ ||F(t)||dt < co. If f € Ly([)
and F' € Li(I, X), we define

o F(s) = f(s) /0 "Byt + F(s) /0 "yt

It turns out that f« F € L1(I,X) and Ly (I, X) becomes an Lj([)-Banach
module. Let X and Y be Banach spaces. A bounded linear operator T
from Li(I,X) to Li(1,Y) is called a multiplier of Li(I,X) to Li(I,Y) if
T(f+«F)=f+«TF forall fe Li(I)and F € Li(I, X).

The past thirty to forty years have seen major research efforts in the
general direction of ”vector valued multiplier operators”. The memoir [3] has
laid the foundation for the development of a general theory of convolution
operators and vector-valued Fourier multipliers.

Tewari [12] had characterized these multipliers in terms of operator val-
ued functions. In Section 5, using Larsen’s [11] ideas and the technique
of Tewari, Dutta and Vaidya [13], we characterize the multipliers of L;(I)
to Li(I,X) and then multipliers of Li(I,X) to Li(I,Y). We characterize
these multipliers in terms of operator valued measures with point-wise finite
variation and give an easy proof of some results of Tewari [12].

In [1], Johnson and Lahr had described the multipliers of Li(a,b), where
I = (a,b) is an interval contained in R, a or b may be infinite and the interval
I may or may not contain one or either of the end points. In the following
Section 2 we extend Larsen’s approach to any interval.

2. Multiplier of L,([)

Johnson and Lahr [1] had proved the following theorem. The proof of
the theorem based on the ideas of Larsen [11], is quite different from [1] and
discussed in detail in [10].

Theorem 1. fT : L'(I) — L*(I), then the following are equivalent:

(i) The mapping T is a multiplier of L1(I).

(73) There exists a unique p € M(I) of the form p=ad+h, a € C, §
the identity of M(I) and h € L1(I), such that Tf = pux* f Vf € L1(I).

Proof. Suppose (ii) holds, then it is easy to verify that T'(f x g) =
f*Tg=Tfxg, ¥V f, ¥ gLi(I). Hence T is a multiplier and (7) holds.

Suppose T is a multiplier of Ly (I). Assume that ¢ is such that (T'f)" =
of, f € Li(I). We have ||Tu,|| < ||T||, n =1,2,.... Thus (Tu,) is a norm
bounded sequence in M(I). By the Banach - Alaglou’s Theorem and the
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separability of Cy([), there exists a subsequence (T'uy, ) of (T'u,) and a p in
M(I) such that

i (0. Twa) = [ 9)dn(v). (g € Col0)).
Since T is a multiplier and (u,,) is an approximate identity in L;(I), we have
lilgnT(unk x f)=TF.
Taking g € Co(I) and f € Li1(I) € M(I), we have
{9, Tf) = lim (g, (Tun, * f))
= lilgn {<g, fTunk> + (g, fqbu;lk>} :

The sequence (u,) converges to 1 point-wise on I and ||uy,||s = 1 for each
n. We have

(9.Tf) = /1 o) F@)duly) + {9.61)

For 0 < s < oo, we observe that
a(s) = /IX[07S](t)du(t) _h]?l/IX[o,s}(t)TUnk(t)dt

= hlgn(T’l;’nk ) <3>7
= lim p()i3, (5) = 6(5).

Thus, we have
(0. Tf) = /1 o() F(®)du(t) + (g, 1)

Since p * f € M(I),we have

W [awaesnw = [ ( [atsnseas) au

Hence,

2) /I g(u)d(u* f)(w) = (g, Tf) ¥ g€ Co(l).

Therefore, 1 f € L1(I). It follows from (1) and (2) that for each f € L1 (1),
the measure fdu on I is absolutely continuous with respect to the Lebesgue
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measure on I. Thus for each k there exists some hy € Lq(I) such that
Un, dpp = hy.

By Lebesgue’s Dominated Convergence Theorem we have for each g €
Lo (I), the sequence of numbers

/ 9(t)uine (£)dpa(t) = (g, hi)

I

is a Cauchy sequence, that is, h is a Cauchy sequence in the weak topology
on Ly(I). However, Ly (I) is weakly sequentially complete and so there exists
some h € Ly(I) such that

lim (g, hi) = (g.h) (9 € Loo(1)).

