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1. Introduction, definitions and notations

Let C be the set of all finite complex numbers. For any entire function

f =
∞∑
n=0

anz
n defined on C, the functionsM (r, f) and µ (r, f) are respectively

defined as M (r, f) = max
|z|=r
|f (z)| and µ (r, f) = max (|an| rn).

Let L ≡ L (r) be a positive continuous function increasing slowly i.e.,
L (ar) ∼ L (r) as r → ∞ for every positive constant a. Singh and Barker
[8] defined it in the following way:

Definition 1 ([8]). A positive continuous function L (r) is called a slowly
changing function if for ε (> 0) ,

1

kε
≤ L (kr)

L (r)
≤ kε for r ≥ r (ε)

and uniformly for k (≥ 1).
If further, L (r) is differentiable, the above condition is equivalent to

lim
r→∞

rL′ (r)

L (r)
= 0.
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Somasundaram and Thamizharasi [9] introduced the notions of L-order
and L-type for entire function where L ≡ L (r) is a positive continuous
function increasing slowly i.e.,L (ar) ∼ L (r) as r → ∞ for every positive
constant ‘a’. The more generalised concept for L-order and L-type for entire
function are L∗-order and L∗-type. Their definitions are as follows:

Definition 2 ([9]). The L∗-order ρL
∗

f and the L∗-lower order λL
∗

f of an
entire function f are defined as

ρL
∗

f = lim sup
r→∞

log[2]Mf (r)

log
[
reL(r)

] and λL
∗

f = lim inf
r→∞

log[2]Mf (r)

log
[
reL(r)

] ,
where log[k] x = log

(
log[k−1] x

)
for k = 1, 2, 3, . . . and log[0] x = x.

Using the inequalities µf (r) ≤ Mf (r) ≤ R
R−rµf (R) {cf. [11]}, for 0 ≤

r < R one may verify that

ρL
∗

f = lim sup
r→∞

log[2] µf (r)

log
[
reL(r)

] and λL
∗

f = lim inf
r→∞

log[2] µf (r)

log
[
reL(r)

] .
Definition 3 ([9]). The L∗-type σL

∗
f of an entire function f is defined

as

σL
∗

f = lim sup
r→∞

logMf (r)[
reL(r)

]ρL∗
f

, 0 < ρL
∗

f <∞.

In order to determine the relative growth of two entire functions of same
non zero finite L∗-lower order one may define the L∗-weak type in the fol-
lowing way:

Definition 4. The L∗-weak type τL
∗

f of an entire function f is defined
as follows:

τL
∗

f = lim inf
r→∞

logMf (r)[
reL(r)

]λL∗
f

, 0 < λL
∗

f <∞.

If an entire function g is non-constant then Mg (r) is strictly increasing
and continuous and its inverse Mg

−1 : (|f (0)| ,∞) → (0,∞) exists and is
such that lim

s→∞
M−1g (s) =∞.

Bernal [1] introduced the definition of relative order of an entire function
f with respect to an entire function g, denoted by ρg (f) as follows:

ρg (f) = inf {µ > 0 : Mf (r) < Mg (rµ) for all r > r0 (µ) > 0}

= lim sup
r→∞

logM−1g Mf (r)

log r
.

The definition coincides with the classical one {cf. [12]} if g (z) = exp z.
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Similarly, one can define the relative lower order of an entire function f
with respect to an entire function g denoted by λg (f) as follows:

λg (f) = lim inf
r→∞

logM−1g Mf (r)

log r
.

Datta and Maji [5] gave an alternative definition of relative order and
relative lower order of an entire with respect to another entire in the following
way:

Definition 5 ([5]). The relative order ρg (f) and relative lower order
λg (f) of an entire function f with respect to an entire function g are defined
as follows:

ρg (f) = lim sup
r→∞

logµ−1g µf (r)

log r
and λg (f) = lim inf

r→∞

logµ−1g µf (r)

log r
.

