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1. Introduction

Let X be a Banach space with the norm ‖ · ‖. Let C = C
(
[−r, 0], X

)
,

0 < r <∞, be the Banach space of all continuous functions x : [−r, 0]→ X
with the supremum norm

∥∥x∥∥
C

= sup
{
‖x(t)‖ : −r ≤ t ≤ 0

}
.

We denote the Banach space of all continuous functions y : [−r, T ] → X
with the supremum norm

∥∥y∥∥
B

= sup
{
‖y(t)‖ : −r ≤ t ≤ T

}
by B = C

(
[−r, T ], X

)
. For any y ∈ B and t ∈ [0, T ] we denote by yt the

element of C = C
(
[−r, 0], X

)
given by yt(θ) = y(t+ θ) for θ ∈ [−r, 0]. Con-
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sider the nonlinear Volterra-Fredholm functional integrodifferential equa-
tions with nonlocal condition of the type

d

dt
[x′(t)− w(t, xt)] +Ax(t) = f

(
t, xt,

∫ t

0
a(t, s)h(s, xs)ds,(1) ∫ T

0
b(t, s)k(s, xs)ds

)
, t ∈ [0, T ],

x(t) +
(
g(xt1 , . . . , xtp)

)
(t) = φ(t), t ∈ [−r, 0], x′(0) = ξ ∈ X,(2)

where 0 < t1 < . . . < tp ≤ T , p ∈ N , f : [0, T ] × C × X × X → X,
a, b : [0, T ] × [0, T ] → R, w, h, k : [0, T ] × C → X are continuous functions,
g : Cp → C is given, φ is a given element of C. −A is the infinitesimal
generator of a strongly continuous cosine family C(t) of bounded linear
operators in X.

The theory of abstract nonlinear second order functional differential and
integrodifferential equations has received considerable attention in recent
years. Several papers have also appeared for the existence and controllabil-
ity of solutions of the nonlinear second-order neutral functional differential
equations in Banach spaces [1, 2]. In many cases it is advantageous to treat
second order abstract differential equations directly rather than to convert
them to first order systems. A useful machinery for the study of second order
equations is the theory of strongly continuous cosine family [10]. Recently,
Runping Ye and Guowei Zhang[8] studied the existence problem for the
neutral functional differential equation of second order of the form

d

dt
[x′(t) + g(t, xt)] = Ax(t) + f(t, xt), t ∈ J = [0, b],

x0 = ϕ ∈ B, x′(0) = z ∈ X

in Banach spaces using the Hausdorff’s measure of noncompactness and
Darbo-Sadovskii’s fixed point theorem. In [6], Ntouyas and Tsamatos inves-
tigated the initial value problem of the form

x
′′
(t) = Ax(t) + f(t, x(t), x′(t)), a.e. t ∈ [0, b],

x(0) + g(x) = x0, x′(0) = η

using the Leray-Schauder Alternative. In both the works A is the infinites-
imal generator of a strongly continuous cosine family {C(t) : t ∈ R} in a
Banach space X and f and g are appropriate given functions. Motivated by
this two works we prove the existence of mild solution for the abstract second
order neutral functional integrodifferential equations (1)-(2) using the above
two techniques.
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2. Preliminaries

In this section we introduce some definitions, notation, preliminary facts
from [3, 4, 10] and hypotheses which are used throughout this paper.

The functions a, b being continuous on compact domains, there are con-
stants λ and µ such that

(3)
∣∣a(t, s)

∣∣ ≤ λ and
∣∣b(t, s)∣∣ ≤ µ, for s, t ∈ [0, T ].

Definition 1. A one-parameter family C(t), t ∈ R, of bounded linear
operators in the Banach space X is called strongly continuous cosine family
if and only if

(a) C(s+ t) + C(s− t) = 2C(s)C(t) for all s, t ∈ R;
(b) C(0) = I;
(c) C(t)x is continuous in t ∈ R for each fixed x ∈ X.
We denote by S(t), t ∈ R, the sine family associated to C(t), t ∈ R and

it is defined as

S(t)x =

∫ t

0
C(s)xds, x ∈ X, t ∈ R

The infinitesimal generator of a strongly continuous cosine family C(t),
t ∈ R, is the operator A defined by

Ax =
d2

dt2
C(0)x,

where D(A) = {x ∈ X : C(t)x is a twice continuously differentiable function of t}.
We denote by N and Ñ certain constants such that

(4) ‖C(t)‖ ≤ N and ‖S(t)‖ ≤ Ñ for every t ∈ [0, T ].

Definition 2. The Hausdorff’s measure of noncompactness χY is defined
by χY (S) = inf{r > 0, Scan be covered by finite number of balls with radiir}
for bounded set S in any Banach space Y.

Lemma 1 ([3]). Let Y be a real Banach space and B,C ⊆ Y be bounded,
then the following properties are satisfied:

(a) B is precompact if and only if χY (B) = 0;
(b) χY (B) = χY (B̄) = χY (convB) where B̄ and convB mean the closure

and convex hull of B respectively;
(c) χY (B) ≤ χY (C) when B ⊆ C;
(d) χY (B +C) ≤ χY (B) + χY (C) where B +C = {x+ y;x ∈ B, y ∈ C};
(e) χY (B ∪ C) ≤ max {χY (B), χY (C)};
(f) χY (λB) = |λ|χY (B) for any λ ∈ R;
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(g) If the map Q : D(Q) ⊆ Y → Z is Lipschitz continuous with constant
k then χZ (Q(B)) ≤ k χY (B) for any bounded set B ⊆ D(Q), where Z is a
Banach space;

(h) χY (B) = inf{dY (B,C);C ⊆ Y be precompact} = inf{dY (B,C);C ⊆
Y be finite valued}, where dY (B,C) means the nonsymmetric (or symmet-
ric)
Hausdorff distance between B and C in Y ;

(i) If {Wn}∞n=1 is a decreasing sequence of bounded, closed nonempty
subsets of Y and lim

n→+∞
χY (Wn) = 0, then ∩+∞n=1Wn is nonempty and compact

in Y .

Definition 3. The map Q : W ⊆ Y → Y is said to be a χY -contraction
if there exists a positive constant k < 1 such that χY (Q(S)) ≤ k χY (S) for
any bounded closed subset S ⊆W where Y is a Banach space.

The following lemma known as Darbo-Sadovskii fixed point theorem
given in [3] is used while proving Theorem 3.1.

Lemma 2 ([3]). If W ⊆ Y is bounded, closed and convex, the continuous
map Q : W → W is a χY − contraction, then the map Q has at least one
fixed point in W.