In particular, if g € Co(I), we have

[ st = tim [ goheteray
= tim [ gt (Odutt) = [ a(®du(o

Hence p and h are seen to define the same measure on I. Therefore there
exists some « € I such that u = ad + h, where ¢ is the identity of M (I)
and h can be considered as an element of Li([). Hence, pu* f € Ly1(I) and
Tf=uwuxfV feL(I). To see that u is unique, suppose v € M(I) such
that Tf =vx f,f € L1(I). Then,

/sdu(t):ﬁ(s):/l(s):a—i—/sh(t)dt, 0<s<oo
0 0

and v(0) = a« = p(0). Suppose pu; = p — ad and v; = v — af, we have

() = 72(8) . 1([0,9) = 11([0,) . (1 22)([0,)) = 0. Tt can be
eamly seen that Ml([ d)) = v1([c,d)) for any arbitrary [c,d). Therefore, p;
and v; agree on each element of the Borel o—algebra B(I). Thus pu; = 1,
le. p=v.

Similar to Larsen’s approach [11], we characterize multipliers on L ([)
in terms of absolutely continuous functions on I. Tewari [12] had also noted
this. If T is a multiplier of L;(I) then there exists a unique p in M(I) of the
form p=ad +h,a € C,h € Li(I) such that Tf = pu* f Vf € L1(I). Then
given 0 < s < oo, we have for each f € L(I),

(TF)(s) = i) f(s) = (a+h(s)) f(s).

Define ¢ by ¢(s) = a + h(s),0 < s < oo and $(0) = o. Then ¢ is an
absolutely continuous function ¢ on (0, co] which is of bounded variation.
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Conversely, if ¢ is an absolutely continuous function on (0, 00| which is
of bounded variation, then ¢ determines a multiplier of L;(I) with order
convolution. Indeed, since ¢ and f are absolutely continuous functions on
(0,00], so is ¢f. Thus the derivative of ¢f, (¢.f) exists almost everywhere
n (0,00]. Since ¢£(0) = 0 for each f € Ly(I), we conclude that there exists
a g € Li(I) such that § = ¢ f and g is almost everywhere equal to the
derivative of ¢f, i.e., g = (¢f). Hence every function ¢ € AC(0, 00] which
is of bounded variation defines a multiplier 7' of L;([) such that (Tf)" =
of Vf € Li(I). Since ¢ is differentiable almost everywhere and ¢’ € Li(1),
limy g+ ¢(t) exists. Let ¢(0) = limy_,q+ ¢(¢), then T'f = ¢(0)f + (¢f)".
We have ||T'|| < ||p||. Since p is weak-star limit of a sequence in M (1)
bounded in norm by ||T||, and so ||u|| < ||T|| as norm closed balls in M (I)
are weak-star closed. By the definition of ¢, we have u = ¢(0)d + ¢'. Hence

171 = Il = [6(0)] + /I 16/(1)]dt.
[ |

Remark 1. The inequality ||¢| < ||T]] = ||p/| may be strict. For
example let ¢(s) = e~ then ||¢]|oc = 1 but ||u|| = 2 as J7 16/ (s)|ds = 1.

Remark 2. Suppose 7' is a compact multiplier of Li (/). We show that
Tf =hsxfVf e Li(I). Suppose Tf = af + h* f, where o # 0. Let
(un) is an approximate identity in Lq(I). Since T is a compact operator,
there exists a subsequence Tu,, = au,, + h * u,, which converges. Hence
aty, = Tuy, —h *u,, is convergent. Since L;j(I) has no identity, u,, can
not converge in Lj(I). Thus the assumption a # 0 is wrong.

It seems that there is no compact multiplier for L;(I). However we ob-
served the following:

Proposition 1. Let h be any integrable function with support (0,r] which
is properly contained in I. If Tf = hx f Vf € Li(I), then T is non-compact.