In the line of Somasundaram and Thamizharasi [9] and Bernal [1] one may
define the relative L∗-order of an entire function in the following manner:

Definition 6 ([3], [4]). The relative L∗-order ρL
∗

g (f) and relative L∗-lower

λL
∗

g (f) of an entire function f with respect to another entire function g are
defined as

ρL
∗

g (f) = lim sup
r→∞

logM−1g Mf (r)

log
[
reL(r)

] and λL
∗

g (f) = lim inf
r→∞

logM−1g Mf (r)

log
[
reL(r)

] .

Datta, Biswas and Ali [6] also gave an alternative definition of L∗-order
and relative L∗-lower order of an entire function which are as follows:

Definition 7 ([6]). The relative L∗-order ρL
∗

g (f) and the relative L∗-lower

order λL
∗

g (f) of an entire function f with respect to g are as follows:

ρL
∗

g (f) = lim sup
r→∞

logµ−1g µf (r)

log
[
reL(r)

] and λL
∗

g (f) = lim inf
r→∞

logµ−1g µf (r)

log
[
reL(r)

] .
In order to determine the relative growth of two entire functions having

same non zero finite relative L∗-order with respect to another entire function,
one may define the concept of the relative L∗-type in the following manner:

Definition 8. The relative L∗-type σL
∗

g (f) of an entire function f with
respect to g is defined as follows:

σL
∗

g (f) = lim sup
r→∞

M−1g Mf (r)[
reL(r)

]ρL∗
g (f)

, 0 < ρL
∗

g (f) <∞.
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Analogusly, in order to determine the relative growth of two entire func-
tions having same non zero finite relative L∗-lower order with respect to
another entire function, one can define the relative L∗-weak type in the
following way:

Definition 9. The relative L∗-weak type τL
∗

g (f) of an entire function f

with respect to g of finite positive relative L∗-lower order λL
∗

g (f) is defined
as:

τL
∗

g (f) = lim inf
r→1

M−1g Mf (r)[
reL(r)

]λL∗
g (f)

.

Concidering g = exp z one may easily verify that the Definition 8 and
Definition 9 coincide with the classical Definition 3 and Definition 4 respec-
tively.

In the paper we study some relative growth properties of maximum term
and maximum modulus of composition of entire functions with respect to
another entire function and compare the relative growth of their correspond-
ing left and right factors on the basis of relative L∗-order, relative L∗-type
and relative L∗-weak type. We do not explain the standard definitions and
notations in the theory of entire functions as those are available in [13].

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 ([1]). If f and g are any two entire functions then for all
sufficiently large values of r,

Mf◦g(r) ≤Mf (Mg (r)) .

Lemma 2 ([10]). Let f and g be any two entire functions. Then for
every α > 1 and 0 < r < R,

µf◦g (r) ≤ α

α− 1
µf

(
αR

R− r
µg (R)

)
.

Lemma 3 ([5]). If f be entire and α > 1, 0 < β < α, then for all
sufficiently large values of r,

µf (αr) ≥ βµf (r).

Lemma 4 ([7]). Let f and h be any two entire functions. Then for any
α > 1,

(i) M−1h Mf (r) ≤ µ−1h

[
α

(α− 1)
µf (αr)

]
and
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(ii) µ−1h µf (r) ≤ αM−1h

[
α

(α− 1)
Mf (r)

]
.

Lemma 5 ([1]). Suppose f is an entire function and α > 1, 0 < β < α,
then for all sufficiently large values of r,

Mf (αr) ≥ βMf (r).

2. Theorems

In this section we present the main results of the paper.

Theorem 1. Let f , g and h be any three entire functions such that
0 < λL

∗
h (f) ≤ ρL

∗
h (f) < ∞ and σL

∗
g < ∞. If L (µg (βr)) = o

{
rαeαL(r)

}
as

r →∞ and for some positive α < ρL
∗

g and β > 1. Then

lim sup
r→∞

logµ−1h µf◦g (r)

logµ−1h µf

(
exp

(
βreL(r)

)ρL∗
g

) ≤ ρL
∗

h (f) · σL∗
g

λL
∗

h (f)
.