In this paper we use the notations χ and χB to denote the Hausdorff’s
measure of noncompactness of the Banach space X and that of the Banach
space B = C

(
[−r, T ], X

)
respectively.

Lemma 3 ([3]). If W ⊆ C([a, b], X) is bounded, then

χ(W (t)) ≤ χC (W )

for all t ∈ [a, b], where W (t) = {u(t);u ∈ W} ⊆ X. Furthermore if W is
equicontinuous on [a, b], then χ(W (t)) is continuous on [a, b] and

χC (W ) = sup {χ(W (t)), t ∈ [a, b]}.

Lemma 4 ([3]). If W ⊆ C([a, b];X) is bounded and equicontinuous, then
χ(W (s)) is continuous and

χ(

∫ t

a
W (s)ds) ≤

∫ t

a
χ(W (s))ds

for all t ∈ [a, b], where
∫ t
aW (s)ds = {

∫ t
a x(s)ds : x ∈W}.

Lemma 5. If the semigroup S(t) is equicontinuous and η ∈ L(0, b;R+),
then the set {

∫ t
0 S(t− s)u(s)ds, ‖u(s)‖ ≤ η(s) for a.e. s ∈ [0, b]} is equicon-

tinuous for t ∈ [0, b].
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We prove Theorem 2 using the following lemma known as Leray-Schauder
Alternative given in [4]. The advantage of using this lemma lies in the fact
that we do not claim conditions which imply FU ⊂ U , where U is a set and
F is an operator.

Lemma 6. Let S be a convex subset of a normed linear space E and
assume 0 ∈ S. Let F : S → S be a completely continuous operator and let

ε(F ) =
{
x ∈ S : x = νFx for some 0 < ν < 1

}
.

Then either ε(F ) is unbounded or F has a fixed point.

Definition 4. A function x ∈ C
(
[−r, T ], X

)
is said to be a mild solution

of the nonlocal problem (1)-(2) if it satisfies the following:

x(t) = C(t)
[
φ(0)−

(
g(xt1 , . . . , xtp)

)
(0)
]

+ S(t)
[
ξ − w(0, x0)

]
(5)

+

∫ t

0
C(t− s)w(s, xs)ds

+

∫ t

0
S(t− s)f

(
s, xs,

∫ s

0
a(s, τ)h(τ, xτ )dτ,∫ T

0
b(s, τ)k(τ, xτ )dτ

)
ds, t ∈ [0, T ]

x(t) +
(
g(xt1 , . . . , xtp)

)
(t) = φ(t), t ∈ [−r, 0].(6)

We shall make use of the following hypotheses to prove our main results:

(H1) There exists a continuous function l : [0, T ] → R+ = [0,∞) such
that ∥∥f(t, ψ, x, y)

∥∥ ≤ l(t )
(
‖ψ‖C + ‖x‖+ ‖y‖

)
for every t ∈ [0, T ], ψ ∈ C and x, y ∈ X.

(H2) There exists a continuous function p : [0, T ]→ R+ such that∥∥h(t, ψ)
∥∥ ≤ p(t)H(‖ψ‖C)

for every t ∈ [0, T ], ψ ∈ C where H : R+ → (0,∞) is a continuous nonde-
creasing function.

(H3) There exists a continuous function q : [0, T ]→ R+ such that∥∥k(t, ψ)
∥∥ ≤ q(t)K(‖ψ‖C)

for every t ∈ [0, T ], ψ ∈ C where K : R+ → (0,∞) is a continuous nonde-
creasing function.
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(H4) For each t ∈ [0, T ] the function f(t, ., ., .) : C × X × X → X is
continuous and for each (ψ, x, y) ∈ C × X × X the function f(., ψ, x, y) :
[0, T ]→ X is strongly measurable.

(H5) For each t ∈ [0, T ] the functions h(t, .), k(t, .) : C → X are con-
tinuous and for each ψ ∈ C the functions h(., ψ), k(., ψ) : [0, T ] → X are
strongly measurable.

(H6) There exists a constant ρ > 0 such that∥∥(g(ut1 , . . . , utp)
)
(s)−

(
g(vt1 , . . . , vtp)

)
(s)
∥∥ ≤ ρ∥∥u− v∥∥

B

for u, v ∈ B, s ∈ [−r, 0].

(H7) There exists a constant G such that

(7) G = max
y∈B

∥∥g(yt1 , . . . , ytp)
∥∥.

(H8) There exist positive constants c1, c2 and V such that

(8) ‖w(t, ψ)‖ ≤ c1‖ψ‖+ c2,

(9) ‖w(t, ψ1)− w(t, ψ2)‖ ≤ V ‖ψ1 − ψ2‖C

for t ∈ [0, T ] and ψ,ψ1 , ψ2 ∈ C.

(H9) Assume that(
Ñ +NT

)
c1 + ÑM∗T

[
1 +M∗T lim inf

m→∞

(
H(m)

m
+
K(m)

m

)]
< 1

where

(10) M∗ = sup {M(t), t ∈ [0, T ]}

(11) M(t) = max {l(t), λp(t), µq(t)} for each t ∈ [0, T ].

(H10) There exists integrable functions η, η1 , η2 : [0, T ] → [0,∞) such
that for any bounded set W ⊂ C([−r, T ], X) and s ∈ [0, T ] we have

χ
(
S(t− s) f

(
s,Ws,

∫ s

0
a(s, τ)h(τ,Wτ )dτ,

∫ T

0
b(s, τ)k(τ,Wτ )dτ

))
≤ η(s)

(
sup
−r≤θ≤0

χ
(
W (s+ θ)

)
+

∫ s

0

∣∣a(s, τ)
∣∣ η1(τ) sup

−r≤θ≤0
χ
(
W (τ + θ)

)
dτ

+

∫ T

0

∣∣b(s, τ)
∣∣ η2(τ) sup

−r≤θ≤0
χ
(
W (τ + θ)

)
dτ

)
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(H11) Assume that C(t), t > 0 is compact.

(H12) The range of g consists of Lipschitz continuous functions only and

L = max
y∈B

Ly where Ly = Lipschitz constant of g(yt1 , . . . , ytp) ∈ C.

(H13) For each t ∈ [−r, 0] the set{
φ(t)−

(
g(yt1 , . . . , ytp)

)
(t) : y ∈ Bm

}
is precompact in X, where Bm =

{
y ∈ B : ‖y‖ ≤ m

}
, for every positive

integer m.