Proof. Let R = {f : f € Li(I),f = 0 on (0,7]}. Therefore R is an
infinite dimensional space. Hence, there exists a sequence f,, such that
Ifnll <1V nand {f,} has no convergent subsequence. If s € (0,7], we
have, f(s) =0V n, Let [J h(t)dt = c(# 0), we have,

_fo, if se(0,r],
hx fu(s) = { cfu(s), if se (O,T’]/-

Thus h * f,, = cf,, has no convergent subsequence. |
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3. Positive multipliers of L,(I)

In this section, we give a characterization of positive multipliers of L1 (I).
Larsen [11] had characterized positive multipliers of L([0,1]) with order
convolution. Here we extend Larsen’s approach to any interval. It was
discussed in detail in [10].

Definition 1. A multiplier T' of L1(I) is said to be a positive multiplier
if Tf(x) > 0 almost everywhere on I, whenever f € Li(I) and f(z) > 0
almost everywhere.

In the next theorem, we extend Larsen’s approach [11] for a complete
description of the positive multipliers on L;(I). For details we refer to [10].

Theorem 2. Let T be a multiplier of L1(I). Then the following are
equivalent:

(1) The multiplier T is positive.

(ii) If ¢ is an absolutely continuous function on I which is of bounded
variation such that (Tf)" = ¢f Vf € Li(I), then ¢(x) >0 Ve € T
and ¢'(x) > 0 almost everywhere.

(4i1) If p=ad + h,a € C and h € Li(I) is such that
Tf=uxfVfeL(l), thena>0 and h(z) > 0 a.e.

Proof. For each n, we have

(T (6) = dlopints) = { 1000 1<

Since T is positive, it follows that ¢(s) > 0 V

s € (
continuous on I and $(0) = limy_,o+ ¢(t), thus ¢(0) > 0. Now for almost
every s € I, if n is chosen so that 0 < % < s, then

—

Tun(s) = (¢tin)'(s) = ¢'()tin(s) + ¢(s)un(s) = ¢'(s).

Since T is positive, we conclude that ¢'(s) > 0 almost everywhere. Thus (7)
implies (iz). Since a = ¢(0) and h = ¢' we see that (i7) implies (iii). It is
easy to see (iii) implies (7). [ |

Similar to Larsen’s remark [11], we see that in the case of a positive
multiplier, equality holds in Remark 1.

Corollary 1. Let T' be a positive multiplier of L1(I) such that (T f)" =
¢f Vf € Li(I). Then ||¢lloc = |[T]-
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Proof. As T is a positive multiplier we see that ¢(s) > 0 on I and
¢'(s) > 0 almost everywhere on I, hence ||@]looc = limz—o0 ¢(s). Moreover
by Theorem 1, we have

|wuzwww+ﬂwﬁwu
:wm+za@w=nmaw

§—00

In [11] Larsen had shown that the converse of the above corollary fails
even in the case of I being the closed unit interval (see Corollary 3, [11].)

4. Isometric multipliers of L;(/)

For each s € I, the translation operator 75 on L1 ([) is defined by 7, f(t) =
f(s.y). In [11], Larsen had shown that the translation operator is not a
multiplier. It is easy to see that every multiple of the identity operator by a
constant « of absolute value one, that is, Tf = af, f € Li1(I),|o|] =1 is an
isometric multiplier of Ly ([). Larsen [11] had shown that these are the only
isometric multipliers of L;([0,1]) with order convolution. Here we extend
Larsen’s result to any interval. The proof of the following theorem is based
on the ideas of Larsen [11] and discussed in detail in [10] .

Lemma. Let T be an isometric multiplier of Li(I). Let p € M(I) such
that Tf = px £ f € Li(). If f € Ly(D) then |+ f(s)| = ul * | F|(s) for
almost every s € I.

Theorem 3. Let T' be an isometric multiplier of L1(I) such that Tf =
px fYf e Li(I) and (THN = of Vf € Li(I), then T is an isometric
multiplier if and only if there exists some a € C,|a| =1 such that p = ad
or ¢(s) =a Vs e l.