Proof. Taking R = βr (β > 1) in Lemma 2 and in view of Lemma 3 we
have for all sufficiently large values of r that

µf◦g (r) ≤
(

α

α− 1

)
µf

(
αβ

(β − 1)
µg (βr)

)
i.e., µf◦g (r) ≤ µf

(
2α2β

(α− 1) (β − 1)
µg (βr)

)
.

Since µ−1h (r) is an increasing function, it follows from above for all suffi-
ciently large values of r that

µ−1h µf◦g (r) ≤ µ−1h µf

(
2α2β

(α− 1) (β − 1)
µg (βr)

)
(1)

i.e., logµ−1h µf◦g (r) ≤ logµ−1h µf

(
2α2β

(α− 1) (β − 1)
µg (βr)

)

i.e.,
logµ−1h µf◦g (r)

logµ−1h µf

(
exp

(
βreL(r)

)ρL∗
g

) ≤ logµ−1h µf

(
2α2β

(α−1)(β−1)µg (βr)
)

logµ−1h µf

(
exp

(
βreL(r)

)ρL∗
g

)
=

logµ−1h µf

(
2α2β

(α−1)(β−1)µg (βr)
)

log
{

2α2β
(α−1)(β−1)µg (βr) eL(µg(βr))

} logµg (βr) + L (µg (βr)) +O(1)[
βreL(r)

]ρL∗
g

×
log

{
exp

(
βreL(r)

)ρL∗
g

}
logµ−1h µf

(
exp

(
βreL(r)

)ρL∗
g

)
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i.e.,
logµ−1h µf◦g (r)

logµ−1h µf

(
exp

(
βreL(r)

)ρL∗
g

) ≤ logµ−1h µf

(
2α2β

(α−1)(β−1)µg (βr)
)

log
{

2α2β
(α−1)(β−1)µg (βr) eL(µg(βr))

}
× logµg (βr) + L (µg (βr)) +O(1)[

βreL(r)
]ρL∗

g

×
log

{
exp

(
βreL(r)

)ρL∗
g

}
+ L

(
exp

(
βreL(r)

)ρL∗
g

)
logµ−1h µf

(
exp

(
βreL(r)

)ρL∗
g

)

i.e., lim sup
r→∞

logµ−1h µf◦g (r)

logµ−1h µf

(
exp

(
βreL(r)

)ρL∗
g

)(2)

≤ lim sup
r→∞

logµ−1h µf

(
2α2β

(α−1)(β−1)µg (βr)
)

log
{

2α2β
(α−1)(β−1)µg (βr) eL(µg(βr))

}
× lim sup

r→∞

logµg (βr) + L (µg (βr)) +O(1)[
βreL(r)

]ρL∗
g

× lim sup
r→∞

log

{
exp

(
βreL(r)

)ρL∗
g

}
+ L

(
exp

(
βreL(r)

)ρL∗
g

)
logµ−1h µf

(
exp

(
βreL(r)

)ρL∗
g

) .

As α < ρL
∗

g and since L (µg (βr)) = o
(
rαeαL(r)

)
as r →∞, we obtain that

(3) lim
r→∞

L (µg (βr))[
reL(r)

]ρL∗
g

= 0.

Now from (2) and (3) it follows that

lim sup
r→∞

logµ−1h µf◦g (r)

logµ−1h µf

(
exp

(
βreL(r)

)ρL∗
g

) ≤ ρL∗
h (f)σL

∗
g

1

λL
∗

h (f)
.

Thus the theorem is established. �

In the line of Theorem 1 the following theorem can be proved:

Theorem 2. Let f, g and h be any three entire functions with λL
∗

h (g) > 0,
ρL

∗
h (f) <∞ and σL

∗
g <∞. If L (µg (βr)) = o

{
rαeαL(r)

}
as r →∞ and for

some positive α < ρL
∗

g and β > 1. Then

lim sup
r→∞

logµ−1h µf◦g (r)

logµ−1h µg

(
exp

(
βreL(r)

)ρL∗
g

) ≤ ρL
∗

h (f) · σL∗
g

λL
∗

h (g)
.
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The proof is omitted.

