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1. Introduction

The theory of probabilistic metric spaces is an important part of stochas-
tic Analysis, and so it is of interest to develop the fixed point theory in such
spaces. The first result from the fixed point theory in probabilistic metric
spaces is obtained by Sehgal and Bharucha- Reid [44]. Since then many fixed
points theorem for single valued and multi valued mappings in probabilistic
metric spaces have been proved in [11] - [16], [35].

The notion of a 2-metric space was introduced by Gahler [10]. A 2-metric
is not a continuous function in all of its variables, whereas an ordinary metric
spaces and a 2-metric space is not topologically equivalent to an ordinary
metric. In particular, the fixed point theorems on 2-metric spaces and metric
spaces may be unrelated easily. In 1942, Menger proposed a generalization of
metric fixed point theory by replacing the number d(x, y) by a real function
F (x, y), a probability distribution function, whose value F (x, y; t) for any
number t ≥ 0 is interpreted that the distance between x and y is less than
t and 0 ≤ F (x, y; t) ≤ 1.

Definition 1 ([45]). A mapping F : < → <+ is called distribution
function if it is non decreasing and left continuous with inf {F (t) : t ∈ <} = 0
and sup {F (t) : t ∈ <} = 1.
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Let L+ be the set of all distribution functions whereas H be the set of
specific distribution function (Also known as Heaviside function) defined by

H(t) =

{
0, if t ≤ 0

1, if t > 0

In 1987, Zeng [48] gave the generalization of 2-metric to Probabilistic 2-metric
akin to the notion of probabilistic metric spaces as given Menger.

A probabilistic 2-metric space is an ordered pair (X,F ), where X is
an arbitrary set and F is a mapping from X3 into the set of distribution
functions. The distribution function Fx,y,z(t) will denote the value of Fx,y,z
at the real number t. The function Fx,y,z are assumed to satisfy the following
conditions:

(i) Fx,y,z(0) = 0 for all x, y, z ∈ X
(ii) Fx,y,z(t) = 1 for all t > 0 iff at least two of three points x, y, z are

equal
(iii) For distinct points x, y ∈ X, there exists a point z ∈ X such that

Fx,y,z(t) 6= 1 for t > 0
(iv) Fx,y,z(t) = Fx,z,y(t) = Fz,y,x(t) for all x, y, z ∈ X and t > 0
(v) Fx,y,w(t1) = 1, Fx,w,z(t2) = 1, Fw,y,z(t3) = 1 then

Fx,y,z(t1 + t2 + t3) = 1 for all x, y, z, w ∈ X and t1, t2, t3 > 0.

In 2003, Ren and Wang [47] gave the notion of n-th order t-norm as
follows:

Definition 2. A mappings ∆ : Πn
i=1[0, 1] → [0, 1] is called a n-th order

t-norm if following conditions are satisfied:
(i) ∆(0, 0, . . . , 0) = 0, ∆(a, 1, 1, . . . , 1) = a for all a ∈ [0, 1]
(ii) ∆(a1, a2, a3, . . . , an) = ∆(a2, a1, a3, . . . , an)

= ∆(a2, a3, a1, . . . , an) = . . . = ∆(a2, a3, a4, . . . , an, a1)
(iii) ai ≥ bi, i = 1, 2, 3 . . . , n implies

∆(a1, a2, a3, . . . , an) ≥ ∆(b1, b2, b3, . . . , bn)
(iv) ∆(∆(a1, a2, a3, . . . , an), b2, b3, . . . , bn)

= ∆(a1,∆(a2, a3, . . . , an, b2), b3, . . . , bn)
= ∆(a1, a2,∆(a3, a4, . . . , an, b2, b3, ), b4, . . . , bn)
= . . .
= ∆(a1, a2, a3, . . . , an−1∆(an, b2, b3, ), b4, . . . , bn).

For n = 2, we have a binary t-norm, which is commonly known as t-norm.
Basics examples of t-norm are the Lukasiewicz t-norm ∆L,∆L(a, b) =

max(a + b − 1, 0), t-norms ∆P ,∆P (a, b) = ab and t-norms ∆M ,∆M (a, b)
= min(a, b)
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Definition 3 ([15]). Let ∆ be a t-norm and let ∆n : [0, 1]→ [0, 1](n ∈ N)
be defined in the following way:

∆1(x) = ∆(x, x), ∆n+1(x) = ∆(∆n(x), x) (n ∈ N, x ∈ [0, 1]).