Proof. The Sufficiency is obvious. Suppose T is an isometry. We shall
show first that ¢'(s) = 0 almost everywhere on I and since ¢ is absolutely
continuous, therefore it is constant. For r € R such that 0 < r < 0o, define

Fuls) = e, 0<s<r,
00, otherwise.

And for 0 < s < r, where r < oo, we have fr(s) = ¢! — 1. By Lemma,
for almost every s € I, we have ¢(s)¢'(s) > 0 and therefore, V s such that
0 < s <r, we have

GFYGF = 1) — 1)+ p(s)ie? = [ (5)Plei* — 11
~2Re {¢/(5)9(s) (e — Di(e™™ = 1)} +[o(s)
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= 2[¢/(s)*(1 — COSS) +29(5)¢' (s)sins + |¢(s)|”
= 4]¢/(s)[? (Sm2) +20(s)¢(s)sins + |6 (s)[.

Since |f,| =1, for 0 < s < r, where r < 0o, we have
{U81151 ()} = {16/ ()]s + (o)1}
= 1¢/(s)[*s* + 20()¢' (s)s + [d(s)|*.

Since this holds V r such that » < oo, by the lemma, for almost every s € I,
we have

41/ () { (51n3)? = (5)} +26(5)¢(s)[sins — 5] = 0.

And since (%) (sing)? > 0 and s —sins > 0V s € I, it follows that
/() = o(s)/(s) =
a € C such that ¢(s)
since | Tf|| = |[f[| ¥ f

0 almost everywhere on I. Thus there exists some
=aV s e l. Therefore, Tf =af V f € Li(I) and
€ Li(I) we have |a| = 1. [ |

5. Multipliers of L;(I, X)

Let X be a separable Banach space and the interval I = (0, 00) be with
the usual topology and max multiplication. Let L;(I,X) be the Banach
space of X-valued measurable functions F such that [, [|F(t)||dt < oo. For
integration of vector-valued set functions, we follow [3, 5]. Using such in-
tegrals, it is possible to define order convolution between various spaces of
vector-valued functions and measures on I. If f € Li(I) and F € Li(I, X),
for s € I,we define

£ F(s) = f(s) /(]SF(t)dt+F(s) /Osf(t)dt

It turns out that fxF € L1(I,X) and Ly (I, X) becomes an L;(I) — Banach
module.

We shall make use of the concept of module tensor product and its rela-
tion to multipliers (see [8]. Let A be a commutative Banach algebra. If V
and W are A-modules, the A-module tensor product V ®, W is defined to
be quotient Banach space V ®, W/K, where K is the closed linear subspace
of the projective tensor product V ®, W, spanned by the elements of the
form av @ w — v ® aw with a € A, v € V and w € W. A continuous
linear transformation from V to W is called an A - module homomorphism
if T(a*xv) =axT(v) for all a € A and v € V.
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The theory of vector measures and integration lets us identify the dual
of Co(I, X) with M (I, X*) where X* is the dual of X. The identification is
given by (u, F) = [, Fdp, for F € Co(I,X) and pn € M(I,X*), (see([3, 9]).

The ”integral” [, Fdu € C is defined via a continuous extension proce-
dure from Cc(I) ® X to Co(I, X), where for F'= 37", fia; with f; € Ce(I)

and r; € X
/qu=2/fjd<xj,u>
I il

here (z;,p) : B(I) — C is the complex measure, E — (z;, u(E)) for E €
B(I), (see [3]).

A bounded linear operator T' on L;i(I, X) to L1(I,X) is called a multi-
plier of Li(I,X) to L1(I,X) if T(f*x F) = f«TF for all f € L1(I) and
F € Li(I,X). Tewari [12] had characterized these multipliers in terms of
operator valued functions. In this section, using Larsen’s [11] ideas and the
technique of Tewari,Dutta and Vaidya [13], we characterize the multipliers
of Li(I) to L1(I, X) and then multipliers of L; (I, X) to Ly1(I,X) in terms
of operator valued measures with point-wise finite variation.