(H14) φ is Lipschitz continuous on [−r, 0] with Lipschitz constant σ i.e.∥∥φ(s1)− φ(s2)
∥∥ ≤ σ ∣∣s1 − s2∣∣ for s1, s2 ∈ [−r, 0].

2. Existence of mild solution

Theorem 1. Suppose that the hypotheses (H1) − (H11) hold. Then the
nonlocal problem (1)-(2) has a mild solution x on [−r, T ] if

(12)
{
ρ1 +

∫ T

0
η(s)

[
1 +

∫ s

0
λ η1(τ)dτ +

∫ T

0
µ η2(τ)dτ

]
ds
}
< 1

where the constant term

(13) ρ1 =
(
N + 1

)
ρ+

(
Ñ +NT

)
V.

Proof.We prove the existence of mild solution of the nonlinear mixed in-
tegrodifferential equations (1)-(2), by using the Darbo-Sadovskii fixed point
theorem and the Hausdorff’s measure of noncompactness. Consider the
bounded set Bm = {y ∈ B : ‖y‖ ≤ m} for each m ∈ N (the set of all
positive integers). Define an operator F : B = C

(
[−r, T ], X

)
→ B by

F = F1 + F2

(14) (F1x)(t) =


φ(t)−

(
g(xt1 , . . . , xtp)

)
(t), −r ≤ t ≤ 0

C(t)
[
φ(0)−

(
g(xt1 , · · · , xtp)

)
(0)
]

+ S(t)
[
ξ − w(0, x0)

]
+
∫ t
0 C(t− s)w(s, xs)ds 0 ≤ t ≤ T

(15) (F2x)(t) =


0, −r ≤ t ≤ 0∫ t
0 S(t− s)f

(
s, xs,

∫ s
0 a(s, τ)h(τ, xτ )dτ,∫ T

0 b(s, τ)k(τ, xτ )dτ

)
ds 0 ≤ t ≤ T
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From the definition of F it follows that the fixed point of F is the mild
solution of the nonlocal problem (1) − (2). We first show that F : B → B
is continuous. Let {un} be a sequence of elements of B converging to u in
B. Consider the case when t ∈ [−r, 0], then using hypothesis (H6) we have∥∥(Fun)(t)− (Fu)(t)

∥∥ ≤ ρ ∥∥u− un∥∥→ 0 as n→∞.(16)

Now let t ∈ [0, T ] then using hypotheses (H4) and (H5) we have

f

(
t, unt ,

∫ t

0
a(t, s)h(s, uns)ds,

∫ T

0
b(t, s)k(s, uns)

)
→ f

(
t, ut,

∫ t

0
a(t, s)h(s, us)ds,

∫ T

0
b(t, s)k(s, us)

)
.

Using the Dominated Convergence Theorem, condition (4), hypotheses (H6),
(H8) and the fact that for every t ∈ (0, T ],

∥∥xt∥∥C ≤ ∥∥x∥∥B, we have∥∥(Fun)(t)− (Fu)(t)
∥∥ =

∥∥C(t)
[
φ(0)

]
− C(t)

[(
g(unt1 , . . . , untp )

)
(0)
]

(17)

+ S(t)
[
ξ
]
− S(t)

[
w(0, un0)

]
+

∫ t

0

C(t− s)w(s, uns)ds

+

∫ t

0

S(t− s)f
(
s, uns ,

∫ s

0

a(s, τ)h(τ, unτ )dτ,

∫ T

0

b(s, τ)k(τ, unτ )dτ

)
ds

− C(t)
[
φ(0)

]
+ C(t)

[(
g(ut1 , . . . , utp)

)
(0)
]

− S(t)
[
ξ
]

+ S(t)
[
w(0, u0)

]
−
∫ t

0

C(t− s)w(s, us)ds

−
∫ t

0

S(t− s)f
(
s, us,

∫ s

0

a(s, τ)h(τ, uτ )dτ,

∫ T

0

b(s, τ)k(τ, uτ )dτ

)
ds
∥∥

≤
∥∥C(t)

[(
g(ut1 , ..., utp)

)
(0)−

(
g(unt1 , . . . , untp )

)
(0)
]∥∥

+
∥∥S(t)

[
w(0, u0)− w(0, un0)

]∥∥
+
∥∥∫ t

0

C(t− s)
[
w(s, uns)− w(s, us)

]
ds
∥∥

+
∥∥∫ t

0

S(t− s)
[
f

(
s, uns ,

∫ s

0

a(s, τ)h(τ, unτ )dτ,

∫ T

0

b(s, τ)k(τ, unτ )dτ)

− f
(
s, us,

∫ s

0

a(s, τ)h(τ, uτ )dτ,

∫ T

0

b(s, τ)k(τ, uτ )dτ

)]
ds
∥∥

≤ Nρ
∥∥un − u∥∥B + Ñ V

∥∥u0 − un0

∥∥
C

+NTV
∥∥un − u∥∥B

+ Ñ

∫ t

0

∥∥f(s, uns ,∫ s

0

a(s, τ)h(τ, unτ )dτ,

∫ T

0

b(s, τ)k(τ, unτ )dτ

)
− f

(
s, us,

∫ s

0

a(s, τ)h(τ, uτ )dτ,

∫ T

0

b(s, τ)k(τ, uτ )dτ)
∥∥ds]}→ 0

as n → ∞.



On nonlinear second order . . . 83

Since
∥∥(Fun) − (Fu)

∥∥
B

= sup
t∈[−r,T ]

∥∥(Fun)(t) − (Fu)(t)
∥∥, inequalities (16)

and (17) imply Fun → Fu in B as un → u in B. Therefore F is continuous.
We shall show that F is a χB− contraction on some bounded closed con-

vex subset Bm ⊆ B = (C[−r, T ], X). And then by using Darbo-Sadovskii’s
fixed point theorem we get a fixed point of F . Firstly by using the method
of contradiction we obtain a m ∈ N such that FBm ⊆ Bm. Suppose
that for each m ∈ N there is a ym ∈ Bm and tm ∈ [−r, T ] such that
‖(Fym)(tm)‖ > m. If tm ∈ [−r, 0] then using hypothesis (H7) we obtain

(18) m <
∥∥(Fym)(tm)

∥∥ ≤ ∥∥φ(tm)
∥∥+

∥∥(g(ymt1 , . . . , y
m
tp )
)
(tm)

∥∥ ≤ c+G.

where c denotes ‖φ‖C . We also know that if ‖ym‖B ≤ m then

(19) ‖ymt ‖C ≤ m for all t ∈ [0, T ]