We say that the t-norm ∆ is of Hadzic-type if ∆ is continuous and the
family {∆n(x), n ∈ N} is equicontinuous at x = 1. Recall that the family
{∆n(x), n ∈ N} is equicontinuous at x = 1 if for every λ ∈ (0, 1), there exist
δ(λ) ∈ (0, 1) such that the following implication holds:

x > 1− δ(λ) implies ∆n(x) > 1− λ for all n ∈ N.

A trivial example of t-norm of H-type is ∆ = ∆M .

Remark 1. Every minimum t-norm is Hadzic t-norm, but the converse
is not true.

Definition 4 ([15]). If ∆ is a t-norm and (x1, x2, . . . , xn) ∈ [0, 1]n

(n ∈ N), then ∆n
i=1xi is defined recursively by 1, if n = 1 and ∆n

i=1xi =
∆(∆n−1

i=1 xi, xn) for all n ≥ 2. If {bn}n∈N is a sequence of numbers from
[0, 1], then ∆∞i=1xi is defined as limn→∞∆n

i=1xi (this limit always exists)
and ∆∞i=1xi as ∆∞i=1xn+i.

Definition 5. Let X is any non-empty set and D+ denotes the set of all
distribution functions. A triplet (X,F,∆) is said to be a 2-Menger space if
the probabilistic 2-metric space (X,F ) satisfies the following condition:

(iv) Fx,y,z(t) ≥ ∆(Fx,y,w(t1), Fx,w,z(t2), Fw,y,z(t3)),

where t1, t2, t3 > 0, t1 + t2 + t3 = t and x, y, z, w ∈ X and ∆ is the 3rd order
t-norm.

Definition 6. A sequence {xn} in a 2-Menger space (X,F,∆) is said to
be

(i) convergent with limit x if limn→∞ Fxn,x,p(t) = 1 for all t > 0 and for
every p ∈ X

(ii) Cauchy sequence in X if given ε > 0, λ > 0, there exists a positive
integer Nε,λ such that Fxn,xm,p(ε) > 1− λ for all m,n > Nε,λ and for every
p ∈ X

(iii) Complete if every Cauchy sequence in X is convergent in X.

In 1984, Khan, Swaleh and Sessa [23] introduced the concept of altering
distance function in metric spaces and call it as a control function and it
alters the distance between two points in metric space. There are several
works in fixed point theory involving altering distance function, some of
these are noted in [38], [39].

Recently, Choudhary, Das [2] extended the concept of altering distance
function in the context of Menger spaces as follows:
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Definition 7. A function φ : R → R+ is said to be a φ-function if it
satisfies the following conditions:

(i) φ(t) = 0 if and if t = 0
(ii) φ(t) is strictly monotonic increasing and φ(t)→∞ as t→∞
(iii) φ is left continuous in (0,∞)
(iv) φ is continuous at 0.

In 2008, Choudhury and Das [3] introduced a new type of contraction
mappings in Menger spaces which is known as φ -contraction. The idea of
control function has opened possibilities of proving new fixed point results
in Menger spaces. Some recent results using φ-function are noted in [4], [5]
and [48].

Definition 8. A function Ψ : [0, 1] × [0, 1] → [0, 1] is said to be a
Ψ-function if

(i) Ψ is monotonic increasing and continuous
(ii) Ψ(x, x) > x for all 0 < x < 1
(iii) Ψ(1, 1) = 1,Ψ(0, 0) = 0.

Definition 9. Let (X,F,∆) be a complete 2-Menger space, where ∆
is the 3rd order minimum t-norm and the mapping T : X → X be a self
mapping which satisfies the following inequality for all x, y, p ∈ X

FTx,Ty,p(φ(t)) ≥ Ψ
(
Fx,Tx,p(φ(

t1
a

)), Fy,Ty,p(φ(
t2
b

))
)

where t1, t2, t > 0 with t = t1 + t2, a, b > 0 with 0 < a + b < 1, Ψ is a
Ψ-function and φ is a φ- function. Then the mapping T is called a general-
ized Kannan type mappings.