We know that {u,} is an approximate identity for L;(I). The following
proposition tells us that {u,} acts as an approximate identity for Lq (I, X)
(see Proposition 3.1, [12]).

Proposition 2. Let {u,} be the approximate identity of Li(I) defined
earlier. Suppose F' € L1(I1,X). Then

|lup * F—F|1 =0 as n— oo.

Definition 2. Let F' € L1(I,X) and for each s € (0,00], define

The function F is called the Gelfand transform of F. Clearly F is absolutely
continuous. Also (F) (s) = F(s) almost everywhere.

Note that F(s) — 0 as s — 0. Further, if F(s) = 0 for all s € (0, 0]
then F(s) = 0 almost everywhere.

The following proposition follows immediately from Proposition 3.2, [12].

Proposition 3. Suppose T is a multiplier of Ly(I) into L1(I,X). Then
there exists an X -valued bounded continuous function ® on (0,00) such that

(THNs) = ®(s)f(s) for all s € (0,00) and f € Li(I).

Using the technique of Larsen [11], we characterize the multipliers 7T :
Li(I) — Li(I,X) as follows:
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Theorem 4. Let X be a Banach Space which has the Radon Nikodym
property. If T : Li(I) — Li(I,X) is a linear map, then following are
equivalent:

(1) T is a multiplier of Li(I) to Li(I,X) with the order convolution.

(ii) There exists a unique measure yu € M(I,X) of the form p=xzd+ J,

rxeX,Je€Li(I,X), the identity of M(I) such that Tf = p* f
Vf € Li(I) and |T] = |l

Proof. Let {u,} be the approximate identity for L;(I) defined earlier.
Considering the natural embedding of X into its second dual X**, L;(I, X)
can be embedded isometrically in M (I, X**) and since ||Tu,|1 < ||T,
{T'uy,} is a norm bounded sequence in M (I, X**). By the Banach Alaglou’s
Theorem and separability of Co(I, X™*) (see [9]), there exists a subsequence
{Tup, } and a pr € M (I, X**) such that

hm/ s), Tup, ( )>ds—/IL(s)d,u(I) VL € Co(I,X™).

Since T is a multiplier and {u, } is an approximate identity, hence by Propo-
sition 2, we have

lilgnT(unk x f) = liinunk «Tf=TFf.

Let L € Co(I, X*). Since Ty, * f(5) = Tun, (s)f(s)+ f(s)(Tun, )" (s), hence
by Proposition 3, we have

(L, Tty * f) = /1 (L(5), T, (5)) £(5)ds

+ /I<L(8),f(s)<1>(s)>u;k(s)ds.

Since {u,} converges point-wise to 1, on taking limits, Lebesgue’s Domi-
nated Convergence Theorem implies that

hm (L, Tup, = f) = hm/ s), Tun, (s)) f(s)ds
+ /I<L(S),f(5)<1)(s)>ds.

If z* € X*, then

li]gn/IX[lls] (t) <w*7Tunk (t)> dt = /IX[O,S] (t)d <.%'*, M> (t) = <x*7la<s>> :
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Hence

(a*, f(s)) = lim /I X0, (1) (@, Tt (£)) dt = lim <x*7Tﬁnk(5)>
= lim (", (s}, (5)) = (27, B(5))

Hence, for each L € Cy(I, X*), we have

lim (2. T, ) = [ L) Fe)auts) + [ (105).5(6)i(s) ds.

I

On the other hand, we have

(L f) = /L<u> D) = [ L7 dute

2 ([ as) ( L(5) (s ) ()
/ ) f(t) +/IL (/ du(t )) ds
_ /IL +/I (1)) dt.