In the line of Theorem 1 and Theorem 2 and with the help of Lemma 1
the following two theorems can be proved:

Theorem 3. Let f , g and h be any three entire functions such that
0 < λL

∗
h (f) ≤ ρL

∗
h (f) < ∞ and σL

∗
g < ∞. If L (Mg (r)) = o

{
rαeαL(r)

}
as

r →∞ and for some positive α < ρL
∗

g , then

lim sup
r→∞

logM−1h M f◦g (r)

logM−1h Mf

(
exp

(
reL(r)

)ρL∗
g

) ≤ ρL
∗

h (f) σL
∗

g

λL
∗

h (f)
.

Theorem 4. Let f , g and h be any three entire functions with λL
∗

h (g) >
0, ρL

∗
h (f) < ∞ and σL

∗
g < ∞. If L (Mg (r)) = o

{
rαeαL(r)

}
as r → ∞ and

for some positive α < ρL
∗

g . Then

lim sup
r→∞

logM−1h Mf◦g (r)

logM−1h Mg

(
exp

(
reL(r)

)ρL∗
g

) ≤ ρL
∗

h (f) σL
∗

g

λL
∗

h (g)
.

Using the notion of L∗-weak type, we may state the following two the-
orems without there proof because those can be carried out in the line of
Theorem 1 and Theorem 3 respectively.

Theorem 5. Let f , g and h be any three entire functions such that
0 < λL

∗
h (f) ≤ ρL

∗
h (f) < ∞ and τL

∗
g < ∞. If L (µg (βr)) = o

{
rαeαL(r)

}
as

r →∞ and for some positive α < λL
∗

g and β > 1. Then

lim inf
r→∞

logµ−1h µf◦g (r)

logµ−1h µf

(
exp

(
βreL(r)

)λL∗
g

) ≤ ρL
∗

h (f) τL
∗

g

λL
∗

h (f)
.

Theorem 6. Let f , g and h be any three entire functions with 0 <
λL

∗
h (f) ≤ ρL

∗
h (f) < ∞ and τL

∗
g < ∞. If L (Mg (r)) = o

{
rαeαL(r)

}
as

r →∞ and for some positive α < λL
∗

g . Then

lim inf
r→∞

logM−1h Mf◦g (r)

logM−1h Mf

(
exp

(
reL(r)

)λL∗
g

) ≤ ρL
∗

h (f) τL
∗

g

λL
∗

h (f)
.

Similary, the following two theorems can also be carried out in the line
of Theorem 2 and Theorem 4 and therefore their proofs are omitted:
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Theorem 7. Let f , g and h be any three entire functions with λL
∗

h (g) > 0,
ρL

∗
h (f) <∞ and τL

∗
g <∞. If L (µg (βr)) = o

{
rαeαL(r)

}
as r →∞ and for

some positive α < λL
∗

g and β > 1. Then

lim inf
r→∞

logµ−1h µf◦g (r)

logµ−1h µg

(
exp

(
βreL(r)

)λL∗
g

) ≤ ρL
∗

h (f) τL
∗

g

λL
∗

h (g)
.

Theorem 8. Let f , g and h be any three entire functions with λL
∗

h (g) >
0, ρL

∗
h (f) < ∞ and τL

∗
g < ∞. If L (Mg (r)) = o

{
rαeαL(r)

}
as r → ∞ and

for some positive α < λL
∗

g . Then

lim inf
r→∞

logM−1h Mf◦g (r)

logM−1h Mg

(
exp

(
reL(r)

)λL∗
g

) ≤ ρL
∗

h (f) τL
∗

g

λL
∗

h (g)
.

Theorem 9. Let f, g and h be any three entire functions such that
ρL

∗
h (g) <∞ and λL

∗
h (f ◦ g) =∞. Then

lim
r→∞

logµ−1h µf◦g (r)

logµ−1h µg (r)
=∞.

Proof. Let us suppose that the conclusion of the theorem does not hold.
Then we can find a constant β > 0 such that for a sequence of values of r
tending to infinity

(4) logµ−1h µf◦g (r) ≤ β logµ−1h µg (r) .