Definition 10 ([25], [26]). Let (X, d) be a metric space and f be a
mapping on X. The mapping f is called a Kannan type mapping if there
exists 0 ≤ α < 1

2 such that

d(fx, fy) ≤ α[d(x, fx) + d(y, fy)] for all x, y ∈ X.

There are a large number of works dealing with Kannan type mapping.
Several examples of these works are noted in [6], [22], [41].

In 1998, Jungck and Rhoades [20] introduced the notion of weakly com-
patible mappings as follows:

Two mappings are said to be weakly compatible if they commute at their
coincidence point.

Note that compatible mappings are weakly compatible, but the converse
is not true in general. In 2007, Kohli et. al [21] introduced the notion of
variants of R-weak commutative maps as follows:
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Definition 11. A pair of self-mappings (f, g) of a Menger space (X,F,∆)
is said to be:

(i) Weakly commuting if F (fgx, gfx, t) ≥ F (fx, gx, t)
(ii) R-Weakly commuting if there exists some R > 0 such that

F (fgx, gfx, t) ≥ F (fx, gx, tR)
(iii) R-Weakly commuting mappings of the type (i) if there exists some

R > 0 such that F (gfx, ffx, t) ≥ F (gx, fx, tR)
(iv) R-Weakly commuting mappings of the type (ii) if there exists some

R > 0 such that F (fgx, ggx, t) ≥ F (fx, gx, tR)
(v) R-Weakly commuting mappings of the type (iii) if there exists some

R > 0 such that F (ffx, ggx, t) ≥ F (fx, gx, tR) for all x ∈ X
t > 0.

In a similar mode, we state R-Weakly commuting mappings and R-
Weakly commuting mappings of the type (Ag), type (Af ) and type (P )
in setting of 2-Menger spaces

Definition 12. A pair of self-mappings (f, g) of a 2-Menger space (X,F,∆)
is said to be:

(i) Weakly commuting if F (fgx, gfx, p, t) ≥ F (fx, gx, p, t)
(ii) R-Weakly commuting if there exists some R > 0 such that

F (fgx, gfx, p, t) ≥ F (fx, gx, p, tR)
(iii) R-Weakly commuting mappings of the type (Ag) if there exists some

R > 0 such that F (gfx, ffx, p, t) ≥ F (gx, fx, p, tR)
(iv) R-Weakly commuting mappings of the type (Af ) if there exists some

R > 0 such that F (fgx, ggx, p, t) ≥ F (fx, gx, p, tR)
(v) R-Weakly commuting mappings of the type (P ) if there exists some

R > 0 such that F (ffx, ggx, p, t) ≥ F (fx, gx, p, tR), for all x ∈ X,
p ∈ X and t > 0.

In our further discussion, we adopt the terminology from the paper of
Imdad et.al. [30] and rename R-Weakly commuting mappings of the type
(i), R-Weakly commuting mappings of the type (ii) and R-Weakly com-
muting mappings of the type (iii) by R-Weakly commuting mappings of the
type (Ag), R-Weakly commuting mappings of the type (Af ) and R-Weakly
commuting mappings of the type (P ) respectively.

One can notice that definition 12 inspired by Imdad et.al. [18], [30] and
Pathak et. al. [34].

It is obvious that point wise R-weakly commuting maps commute at
their coincidence points and point wise R-weak commutativity is equivalent
to commutativity at coincidence points.

In 2002, Aamri and Moutawakil [1] generalized the notion of non com-
patible mapping by introducing the notion of E.A. property.
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Definition 13 ([1]). Let f and g be two self-mappings of a metric (X, d).
The maps f and g satisfy E.A. property if there exists a sequence {xn} in
X such that

lim
n→∞

fxn = lim
n→∞

gxn = u, for some u ∈ X.

Now in a similar mode we state E.A. property in 2-Menger space as
follows:

Definition 14. A pair of self-mapping (f, g) of 2-Menger spaces (X,F,∆)
is said to satisfy E.A. property, if there exists a sequence {xn} in X such
that limn→∞ Ffxn,gxn,p(t) = 1 for some t ∈ X.

Example 1. Let X = [0,∞) be the usual metric space. Define f, g :
X → X by fx = x

4 and gx = 3x
4 for all x ∈ X. Consider the sequence

{xn} = 1
n . Since

lim
n→∞

fxn = lim
n→∞

gxn = 0.