Hence, we have

/ L) = f)(t) = / LT f(t)dt

1 1

Since this holds for each L € Cy(I, X™*), we conclude that p = f € Li(I,X).
Thus the above expressions imply that for each f € L1([), the measure fd,u
on I is absolutely continuous. Therefore, by the Radon Nikodym property
of X, for each k there exists some Jj, € Lq(I, X) such that u,, dpu = Ji. Now
suppose L € Lo (I, X™*). Since the sequence {uy, } converges to 1 point-wise
on I and ||up, ||cc = 1, Lebesgue’s Dominated Convergence Theorem tells us

that the sequence of numbers

[ Eoudntt = [ (L@ di
I I

is a Cauchy sequence, i.e. {J} is a Cauchy sequence in the weak topology
on Li(I,X). Since Li(I,X) is weakly sequentially complete there exists

some J € Li(I, X) such that

lim /l (L(8), Ju(t)) dt = / (L), J(E) dt VL € Loo(I, X*).

1
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In particular, if L € Cy(I, X*) then
/I (L(t), J(0)) dt = Tim /1 (L(), Ju(t)) dt
— tim [ Dt (Odute) = [ Lauto).

Hence, p and J are seen to define the same measure on I. Therefore, there
exists some x € X such that y = xd+J. This also tells us that p is X-valued.
Moreover, since ¢ is the identity of M(I), it is obvious that px f € Lq(I, X)
for each f € Li(I) and so Tf = pux f Vf € L1(I). An easy argument shows
that p is unique.

Let T be a multiplier from Li(I) to Li(I,X) and Tf = pux f,f €
Li(I), i € M(LX). Since [+ £ < £l IT] < lul. Also since p
is the weak-star limit of a sequence in M (I, X)) bounded in norm by ||T||,
we have [|u] < T n

The following definition is taken from Hille and Phillips [2].

Definition 3. Let ® be an X-valued function on (0,00]. ® is said to
be absolutely continuous if Ye > 0 there exists a & > 0 such that whenever
{(si,t;)} is a finite sequence of disjoint open intervals such that > (t; —
si) < 0, we have

ST lle(t) — @(s))] < e.
=1

The following characterization is a special case of Theorem 3.9, [12]. We
are giving an easy proof.

Theorem 5. If T : Li(I) — Li(I, X) is a multiplier with order convo-
lution then there exists a unique, bounded, continuous X -valued function ®
such that

(1) The function s — ®(s) is absolutely continuous.

(ii) The function s — ®(s) is differentiable almost everywhere.

(ii) If Mg/ (f) = @' f then Mg : L1(I) — Li(I, X) is a bounded linear

map.

(i) (Tf)Y" = ®f Vs € (0,00) and f € Li(I).

Conversely, if ® is a bounded X -valued function on (0,00) satisfying (i) to
(7i7). Then there exists a multiplier T of L1(I) to L1(I,X) satisfying (iv).

Proof. Suppose there exists p € M(I,X) of the form p = zd +J,
xeX,JeLi(I,X)such that Tf = pux f Vf € Li(I). Then for s € I and
f € Li(I), we have
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where fi(s) = [; du(t). Define ® on I by &(s) = 2+ J(s) Vs € I and
®(0) = 2. Since J € L1(I, X), (i), (#i) and (iv) follow immediately.

For f € Li(I), we have (T'f)"(s) = ®(s)f(s). Therefore,

®()f() = [ @)
Differentiating, we have

O(s)f(s) + ' (s)f(s) = Tf(s) ac

Hence Mg/(f) = Tf — ®f. Since ® is bounded ®f € Ly(I, X). It follows
that Mg/ (f) € L1(I,X). We also have

1M (f)lle < (1T + 120 [[ 1]1-

Conversely, suppose @ is a bounded X-valued function on (0, co0) satisfying
(1) to (ii). We define
T: Li(I) — Ly(I, X)

by
Tf(s) = ®(s)f(s) + D'(s)f(s) ae VfeL).

It is easy to see that ||Tf||1 < [||®]|oc + ||[Ma||] ||f]]1. Hence T' is a bounded
linear map of Li(I) to Li(I,X). We also see that the derivative of (®f)
equals ®(s)f(s) +®(s)f(s) = Tf(s) almost everywhere. Hence (T'f)"(s) =
®(s)f(s) for all s € (0,00]. This completes the proof of the theorem. [

We now characterize the multipliers on L;(I, X) with respect to order
convolution using the technique of Tewari, Dutta and Vaidya [13].