Using hypotheses (H1) − (H3) and conditions (3), (7), (8), (11), (10) and
(19) for the case when tm ∈ [0, T ] we obtain

m <
∥∥(Fym)(tm)

∥∥ ≤ N [∥∥φ(0)
∥∥+

∥∥(g(ymt1 , . . . , y
m
tp )
)
(0)
∥∥](20)

+ Ñ
[∥∥ξ∥∥+

∥∥w(0, ym0 )
∥∥]+

∫ tm

0

∥∥C(tm − s)w(s, yms )
∥∥ds

+ Ñ

∫ tm

0

∥∥f(s, yms ,∫ s

0

a(s, τ)h(τ, ymτ )dτ,

∫ T

0

b(s, τ)k(τ, ymτ )dτ

)∥∥ds
≤ N

(
c+G

)
+ Ñ

[
‖ξ‖+ c1m+ c2

]
+N

(
c1m+ c2

)
T + Ñ

∫ tm

0

l(s)(∥∥yms ∥∥C +

∫ s

0

∣∣a(s, τ)
∣∣ ∥∥h(τ, ymτ )

∥∥ dτ +

∫ T

0

∣∣b(s, τ)
∣∣ ∥∥k(τ, ymτ )

∥∥ dτ)ds
≤ N

(
c+G

)
+ Ñ

[
‖ξ‖+ c1m+ c2

]
+N

(
c1m+ c2

)
T + Ñ

∫ tm

0

l(s)(∥∥yms ∥∥C +

∫ s

0

λ p(τ)H
(∥∥ymτ ∥∥C)∥∥ dτ +

∫ T

0

µ q(τ)K
(∥∥ymτ ∥∥C) dτ)ds

≤ N
(
c+G

)
+ Ñ‖ξ‖+

(
Ñ +NT

)(
c1m+ c2

)
+ Ñ

∫ T

0

M(s)

(
m+

∫ s

0

M(τ)H(m)dτ +

∫ T

0

M(τ)K(m)dτ

)
ds

≤ N
(
c+G

)
+ Ñ‖ξ‖+

(
Ñ +NT

)(
c1m+ c2

)
+ Ñ

∫ T

0

M∗
(
m+M∗H(m)T +M∗K(m)T

)
ds

Now we combine (18) and (20) so that we obtain

m <
(
N + 1

)(
c+G

)
+ Ñ‖ξ‖+

(
Ñ +NT

)(
c1m+ c2

)
(21)

+ ÑM∗T

(
m+M∗H(m)T +M∗K(m)T

)
.
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Dividing by m on both sides of (21) we obtain

1 <

(
N + 1

)(
c+G

)
+ Ñ‖ξ‖

m
+
(
Ñ +NT

)(
c1 +

c2
m

)
(22)

+ ÑM∗T

(
1 +M∗T

H(m)

m
+M∗T

K(m)

m

)
.

Now taking lim inf as m→∞ on both sides of (22) we get

1 <
(
Ñ +NT

)
c1 + ÑM∗T

[
1 +M∗T lim inf

m→∞

(
H(m)

m
+
K(m)

m

)]
.

which contradicts the hypothesis (H9). Thus there is a m ∈ N such that
FBm ⊆ Bm. Hereafter we will consider the restriction of F on this Bm.

Now we show that F1 is Lipschitz continuous. Let x, y ∈ Bm then using
hypothesis (H6) we have for t ∈ [−r, 0]∥∥(F1x)(t)− (F1y)(t)

∥∥(23)

=
∥∥(g(yt1 , ..., ytp)

)
(t)−

(
g(xt1 , ..., xtp)

)
(t)
∥∥ ≤ ρ∥∥y − x∥∥

B
.

Now using hypothesis (H6) and conditions (4), (9) for t ∈ [0, T ] we have∥∥(F1x)(t)− (F1y)(t)
∥∥ =

∥∥C(t)
[(
g(yt1 , . . . , ytp)

)
(0)(24)

−
(
g(xt1 , . . . , xtp)

)
(0)
]

+ S(t)
[
w(0, y0)− w(0, x0)

]
+

∫ t

0
C(t− s)

[
w(s, xs)− w(s, ys)

]
ds
∥∥

≤
[
Nρ+ ÑV +NV T

]∥∥x− y∥∥
B

Thus in view of (23) and (24) we obtain∥∥(F1x)(t)− (F1y)(t)
∥∥ ≤ [(N + 1

)
ρ+ ÑV +NV T

]∥∥x− y∥∥
B
.

for all t ∈ [−r, T ] and x, y ∈ Bm. Consequently using (13) we get∥∥(F1x)− (F1y)
∥∥ ≤ ρ1

∥∥x− y∥∥
B
.

Thus F1 is Lipschitzian with Lipschitz constant ρ1 . Hence using Lemma
1(g) we now have

(25) χB (F1W ) ≤ ρ1χB (W )

for any bounded setW ⊆ Bm.
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Further let W be any bounded subset of Bm. We first show that F2W is
bounded. Let y ∈ W ⊆ Bm then ‖y‖B ≤ m and so ‖yt‖C ≤ m, t ∈ [0, T ].
Let t ∈ [−r, 0] and y ∈ Bm then from the definition of F2 we have∥∥(F2y)(t)

∥∥ = 0

Now for t ∈ [0, T ] and y ∈ Bm we get∥∥(F2y)(t)
∥∥ ≤ ∫ t

0

∥∥S(t− s)
∥∥∥∥f(s, xs, ∫ s

0
a(s, τ)h(τ, xτ )dτ,(26) ∫ T

0
b(s, τ)k(τ, xτ )dτ

)∥∥ds
≤ Ñ

[ ∫ t

0
l(s)

(∥∥ys∥∥C +
∥∥∫ s

0
a(s, τ)h(τ, yτ )dτ

∥∥
+
∥∥∫ T

0
b(s, τ) k(τ, yτ )dτ

∥∥)ds]
≤ Ñ

∫ t

0
M(s)

(
m+

∫ s

0
M(τ)H(m)dτ

+

∫ T

0
M(τ)K(m)dτ

)
ds

≤ Ñ T M∗
(
m+

TM∗H(m)

2
+ T M∗K(m)

)
.