Again from the definition of ρL
∗

h (g) it follows that for all sufficiently large
values of r that

(5) logµ−1h µg (r) ≤
(
ρL

∗
h (g) + ε

)
log
[
reL(r)

]
.

Thus from (4) and (5) we have for a sequence of values of r tending to
infinity that

logµ−1h µf◦g (r) ≤ β
(
ρL

∗
h (g) + ε

)
log
[
reL(r)

]
i.e.,

logµ−1h µf◦g (r)

log
[
reL(r)

] ≤
β
(
ρL

∗
h (g) + ε

)
log
[
reL(r)

]
log
[
reL(r)

]
i.e., lim inf

r→∞

logµ−1h µf◦g (r)

log
[
reL(r)

] = λL
∗

h (f ◦ g) <∞,

which contradicts the condition λL
∗

h (f ◦ g) =∞.
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So for all Sufficiently large values of r we get that

(6) logµ−1h µf◦g (r) > β logµ−1h µg (r) .

from which the theorem follows. �

Remark 1. Theorem 9 is also valid with “limit superior” instead of
“limit” if λL

∗
h (f ◦ g) = ∞ is replaced by ρL

∗
h (f ◦ g) = ∞ and the other

conditions remaining the same.

In the line of Theorem 9 and Remark 1 the following theorem can also
be proved:

Theorem 10. Let f , g and h be any three entire functions with ρL
∗

h (g)
<∞ and λL

∗
h (f ◦ g) =∞. Then

lim
r→∞

logM−1h Mf◦g (r)

logM−1h Mg (r)
=∞.

Further if ρL
∗

h (f ◦ g) =∞ instead of λL
∗

h (f ◦ g) =∞ then

lim sup
r→∞

logM−1h Mf◦g (r)

logM−1h Mg (r)
=∞.

Corollary 1. Under the assumptions of Theorem 9 and the first part of
Theorem 10,

lim
r→∞

µ−1h µf◦g (r)

µ−1h µg (r)
=∞ and lim

r→∞

M−1h Mf◦g (r)

M−1h Mg (r)
=∞

are respectively holds.

Proof. By Theorem 9 we obtain for all sufficiently large values of r and
for K > 1,

logµ−1h µf◦g (r) > K logµ−1h µg (r)

i.e., µ−1h µf◦g (r) >
{
µ−1h µg (r)

}K
,

from which the first part of the corollary follows.
Similary, from Theorem 10 the second part of the corollary is estab-

lished. �

Corollary 2. Under the assumptions of Remark 1 and the second part
of Theorem 10,

lim sup
r→∞

µ−1h µf◦g (r)

µ−1h µg (r)
=∞ and lim sup

r→∞

M−1h Mf◦g (r)

M−1h Mg (r)
=∞

are respectively holds.
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We omit the proof of Corollary 2 as it can be carried out in the line of
Corollary 1.

Theorem 11. Let f , g and h be any three entire functions such that (i)
ρL

∗
h (f) = ρL

∗
g , (ii) 0 < σL

∗
g <∞ and (iii) σL

∗
h (f) > 0.

Then for any α, β > 1,
(a) If L (µg (βr)) = o

{
µ−1h µf (r)

}
then

lim inf
r→∞

logµ−1h µf◦g (r)

µ−1h µf (r) + L (µg (βr))
≤
[
αβ (2α− 1)

α− 1

]ρL∗
h (f) ρL

∗
h (f) σL

∗
g

σL
∗

h (f)
,

and (b) if µ−1h µf (r) = o {L (µg (βr))} then

lim inf
r→∞

logµ−1h µf◦g (r)

µ−1h µf (r) + L (µg (βr))
≤ ρL∗

h (f) .

Proof. From (1) and the inequality µ (r, f) ≤ M (r, f) {cf. [11]} we get
for all sufficiently large values of r that

logµ−1h µf◦g (r) ≤
(
ρL

∗
h (f) + ε

)
{logµg (βr) + L (µg (βr)) +O(1)}

i.e., logµ−1h µf◦g (r) ≤
(
ρL

∗
h (f) + ε

)
(7)

× {logMg (βr) + L (µg (βr)) +O(1)} .