Let T : L1(I,X) — Li1(I, X) be a multiplier, i.e. T(f+F) = f«TFVf €
Li(I) and F € Lyi(I,X). For x € X, define T, : Li(I) — Li(I, X) by
T.(f) = T(fx). It is easy to see that T, is a multiplier from L;(I) to
1,(1, X) and | 2] < [T

Therefore, by Theorem (4), there exists a measure pu, € M(I,X) of
the form p, = az6 + J, where o, € X, and J, € Li(I,X) such that
To(f) = pz * f and ||pz]] < ||T||||z]]. The map M : X — M(I,X) defined
by M(xz) = p, is a bounded linear map with ||M| < ||T]| and T(fz) =
M(z)* f Vo € X and f € Li(I).

Conversely, let M be a bounded linear operator from X into M (I, X).
M(x) = a0 + J, where ap € X and J, € Li(I,X). Consider the map
Li(I) x X — Li(I,X) defined by (f,z) - M(x)« f Vf € Li(I) and
x € X. It is easy to see that this is a bilinear map and ||M(x) * f| <
M (@) fle < IM]|||lz]|llf]l1- Hence, by the universal property of tensor
products, we get a bounded linear map 7" from L;(I) ®y X into Li(I, X)
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with ||T7]] < ||M]| such that T'(f ® ) = M(x) * f for any f € Ly(I) and
x € X. However, Li(I) ®y X is isometrically isomorphic to Li(/, X) (see
[8]). Hence we get a bounded linear operator 1" of Ly (I, X) with ||T']| < ||M||
and T'(fz) = M(z)x fVf € L1(I) and = € X. Let g € L1(I). We have

T(g* fz) = T((g* flz) = Ta(g * )
= M(z)* (g* f) =g* (M(z)« f) = g« T(fx).

Since functions of the form > | fiz; with f; € Li(I) and z; € X are dense
in Ly (I, X), it follows that T" is multiplier on Ly (I, X). It is easy to see that
the bounded linear transformation from X into M (I, X) associated with T
is nothing but M and |M|| < ||T||. Therefore ||T|| = ||M]].

Thus we have proved the following.

Theorem 6. The set of all ultipliers on Li(I,X) with respect to or-
der convolution is isometrically isomorphic to L(X, M (I, X)), the space of
bounded linear operators from X into M(I,X) in the following sense. Let
T be any multiplier on Li(I, X) with order convolution such that T(fx) =
ty * f. Then there exists a bounded linear map M from X into M (I, X)
such that M (x) = py = a0 + Jp where ap € X and J, € L1(I,X) and
I = |[]).

Now for an operator M € L(X,M(I,X)) where M(x) = p,, define u
from the Borel o- algebra B([) into the space of bounded linear operators
on X by pu(E)z = p,(E) VE € B(I). It is easy to see that u(E) is a linear
operator. Since

|(E)z|| = ||lpa (B)[| = [ M (z)(E)]] < | M]|[]]].
So, u(E) € L(X).
Corollary 2. The set of all multipliers on Ly (I, X) with respect to or-
der convolution is isometrically isomorphic to the space of operator valued

measures on I with point-wise finite variation such that p(E)r = a;6(E) +
Jg Jo(t)dt, where z, 0, € X and J, € Li(I,X).

The following definition is taken from Gaudry [3].

Definition 4. For any reqular operator-valued measure p : B(I) —
L(X), the operator-valued function i : I — £(X) defined by ji(s) = [ du(t
is called the Fourier-Stieltjes transform of .

Note. The definition of regularity of an operator valued measure is
equivalent to the regularity of the scalar measure (uxi,x3) for each 1 € X
and x5 € X*.

The following definitions are taken from Hille and Phillips [2].
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Definition 5. Let ®(s) be an operator valued function on (0,00]. We
say that ® is of strong bounded variation on (0,00) if for each x € X the
function s — ®(s)x is of strong bounded variation, that is,

supz |D(t;)x — D(ti—1)x| < oo,
i=1

where the supremum is taken over all possible finite sets
{to,tl,...,tn C (0,00) o<t < ... <tn}.