The R.H.S. of the inequality (26) being constant we conclude that the set{
(F2y)(t) : y ∈ W,−r ≤ t ≤ T

}
is bounded in X and hence F2W is

bounded in B. Now we prove that F2W is equicontinuous. For this let
y ∈W , s1, s2 ∈ [−r, T ] and consider the following cases:

Case 1. Suppose 0 ≤ s1 ≤ s2 ≤ T then using hypothesis (H1) − (H3)
and conditions(10), (11) and (4), we get∥∥(F2y)(s2)− (F2y)(s1)

∥∥ ≤ ∫ s1

0

∥∥S(s2 − s)− S(s1 − s)
∥∥

×
∥∥f(s, ys,∫ s

0

a(s, τ)h(τ, yτ )dτ,

∫ T

0

b(s, τ)k(τ, yτ )dτ

)∥∥ds
+

∫ s2

s1

∥∥S(s2 − s)
∥∥∥∥f(s, ys,∫ s

0

a(s, τ)h(τ, yτ )dτ,∫ T

0

b(s, τ)k(τ, yτ )dτ

)∥∥ds
≤
∫ s1

0

∥∥[S(s2 − s)− S(s1 − s)
]∥∥

×
[
M(s)

(
m+

∫ s

0

M(τ)H(m)dτ +

∫ T

0

M(τ)K(m)dτ

)]
ds
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+ Ñ

∫ s2

s1

M(s)

(
m+

∫ s

0

M(τ)H(m)dτ +

∫ T

0

M(τ)K(m)dτ

)
ds

≤
∫ s1

0

∥∥[S(s2 − s)− S(s1 − s)
]∥∥[M∗

(
m+M∗H(m)s+M∗K(m)T

)]
ds

+ Ñ

∫ s2

s1

M∗
(
m+M∗H(m)

∫ s

0

dτ

+ M∗K(m)

∫ T

0

dτ

)
ds

≤ γ
∫ s1

0

∥∥S(s2 − s)− S(s1 − s)
∥∥ds+ Ñγ

∣∣s2 − s1∣∣}→ 0 as s2 → s1,

where γ = [M∗(m + M∗H(m)T + M∗K(m)T0)]. Now from hypothesis
(H11), C(t) for t > 0 is compact and therefore S(t), t > 0 is also compact
(see [9]). The compactness of S(t), t > 0 implies the continuity in the
uniform operator topology. Therefore the right hand side of above equation
tends to zero as s2 → s1.

Case 2. Suppose −r ≤ s1 ≤ 0 ≤ s2 ≤ T then we get∥∥(F2y)(s2)− (F2y)(s1)
∥∥ =

∥∥∫ s2

0
S(s2 − s)

× f
(
s, ys,

∫ s

0
a(s, τ)h(τ, yτ )dτ,

∫ T

0
b(s, τ)k(τ, yτ )dτ

)
ds
∥∥

Now proceeding as in Case 1 for the integral on the right hand side of above
equality we further obtain∥∥(F2y)(s2)− (F2y)(s1)

∥∥ ≤ Ñγ∣∣s2 − s1∣∣→ 0 as s2 → 0+ and s1 → 0−.

Case 3. Suppose −r ≤ s1 ≤ s2 ≤ 0. In this case we have

(27)
∥∥(F2y)(s2)− (F2y)(s1)

∥∥ = 0.

Thus cases (1)− (3) imply that ‖(F2y)(s2)− (F2y)(s1)‖ → 0 as s1 → s2, for
all s1, s2 ∈ [−r, T ]. Thus we conclude that F2W is an equicontinuous family
of functions.

Further for a bounded subset W of Bm we define the notations W (t) =
{x(t);x ∈ W} ⊆ X and Wt = {xt;x ∈ W} ⊆ C

(
[−r, 0], X

)
. Also S(t) is

equicontinuous. Now using Lemma 1, Lemma 3 − 5 and hypothesis (H10)
we obtain

χB (F2W ) = sup
−r≤t≤T

χ(F2W (t))(28)

= sup
0≤t≤T

χ(

∫ t

0
S(t− s)f

(
s,Ws,

∫ s

0
a(s, τ)h(τ,Wτ )dτ,
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0
b(s, τ)k(τ,Wτ )dτ

)
ds)

= sup
0≤t≤T

∫ t

0
χ
(
S(t− s)f

(
s,Ws,

∫ s

0
a(s, τ)h(τ,Wτ )dτ,∫ T

0
b(s, τ)k(τ,Wτ )dτ

))
ds

≤ sup
0≤t≤T

∫ t

0
η(s)

(
sup
−r≤θ≤0

χ(W (s+ θ))

+

∫ s

0

∣∣a(s, τ)
∣∣ η1(τ) sup

−r≤θ≤0
χ(W (τ + θ))dτ

+

∫ T

0

∣∣b(s, τ)
∣∣ η2(τ) sup

−r≤θ≤0
χ(W (τ + θ))dτ

)
ds

≤ sup
0≤t≤T

∫ t

0
η(s)

(
sup

s−r≤s+θ≤s
χ(W (s+ θ))

+

∫ s

0
λ η1(τ) sup

τ−r≤τ+θ≤τ
χ(W (τ + θ))dτ

+

∫ T

0
µ η2(τ) sup

τ−r≤τ+θ≤τ
χ(W (τ + θ))dτ

)
ds

≤ sup
0≤t≤T

∫ t

0
η(s)

(
χB (W ) +

∫ s

0
λ η1 (τ)χB (W )dτ

+

∫ T

0
µ η2(τ)χB (W )dτ

)
ds

≤ χB (W )

∫ T

0
η(s)

(
1 +

∫ s

0
λ η1 (τ)dτ +

∫ T

0
µ η2(τ)dτ

)
ds

Therefore using (12), (25) and (28) we obtain

χB (FW ) ≤ χB (F1W ) + χB (F2W )(29)

≤
(
ρ1 +

∫ T

0
η(s)

×
[
1 +

∫ s

0
λ η1(τ)dτ +

∫ T

0
µ η2(τ)dτ

]
ds

)
χB (W )

< χB (W )

for any bounded subset W of Bm.
Hence F is a χB - contraction. Now applying lemma 2.5 we get a fixed

point x of F in Bm. This x is a mild solution of (1)-(2). The proof of the
theorem is complete. �
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Theorem 2. Suppose that the hypotheses (H1)− (H8) and (H11)− (H14)
holds. Then the nonlocal problem (1)-(2) has a mild solution x on [−r, T ] if
T satisfies

(30)

∫ T

0
M(s)ds <

∫ ∞
α

1− c1(Ñ +NT )ds

Ñ
[
s+ TM∗H(s) + β

]
where M(t) and M∗ are as defined in (11) and (10) and

α =
N [c+G] + Ñ [‖ξ‖+ c2] +Nc2 T

1− c1[Ñ +NT ]
+ (c+G)

with c =
∥∥φ∥∥

C
and a constant β is such that

(31)

∫ T

0
M(s)K(J(s))ds ≤ β

for any continuous function J : [0, T ]→ R+.