Using the definition of L∗-type we obtain from (7) for all sufficiently large
values of r that

logµ−1h µf◦g (r) ≤
(
ρL

∗
h (f) + ε

)(
σL

∗
g + ε

) [
βreL(r)

]ρL∗
g

(8)

+
(
ρL

∗
h (f) + ε

)
L (µ (βr, g)) +O(1).

Now in view of condition (ii) we obtain from (8) for all sufficiently large
values of r that

logµ−1h µf◦g (r) ≤
(
ρL

∗
h (f) + ε

)(
σL

∗
g + ε

) [
βreL(r)

]ρL∗
h (f)

(9)

+
(
ρL

∗
h (f) + ε

)
L (µg (βr)) +O(1).

Again in view of Lemma 3, Lemma 4 and the definition of relative L∗-type
we get for a sequence of values of r tending to infinity that

µ−1h

[
α

(α− 1)
µf (αr)

]
≥ M−1h Mf (r)

i.e., µ−1h

[
µf

(
(2α− 1)αr

(α− 1)

)]
≥ M−1h Mf (r)

i.e., µ−1h µf (r) ≥ M−1h Mf

(
(α− 1)

(2α− 1)α
r

)
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i.e., µ−1h µf (r) ≥
(
σL

∗
h (f)− ε

){( (α− 1)

(2α− 1)α
r

)
eL(r)

}ρL∗
h (f)

(10) i.e.,
[
reL(r)

]ρL∗
h (f)

≤
[

(2α− 1)α

α− 1

]ρL∗
h (f) µ−1h µf (r)(

σL
∗

h (f)− ε
) .

Now from (9) and (10) it follows for a sequence of values of r tending to
infinity that

logµ−1h µf◦g (r) ≤
[

(2α− 1)αβ

α− 1

]ρL∗
h (f) (

ρL
∗

h (f) + ε
)(

σL
∗

g + ε
) µ−1h µf (r)(

σL
∗

h (f)− ε
)

+
(
ρL

∗

h (f) + ε
)
L (µg (βr)) +O(1)

ie.,
logµ−1h µf◦g (r)

µ−1h µf (r) + L (µg (βr))
≤

[
(2α−1)αβ
α−1

]ρL∗
h (f)(

ρL
∗

h (f)+ε
)(
σL

∗
g +ε

)
(σL∗
h (f)−ε)

1 +
L(µg(βr))

µ−1
h µf (r)

(11)

+

(
ρL

∗
h (f) + ε

)
1 +

µ−1
h µf (r)

L(µg(βr))

+
O(1)

µ−1h µf (r) + L (µg (βr))
.

If L (µg (βr)) = o
{
µ−1h µf (r)

}
then from (11) we get that

lim inf
r→∞

logµ−1h µf◦g (r)

µ−1h µf (r) + L (µg (βr))
≤

[
(2α−1)αβ
α−1

]ρL∗
h (f) (

ρL
∗

h (f) + ε
) (
σL

∗
g + ε

)(
σL

∗
h (f)− ε

) .

Since ε (> 0) is arbitrary it follows from above that

lim inf
r→∞

logµ−1h µf◦g (r)

µ−1h µf (r) + L (µg (βr))
≤
[
αβ (2α− 1)

α− 1

]ρL∗
h (f) ρL

∗
h (f)σL

∗
g

σL
∗

h (f)
.

Thus the first part of Theorem 11 follows. Again if µ−1h µf (r) = o {L (µg
(βr))} then from (11) it follows that

lim inf
r→∞

logµ−1h µf◦g (r)

µ−1h µf (r) + L (µg (βr))
≤
(
ρL

∗
h (f) + ε

)
.

As ε (> 0) is arbitrary, we obtain from above that

lim inf
r→∞

logµ−1h µf◦g (r)

µ−1h µf (r) + L (µg (βr))
≤ ρL∗

h (f) .