Then f and g satisfy the E.A. property.

Although E.A property is generalization of the concept of non compatible
mappings yet it requires either completeness of the whole space or any of
the range space or continuity of mappings. Recently, the new notion of
CLR property (common limit range property) was given by Sintunavarat
and Kumam [46] that further relaxes the requirement of the closeness of
range subspaces.

Definition 15. Two mapping f and g of 2-Menger space satisfy the
common limit in the range of g (CLRg) property if

lim
n→∞

fxn = lim
n→∞

gxn = gx, for some x ∈ X.

Example 2. Let X = [0,∞) be the usual metric space. Define f, g :
X → X by fx = x + 1 and gx = 2x for all x ∈ X. Consider the sequence
{xn} = 1 + 1

n . Since limn→∞ fxn = limn→∞ gxn = 2 = g1, therefore, f and
g satisfy the (CLRg) property.

In 2011, Choudhary [2] proved the following fixed point theorem.

Theorem 1 ([2]). Let (X,F,∆) be a complete 2-Menger space, where
∆ is the 3rd order minimum t-norm and the mapping T : X → X be a self
mapping which satisfies the following inequality for all x, y, p ∈ X,

FTx,Ty,p(φ(t)) ≥ Ψ
(
Fx,Tx,p(φ(

t1
a

)), Fy,Ty,p(φ(
t2
b

))
)

where t1, t2, t > 0 with t = t1 + t2, a, b > 0 with 0 < a + b < 1, Ψ is a
Ψ-function and φ is a Φ-function.

Then the mapping T has a unique fixed point in X.
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Now we extend Theorem 1 as follows.

2. Weakly compatible maps

Theorem 2. Let (X,F,∆) be a complete 2-Menger space, where ∆ is
the 3rd order minimum t-norm of Hadzic type and f and g : X → X be a
self mappings which satisfy the following conditions:

(1) f(X) ⊆ g(X)

(2) any one of f(X)and g(X) is complete

(3) Ffx,fy,p(φ(t)) ≥ Ψ
(
Fgx,fx,p(φ(

t1
a

)), Ffy,gy,p(φ(
t2
b

))
)

(4) f and g are weakly compatible on X.

where t1, t2, t > 0 with t = t1 + t2, a, b > 0 with 0 < a + b < 1, Ψ is a
Ψ−function and φ is a Φ-function.

For any x0 ∈ X, the sequence {yn} ∈ X can be constructed as follows:

yn = gxn+1 = fxn, n = 0, 1, 2, . . .

such that c ∈ (0, 1) and c = a+ b, the following condition holds:

lim
n→∞

∆∞i=nFy0,y1,pΦ(
1

ci
) = 1.

Then f and g have a unique common fixed point.

Proof. Let x0 ∈ X. We now construct a sequence {yn} ∈ X by yn =
gxn+1 = fxn, n ∈ N , where N is the set of all positive integers.

Now for t, t1, t2 > 0 with t = t1 + t2, we have

Fyn+1,yn,p(φ(t)) = Ffxn+1,fxn,p(φ(t))

≥ Ψ
(
Fgxn+1,fxn+1,p(φ(

t1
a

)), Ffxn,gxn,p(φ(
t2
b

))
)

≥ Ψ
(
Fyn,yn+1,p(φ(

t1
a

)), Fyn,yn−1,p(φ(
t2
b

))
)
.

(5) Fyn+1,yn,p(φ(t)) ≥ Ψ
(
Fyn+1,yn,p(φ(

t1
a

)), Fyn,yn−1,p(φ(
t2
b

))
)
.
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Let t1 = at
a+b and t2 = bt

a+b and c = a+ b, then obviously we have 0 < c < 1.
From (5), we have

(6) Fyn+1,yn,p(φ(t)) ≥ Ψ
(
Fyn+1,yn,p(φ(

t

c
)), Fyn,yn−1,p(φ(

t

c
))
)
.

We now claim that for all t > 0,

(7) Fyn+1,yn,p(φ(
t

c
)) ≥ Fyn,yn−1,p(φ(

t

c
)).

If possible, let for some t > 0,

Fyn+1,yn,p(φ(
t

c
)) < Fyn,yn−1,p(φ(

t

c
)).

i.e

Fyn,yn−1,p(φ(
t

c
)) > Fyn+1,yn,p(φ(

t

c
)).