® is called strongly absolutely continuous if Ve > 0 there exists a 6 > 0
such that whenever {(s;,t;)} is a finite sequence of disjoint open intervals

for which Y (t; — s;) < 0, we have
D @tz — B(si)z] < e.
i=1

Tewari [12] had proved the following theorem (see Theorem 3.9, [12]).
We are giving an easy proof here.

Theorem 7. Let T be a multiplier of L1(1, X) into itself with order con-
volution. Then there exists an operator valued bounded strongly continuous
function ® on (0,00] such that

(i) The function s — ®(s)x is strongly absolutely continuous and hence
of strong bounded variation on (0, 00),

(1) The function s — ®(s)x is strongly differentiable almost everywhere,

(iii) If Mg/ (F) = ®'F then Mg : Li(I,X) — Li(I, X) is a bounded

linear map,

(iv) (TF)(s) = ®(s)(F(s)) for all s € (0,00) and F € Ly(I, X).
Conversely, if ® is a bounded £(X) - valued function on (0,00) satisfying
(1) to (iii) then there exists a multiplier T of L1(I,X) to itself satisfying
(1v).

Proof. Suppose there exists an operator-valued measure p of the form
p(E)z = py(E), where g = a6 + Jy,ap € X, J, € Li(I, X) such that
TF = p* F'VF € Li(I,X). Then for for each s € I and F' € L1(I, X),
we have (T'F)"(s) = ju(s)F(s) where ji(s) = [J du(t). Define ®(s) = ji(s).
Therefore, ®(s)z = (fi(s))(z) = [ dpa(t) = tiz(s) = ag + [ Jo(t)dt. Since
J belongs to Li(I, X), (i) and (i¢) follow immediately. Since ®(s)F(s) =
Jo (TF)(t)dt, we have ®(s)F(s) + ®'(s)F(s) = TF(s) almost everywhere.
Hence Mg/(F) = TF — ®F and since ® is bounded we have Mg/ (F) €

~



OPERATOR VALUED MEASURES AS MULTIPLIERS ... 57

Li(I,X) and | Mg (F)|l1 < (|IT)|+|®||oc) || F]]1. Thus (i7i) holds. Moreover,
(iv) is a consequence of the relationship between T and ®.

Conversely, suppose ® is a bounded operator valued function on (0, c0)
which satisfies all conditions from (i) to (ii7). We define

T:Li(I,X)— Li(I, X).

A

by TF(s) = ®(s)F(s)+®'(s)F(s) a.e. for F € L1(I,X). Since ® is bounded
and continuous in the strong operator topology, the function ®(s)F(s) is
strongly measurable and

/000 1@(5)F(s)llds < |¢]loo| | Fl1-

Therefore, |TF|1 < [||®]lco + ||Ma||]||F||1 and we conclude that T is a

bounded linear map.
We can easily see that the derivative of (F) equals ®(s)F(s)+®'(s)F'(s)

= TF(s) almost everywhere. Hence, it follows that (T'F)"(s) = ®(s)F(s)
Vs € (0, 00].
This completes the proof of the theorem. |

Remark 3. Let T be a compact multiplier from L;(I,X) with order
convolution into itself. We show that T'(fzx) = J, x f, J, € Li(I,X).
Suppose T'(fx) = agf + Jz, az(#0) € X and J, € L1(I,X). Let (u,) be
an approximate identity in Lj(I) and x € X. Since T is a compact operator,
there exists a subsequence T'(up, ) = oguy, + Jy * up, which converges.
Hence ajzup, = Tup, — Ji * uy, is convergent, which is a contradiction.
Therefore, a, = 0.

Remark 4. Finally, we remark that the characterization of isometric
multipliers of L;(I, X) with order convolution will be quite interesting. Let
T:Li(I,X)— Li(I,X) such that T(f.x) = a,f, where a, € X, [jag| =1
and f € Li(I). Then T is an isometric multiplier of L;(/, X) into itself.
We feel that these are the only isometric multipliers of L; (I, X') with order
convolution. The characterization of isometric multipliers of L;(I, X) is an
open problem.
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