Thus the second part of Theorem 11 follows. �
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Theorem 12. Let f , g and h be any three entire functions with (i)
ρL

∗
h (f) = ρL

∗
g , (ii) 0 < σL

∗
g <∞ and (iii) σL

∗
h (f) > 0. Then

(a) If L (Mg (r)) = o
{
M−1h Mf (r)

}
then

lim inf
r→∞

logM−1h Mf◦g (r)

M−1h Mf (r) + L (Mg (r))
≤
ρL

∗
h (f) · σL∗

g

σL
∗

h (f)
,

and (b) if M−1h Mf (r) = o {L (Mg (r))} then

lim inf
r→∞

logM−1h Mf◦g (r)

M−1h Mf (r) + L (Mg (r))
≤ ρL∗

h (f) .

Proof of Theorem 12 is omitted as it can be carried out in the line of
Theorem 11 and in view of Lemma 1.

Theorem 13. Let f , g and h be any three entire functions such that (i)
0 < τL

∗
h (f) < ∞, (ii) 0 < τL

∗
h (f ◦ g) < ∞ and (iii) λL

∗
h (f ◦ g) = λL

∗
h (f).

Then for any α > 1

lim inf
r→∞

µ−1h µf◦g (r)

µ−1h µf (r)
≤ (2α− 1)2λ

L∗
h (f) · αλL

∗
h (f)+1

(α− 1)2λ
L∗
h (f)

τL
∗

h (f ◦ g)

τL
∗

h (f)

and

(α− 1)2λ
L∗
h (f)

(2α− 1)2λ
L∗
h (f) α

λL
∗

h
(f)

+1

τL
∗

h (f ◦ g)

τL
∗

h (f)
≤ lim sup

r→∞

µ−1h µf◦g (r)

µ−1h µf (r)
.

Proof. From the definition of relative L∗-weak type and in view of
Lemma 4 and Lemma 5 we obtain for a sequence of values of r tending to
infinity that

µ−1h µf◦g (r) ≤ αM−1h

[
α

(α− 1)
Mf◦g (r)

]
≤ αM−1h

[
Mf◦g

((
2α− 1

α− 1

)
r

)]

(12) i.e., µ−1h µf◦g (r) ≤ α
(
τL

∗
h (f ◦ g) + ε

){(2α− 1

α− 1

)
reL(r)

}λL∗
h (f◦g)

and

(13) µ−1h µf (r) ≤ α
(
τL

∗
h (f) + ε

){(2α− 1

α− 1

)
reL(r)

}λL∗
h (f)

.

Also we obtain for all sufficiently large values of r that

µ−1h µf◦g (r) ≥ M−1h Mf◦g

(
(α− 1)

(2α− 1)α
r

)
i.e., µ−1h µf◦g (r) ≥

(
τL

∗
h (f ◦ g)− ε

){( α− 1

(2α− 1)α

)
reL(r)

}λL∗
h (f◦g)
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i.e., µ−1h µf◦g (r) ≥
(

α− 1

(2α− 1)α

)λL∗
h (f◦g)

(14)

×
(
τL

∗
h (f ◦ g)− ε

) [
reL(r)

]λL∗
h (f◦g)

and

(15) µ−1h µf (r) ≥
(

(α− 1)

(2α− 1)α

)λL∗
h (f) (

τL
∗

h (f)− ε
) [
reL(r)

]λL∗
h (f◦g)

.

Now from (12) and (15) it follows for a sequence of values of r tending to
infinity that

(16)
µ−1h µf◦g (r)

µ−1h µf (r)
≤

α
(
τL

∗
h (f ◦ g) + ε

){(
2α−1
α−1

)
reL(r)

}λL∗
h (f◦g)

(
(α−1)

(2α−1)α

)λL∗
h (f) (

τL
∗

h (f)− ε
) [
reL(r)

]λL∗
h (f◦g)

.