Proof. To prove the existence of a mild solution of the nonlocal problem
(1)− (2) we apply the Leray-Schauder Alternative to the operator equation

x(t) = νFx(t), 0 < ν < 1

where we define the operator F : B = C
(
[−r, T ], X

)
→ B by

(Fx)(t) =



φ(t)−
(
g(xt1 , . . . , xtp)

)
(t), −r ≤ t ≤ 0

C(t)
[
φ(0)−

(
g(xt1 , . . . , xtp)

)
(0)
]

+ S(t)
[
ξ − w(0, x0)

]
+
∫ t
0 C(t− s)w(s, xs)ds

+
∫ t
0 S(t− s)f

(
s, xs,

∫ s
0 a(s, τ)h(τ, xτ )dτ,∫ T

0 b(s, τ)k(τ, xτ )dτ

)
ds, 0 ≤ t ≤ T

(32)

so that for t ∈ [0, T ], we get

x(t) = ν

{
C(t)

[
φ(0)−

(
g(xt1 , ..., xtp)

)
(0)
]

(33)

+ S(t)
[
ξ − w(0, x0)

]
+

∫ t

0
C(t− s)w(s, xs)ds

+

∫ t

0
S(t− s)f

(
s, xs,

∫ s

0
a(s, τ)h(τ, xτ )dτ,∫ T

0
b(s, τ)k(τ, xτ )dτ

)
ds

}
.



On nonlinear second order . . . 89

Using hypotheses (H1) − (H3) and conditions (3), (4), (7) and (8) in (33)
we obtain, for t ∈ [0, T ],

∥∥x(t)
∥∥ ≤ ∣∣ν∣∣{N[∥∥φ(0)

∥∥+
∥∥(g(xt1 , . . . , xtp)

)
(0)
∥∥](34)

+ Ñ
[∥∥ξ∥∥+

∥∥w(0, x0)
∥∥]+

∫ t

0

∥∥C(t− s)w(s, xs)
∥∥ds

+

∫ t

0

∥∥S(t− s)f
(
s, xs,

∫ s

0
a(s, τ)h(τ, xτ )dτ,∫ T

0
b(s, τ)k(τ, xτ )dτ

)∥∥ds}
≤ N

[
c+G

]
+ Ñ

[∥∥ξ∥∥+ c1
∥∥x0∥∥+ c2

]
+ N

[
c1

∫ t

0

∥∥xs∥∥ds+ c2t

]
+ Ñ

∫ t

0
l(s)

(∥∥xs∥∥C
+

∫ s

0
λ p(τ)H

(∥∥xτ∥∥C)dτ +

∫ T

0
µ q(τ)K

(∥∥xτ∥∥C)dτ)ds
Now define the function Z : [0, T ]→ R by

Z(t) = sup
{∥∥x(s)

∥∥ : −r ≤ s ≤ t
}
.

Clearly
∥∥x(t)

∥∥ ≤ Z(t), for all t ∈ [0, T ]. Now let t∗ ∈ [−r, T ] be such that
Z(t) =

∥∥x(t∗)
∥∥ and consider the two cases:

Case 1. If t∗ ∈ [−r, 0] then using (32) and (7) we obtain

(35) Z(t) = sup
{∥∥x(s)

∥∥ : −r ≤ s ≤ 0
}
≤ c+G.

Case 2. If t∗ ∈ [0, t] then from (34) we have∥∥x(t∗)
∥∥ ≤ N

[
c+G

]
+ Ñ

[∥∥ξ∥∥+ c1
∥∥x0∥∥+ c2

]
+ N

[
c1

∫ t∗

0

∥∥xs∥∥ds+ c2t
∗
]

+ Ñ

∫ t∗

0
l(s)

(∥∥xs∥∥C
+

∫ s

0
λp(τ)H

(∥∥xτ∥∥C)dτ +

∫ T

0
µq(τ)K

(∥∥xτ∥∥C)dτ)ds
i.e. Z(t) ≤ N

[
c+G

]
+ Ñ

[∥∥ξ∥∥+ c1
∥∥x0∥∥+ c2

]
+ N

[
c1

∫ t

0

∥∥xs∥∥ds+ c2t

]
+ Ñ

∫ t

0
l(s)

(∥∥xs∥∥C
+

∫ s

0
λp(τ)H

(∥∥xτ∥∥C)dτ +

∫ T

0
µq(τ)K

(∥∥xτ∥∥C)dτ)ds}.
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Using condition (11) and the facts that
∥∥xt∥∥C ≤ Z(t), t ∈ [0, T ] and Z(t∗) ≤

Z(t) for t∗ ≤ t we get

Z(t) ≤ N
[
c+G

]
+ Ñ

[∥∥ξ∥∥+ c1Z(0) + c2
]

+N
[
c1Z(t)T + c2T

]
+ Ñ

∫ t

0
M(s)

(
Z(s) +

∫ s

0
M(τ)H

(
Z(τ)

)
dτ

+

∫ T

0
M(τ)K

(
Z(τ)

)
dτ

)
ds

Z(t) ≤ 1[
1− c1(Ñ +NT )

][N(c+G) + Ñ
[∥∥ξ∥∥+ c2

]
+Nc2T(36)

+ Ñ

∫ t

0
M(s)

(
Z(s) +

∫ s

0
M(τ)H

(
Z(τ)

)
dτ

+

∫ T

0
M(τ)K

(
Z(τ)

)
dτ

)
ds

]
Thus, in either case, from (35) and (36) we obtain

Z(t) ≤ 1[
1− c1(Ñ +NT )

][N(c+G) + Ñ
[∥∥ξ∥∥+ c2

]
+Nc2T(37)

+ Ñ

∫ t

0
M(s)

(
Z(s) +

∫ s

0
M(τ)H

(
Z(τ)

)
dτ

+

∫ T

0
M(τ)K

(
Z(τ)

)
dτ

)
ds

]
+ (c+G)

for t ∈ [0, T ]. Denoting the R.H.S of the inequality (37) by u(t) we have

Z(t) ≤ u(t), t ∈ [0, T ],

u(0) =
N(c+G) + Ñ

[∥∥ξ∥∥+ c2
]

+Nc2T[
1− c1(Ñ +NT )

] + (c+G) = α,

u
′
(t) =

Ñ[
1− c1(Ñ +NT )

]
×
{
M(t)

[
Z(t) +

∫ t

0

M(s)H
(
Z(s)

)
ds+

∫ T

0

M(s)K
(
Z(s)

)
ds

]}
≤ Ñ[

1− c1(Ñ +NT )
]{M(t)

[
u(t) +

∫ t

0

M(s)H
(
u(s)

)
ds+ β

]}
≤ Ñ[

1− c1(Ñ +NT )
]{M(t)

[
u(t) + TM∗H

(
u(t)

)
+ β

]}
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Therefore [
1− c1(Ñ +NT )

]
u
′
(t)

Ñ
[
u(t) + TM∗H

(
u(t)

)
+ β

] ≤M(t), t ∈ [0, T ].