In view of the condition (iii) we get from (16) that

lim inf
r→∞

µ−1h µf◦g (r)

µ−1h µf (r)
≤
α
(
τL

∗
h (f ◦ g) + ε

) (
2α−1
α−1

)λL∗
h (f◦g)

(
(α−1)

(2α−1)α

)λL∗
h (f) (

τL
∗

h (f)− ε
) .

As ε (> 0) is arbitrary, it follows from above that

(17) lim inf
r→∞

µ−1h µf◦g (r)

µ−1h µf (r)
≤ (2α− 1)2λ

L∗
h (f) αλ

L∗
h (f)+1

(α− 1)2λ
L∗
h (f)

τL
∗

h (f ◦ g)

τL
∗

h (f)
.

Again from (13) and (14) we get for a sequence of values of r tending to
infinity that

(18)
µ−1h µf◦g (r)

µ−1h µf (r)
≥

(
(α−1)

(2α−1)α

)λL∗
h (f◦g) (

τL
∗

h (f ◦ g)− ε
) [
reL(r)

]λL∗
h (f◦g)

α
(
τL

∗
h (f) + ε

){(
2α−1
α−1

)
reL(r)

}λL∗
h (f)

.

Since λL
∗

h (f ◦ g) = λL
∗

h (f), we obtain from (18) that

lim sup
r→∞

µ−1h µf◦g (r)

µ−1h µf (r)
≥

(
(α−1)

(2α−1)α

)λL∗
h (f) (

τL
∗

h (f ◦ g)− ε
)

(
2α−1
α−1

)λL∗
h (f)

α
(
τL

∗
h (f) + ε

) .
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As ε (> 0) is arbitrary, it follows from above that

(19) lim sup
r→∞

µ−1h µf◦g (r)

µ−1h µf (r)
≥

(α− 1)2λ
L∗
h (f) τL

∗
h (f ◦ g)

(2α− 1)2λ
L∗
h (f) α

λL
∗

h
(f)

+1τL
∗

h (f)
.

Thus the theorem follows from (17) and (19). �

In the line of Theorem 13, we may state the following theorem without
its proof:

Theorem 14. Let f , g and h be any three entire functions with (i)
0 < τL

∗
h (g) < ∞, (ii) 0 < τL

∗
h (f ◦ g) < ∞ and (iii) λL

∗
h (f ◦ g) = λL

∗
h (g).

Then for any α > 1

lim inf
r→∞

µ−1h µf◦g (r)

µ−1h µg (r)
≤ (2α− 1)2λ

L∗
h (g) · αλL

∗
h (g)+1

(α− 1)2λ
L∗
h (g)

τL
∗

h (f ◦ g)

τL
∗

h (g)

and

(α− 1)2λ
L∗
h (g)

(2α− 1)2λ
L∗
h (g) α

λL
∗

h
(g)

+1

τL
∗

h (f ◦ g)

τL
∗

h (g)
≤ lim sup

r→∞

µ−1h µf◦g (r)

µ−1h µg (r)
.

Theorem 15. Let f , g and h be any three entire functions such that (i)
0 < τL

∗
h (f) < ∞, (ii) 0 < τL

∗
h (f ◦ g) < ∞ and (iii) λL

∗
h (f ◦ g) = λL

∗
h (f).

Then

lim inf
r→∞

M−1h Mf◦g (r)

M−1h Mf (r)
≤
τL

∗
h (f ◦ g)

τL
∗

h (f)
≤ lim sup

r→∞

M−1h Mf◦g (r)

M−1h Mf (r)
.

Theorem 16. Let f , g and h be any three entire functions with (i)
0 < τL

∗
h (g) < ∞, (ii) 0 < τL

∗
h (f ◦ g) < ∞ and (iii) λL

∗
h (f ◦ g) = λL

∗
h (g).

Then

lim inf
r→∞

M−1h Mf◦g (r)

M−1h Mg (r)
≤
τL

∗
h (f ◦ g)

τL
∗

h (g)
≤ lim sup

r→∞

M−1h Mf◦g (r)

M−1h Mg (r)
.

The proof of Theorem 15 and Theorem 16 are omitted because those can
be carried out in the line of Theorem 13 and Theorem 14 respectively.
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