Changing variable t→ s and integrating from 0 to t we get∫ t

0

[
1− c1(Ñ +NT )

]
u
′
(s)ds

Ñ
[
u(s) + TM∗H

(
u(s)

)
+ β

] ≤ ∫ t

0
M(s)ds.

Now let u(s) = p then we obtain∫ u(t)

u(0)

[
1− c1(Ñ +NT )

]
dp

Ñ
[
p+ TM∗H(p) + β

] ≤ ∫ t

0
M(s)ds.

Using this and condition (30) we obtain∫ u(t)

α

[
1− c1(Ñ +NT )

]
ds

Ñ
[
s+ TM∗H(s) + β

] ≤ ∫ t

0
M(s)ds ≤

∫ T

0
M(s)ds(38)

<

∫ ∞
α

[
1− c1(Ñ +NT )

]
ds

Ñ
[
s+ TM∗H(s) + β

] ,
for t ∈ [0, T ]. From the inequality (38), there exists a constant η independent
of ν ∈ (0, 1) such that u(t) ≤ η for t ∈ [0, T ] and hence∥∥x(t)

∥∥ ≤ Z(t) ≤ u(t) ≤ η, for all t ∈ [0, T ].

Since for every t ∈ [0, T ],
∥∥xt∥∥C ≤ Z(t), in particular we get

∥∥x0∥∥C ≤
Z(0) for t = 0

i.e.
∥∥x(t)

∥∥ ≤ Z(0) ≤ η, for all t ∈ [−r, 0].

Thus we have

(39)
∥∥x∥∥

B
= sup

{
‖x(t)‖ : t ∈ [−r, T ]

}
≤ η.

In order to apply Lemma 6. we must prove that F is a completely continuous
operator. Clearly F : B = C

(
[−r, T ], X

)
→ B is continuous as seen in the

proof of Theorem 1. Now we prove that F maps a bounded set of B into a
precompact set of B. Consider the bounded set Bm = {y ∈ B : ‖y‖ ≤ m}
for a positive integer m. We show that FBm is uniformly bounded. Let
t ∈ [−r, 0] and y ∈ Bm then we have

(40)
∥∥(Fy)(t)

∥∥ ≤ c+G.
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Using hypotheses (H1) − (H3) and conditions (3), (4), (7), (8), (10), (11)
and (19), we obtain for t ∈ [0, T ],∥∥(Fy)(t)

∥∥ =
∥∥C(t)

[
φ(0)−

(
g(yt1 , . . . , ytp)

)
(0)
]

(41)

+ S(t)
[
ξ − w(0, y0)

]
+

∫ t

0
C(t− s)w(s, ys)ds

+

∫ t

0
S(t− s)f

(
s, ys,

∫ s

0
a(s, τ)h(τ, yτ )dτ,∫ T

0
b(s, τ)k(τ, yτ )dτ

)
ds
∥∥

≤ N
[
c+G

]
+ Ñ

[∥∥ξ∥∥+ c1
∥∥y0∥∥+ c2

]
+N

[
c1
∥∥y∥∥+ c2

]
T

+ Ñ

[
T M∗

(
m+

TM∗H(m)

2
+ T M∗K(m)

)]
.

Now combining (40) and (41) we get

∥∥(Fy)(t)
∥∥ ≤ [

N + 1
][
c+G

]
+N

[
c1m+ c2

]
T + Ñ

[∥∥ξ∥∥+ c1m+ c2

+ T M∗
(
m+

TM∗H(m)

2
+ TM∗K(m)

)]
where t ∈ [−r, T ], y ∈ Bm. This implies that the set

{
(Fy)(t) : ‖y‖B ≤

m,−r ≤ t ≤ T
}

is bounded in X and hence FBm is uniformly bounded in B.
Next we show that F maps Bm into an equicontinuous family of functions
with values in X. For this let y ∈ Bm, s1, s2 ∈ [−r, T ] and consider the
following cases:

Case 1. Suppose 0 ≤ s1 ≤ s2 ≤ T then using hypothesis (H1) − (H3)
and conditions (4), (8), (10), (11) and (19), we get∥∥(Fy)(s2)− (Fy)(s1)

∥∥ =
∥∥[C(s2)− C(s1)

][
φ(0)−

(
g(yt1 , . . . , ytp)

)
(0)
]

+
[
S(s2)− S(s1)

][
ξ − w(0, y0)

]
+

∫ s2

0
C(s2 − s)w(s, ys)ds

−
∫ s1

0
C(s1 − s)w(s, ys)ds

+

∫ s2

0
S(s2 − s)f

(
s, ys,

∫ s

0
a(s, τ)h(τ, yτ )dτ,

∫ T

0
b(s, τ)k(τ, yτ )dτ

)
ds

−
∫ s1

0
S(s1 − s)f

(
s, ys,

∫ s

0
a(s, τ)h(τ, yτ )dτ,

∫ T

0
b(s, τ)k(τ, yτ )dτ

)
ds
∥∥

≤
∥∥C(s2)− C(s1)

∥∥[c+G
]

+
∥∥S(s2)− S(s1)

∥∥[∥∥ξ∥∥+ c1m+ c2
]
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+

∫ s1

0

∥∥C(s2 − s)− C(s1 − s)
∥∥ (c1m+ c2

)
ds

+ N
(
c1m+ c2

)∣∣s2 − s1∣∣+

∫ s1

0

∥∥[S(s2 − s)− S(s1 − s)
]∥∥

×
[
M(s)

(
m+

∫ s

0
M(τ)H(m)dτ +

∫ T

0
M(τ)K(m)dτ

)]
ds

+ Ñ

∫ s2

s1

M(s)

(
m+

∫ s

0
M(τ)H(m)dτ +

∫ T

0
M(τ)K(m)dτ

)
ds

≤
{∥∥C(s2)− C(s1)

∥∥[c+G
]

+
∥∥S(s2)− S(s1)

∥∥[∥∥ξ∥∥+ c1m+ c2
]

+

∫ s1

0

∥∥C(s2 − s)− C(s1 − s)
∥∥ (c1m+ c2

)
ds

+ N
(
c1m+ c2

)∣∣s2 − s1∣∣+ γ

∫ s1

0

∥∥S(s2 − s)− S(s1 − s)
∥∥ds

+ Ñγ
∣∣s2 − s1∣∣}→ 0 as s2 → s1,

where γ is as defined in the proof of previous theorem. The compactness
of C(t) and S(t) for t > 0 implies the continuity in the uniform operator
topology. Therefore the right hand side of above equation tends to zero as
s2 → s1.

Case 2. Suppose −r ≤ s1 ≤ 0 ≤ s2 ≤ T then we get∥∥(Fy)(s2)− (Fy)(s1)
∥∥ ≤ ∥∥C(s2)

[
φ(0)−

(
g(yt1 , . . . , ytp)

)
(0)
]

− C(0)
[
φ(s1)−

(
g(yt1 , . . . , ytp)

)
(s1)

]∥∥
+
∥∥S(s2)

[
ξ − w(0, y0)

]∥∥+N
(
c1m+ c2

)∣∣s2∣∣
+
∥∥∫ s2

0
S(s2 − s)f

(
s, ys,

∫ s

0
a(s, τ)h(τ, yτ )dτ,∫ T

0
b(s, τ)k(τ, yτ )dτ

)
ds
∥∥

Now proceeding as in Case 1 for the integral on the right hand side of above
inequality we further obtain∥∥(Fy)(s2)− (Fy)(s1)

∥∥ ≤ {∥∥C(s2)
[
φ(0)−

(
g(yt1 , . . . , ytp)

)
(0)
]

− C(0)
[
φ(s1)−

(
g(yt1 , . . . , ytp)

)
(s1)

]∥∥
+
∥∥S(s2)

[
ξ − w(0, y0)

]∥∥+N
(
c1m+ c2

)∣∣s2 − s1∣∣
+ Ñγ

∣∣s2 − s1∣∣}→ 0 as s2 → 0+ and s1 → 0−.
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Case 3. Suppose −r ≤ s1 ≤ s2 ≤ 0 then using hypotheses (H12) and
(H14) we get∥∥(Fy)(s2)− (Fy)(s1)

∥∥ ≤ [(σ + L)
∣∣s1 − s2∣∣]→ 0 as s2 → s1.

Cases 1 − 3 imply that ‖(Fy)(s2) − (Fy)(s1)‖ → 0 as s1 → s2, for all
s1, s2 ∈ [−r, T ]. Thus we conclude that FBm is an equicontinuous family of
functions with values in X.

We have already shown that FBm is an equicontinuous and uniformly
bounded collection. To prove that the set FBm is precompact in B it is
sufficient by Arzela-Ascoli’s arguement to show that the set {(Fy)(t) : y ∈
Bm} is precompact in X for each t ∈ [−r, T ].

Let t ∈ [−r, 0] be fixed then using hypothesis (H13) we have

At =
{

(Fy)(t) : y ∈ Bm
}

=
{
φ(t)−

(
g(yt1 , . . . , ytp)

)
(t) : y ∈ Bm

}
is precompact in X for every t ∈ [−r, 0].

Now let 0 < t ≤ T be fixed and ε a real number satisfying 0 < ε < T .
For y ∈ Bm define

(Fεy)(t) = C(t)
[
φ(0)−

(
g(yt1 , . . . , ytp)

)
(0)
]

+ S(t)
[
ξ − w(0, y0)

]
+

∫ t−ε

0
C(t− s)w(s, ys)ds

+

∫ t−ε

0
S(t− s)f

(
s, ys,

∫ s

0
a(s, τ)h(τ, yτ )dτ,∫ T

0
b(s, τ)k(τ, yτ )dτ

)
ds.

Since C(t) and S(t) are compact operators and the set FBm is bounded in
B, the set Yε(t) =

{
(Fεy)(t) : y ∈ Bm

}
is precompact in X for every ε,

0 < ε < t. Moreover for every y ∈ Bm we have

(Fy)(t)− (Fεy)(t) =

∫ t

t−ε
C(t− s)w(s, ys)ds

+

∫ t

t−ε
S(t− s)f

(
s, ys,

∫ s

0
a(s, τ)h(τ, yτ )dτ,∫ T

0
b(s, τ)k(τ, yτ )dτ

)
ds.

Now using hypothesis (H1) − (H3) and conditions (4), (8), (10), (11) and
(19) we obtain
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∥∥(Fy)(t)− (Fεy)(t)
∥∥ ≤ ∫ t

t−ε

∥∥C(t− s)
∥∥∥∥w(s, ys)

∥∥ds
+

∫ t

t−ε

∥∥S(t− s)
∥∥ ∥∥f(s, ys,∫ s

0
a(s, τ)h(τ, yτ )dτ,∫ T

0
b(s, τ)k(τ, yτ )dτ

)∥∥ds
≤ N

(
c1m+ c2

)
ε

+ Ñ

∫ t

t−ε
M∗
(
m+M∗H(m)s+M∗K(m)T

)
ds

≤ N
(
c1m+ c2

)
ε+ Ñγ ε.

This shows that there exist precompact sets arbitrarily close to the set{
(Fy)(t) : y ∈ Bm

}
, t ∈ [0, T ]. Hence the set

{
(Fy)(t) : y ∈ Bm

}
is

precompact in X for every t ∈ [−r, T ]. Thus F is a completely continuous
operator. Moreover from the inequality (39) we conclude that the set

ε(F ) =
{
x ∈ B : x = νFx, ν ∈ (0, 1)

}
is bounded in B. Thus by virtue of Lemma 6 the operator F has a fixed
point x̃ in B. This x̃ is the solution of the nonlocal problem (1) − (2). This
completes the proof of the Theorem 2. �

Remark 1. While obtaining the mild solution of the nonlocal problem
(1) − (2) using the Leray-Schauder Alternative we have to assume the Lips-
chitz continuity of φ and

(
g(yt1 , . . . , ytp)

)
, whereas we could relax these con-

ditions while proving the existence of mild solution of the nonlocal problem
(1) − (2) using the Daro-Sadovskii’s fixed point theorem and the Hausdorff’s
measure of noncompactness.
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