Now we have from (6)

Fyn+1,yn,p(φ(t)) ≥ Ψ
(
Fyn+1,yn,p(φ(

t

c
)), Fyn+1,yn,p(φ(

t

c
))
)

> Fyn+1,yn,p(φ(
t

c
))

≥ Fyn+1,yn,p(φ(
t

c
)),

which is a contradiction, since 0 < c < 1, φ is strictly increasing and F is
non-decreasing.

Therefore for all t > 0, we have

Fyn+1,yn,p(φ(
t

c
)) ≥ Fyn,yn−1,p(φ(

t

c
)).

From (6) and (7), we have

Fyn+1,yn,p(φ(t)) ≥ Ψ
(
Fyn+1,yn,p(φ(

t

c
)), Fyn,yn−1,p(φ(

t

c
))
)

(8)

≥ Ψ
(
Fyn,yn−1,p(φ(

t

c
)), Fyn,yn−1,p(φ(

t

c
))
)

> Fyn,yn−1,p(φ(
t

c
))

> Fyn−1,yn−2,p(φ(
t

c2
))

> Fyn−2,yn−3,p(φ(
t

c3
))

...

> Fy1,y0,p(φ(
t

cn
))
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i.e

(9) Fyn+1,yn,p(φ(t)) ≥ Fy1,y0,p(φ(
t

cn
)).

Therefore,

(10) lim
n→∞

Fyn+1,yn,p(φ(t)) = 1 for all t > 0.

By the virtue of property of Φ, we can choose s > 0 such that s > φ(t).
Then for all p ∈ X and t > 0, we have

(11) lim
n→∞

Fyn,yn+1,p(s) = 1 for all t > 0.

Next we claim that {yn} is a Cauchy sequence.
In view of the condition (i) and (iv) in Definition 8, for all s > 0, we can

find a positive number t such that s > φ(t). Now from the paper Dosenovic,
we can easily follow {yn} is a Cauchy sequence in X, i.e,

Fyn,yn+m,p(s) > Fyn,yn+m,p(φ(t)) = Fyn,yn+m,p(φ(t))

≥ ∆(∆(. . .∆︸ ︷︷ ︸
(m− 1)-times

(Fyn,yn+1,p(φ(t)), Fyn+1,yn+2,p(φ(t)),

. . . , Fyn+m−1,yn+m,p(φ(t))

≥ ∆(∆(. . .∆︸ ︷︷ ︸
(m− 1)-times

(Fy0,y1,p(φ(
t

cn
)), Fy0,y1,p(φ(

t

cn+1
)),

. . . , Fy0,y1,p(φ(
t

cn+m−1
)))))

= ∆n+m−1
i=n Fy0,y1,p(φ(

t

ci
)) ≥ ∆∞i=nFy0,y1,p(φ(

t

ci
))

i.e

Fyn,yn+m,p(s) ≥ ∆∞i=nFy0,y1,p(φ(
t

ci
)).

This implies that limn→∞∆∞i=nFy0,y1,p(φ( t
ci

)) = 1 for every t > 0. This
means that the sequence {yn} is a Cauchy sequence.

Since (X,F,∆) is a complete 2-Menger space, therefore, we have {yn} is
convergent in X for some z in X, i.e

(12) lim
n→∞

yn = z = lim
n→∞

gxn+1 = lim
n→∞

fxn.

Let g(X) is complete, there exists a point z1 ∈ X such that gz1 = z.
We now show that fz1 = z. If possible, let 0 < Fz,fz1,p(φ(t)) < 1 for

some t > 0. By virtue of the property of φ, we can choose ξ1, ξ2, t1, t2 such
that

φ(t) = ξ1 + ξ2 + φ(t1 + t2)
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Again since 0 < b < 1, we can get φ( t2b ) > φ(t). Then we have,

Fz,fz1,p(φ(t)) = Fz,fz1,p

(
ξ1 + ξ2 + φ(t1 + t2)

)
(13)

≥ ∆
(
Fz,fz1,yn+1(ξ1),Fz,yn+1,p(ξ2), Fyn+1,fz1,p(φ(t1 + t2))

)
≥ ∆

(
Fz,yn+1,fz1(ξ1),Fz,yn+1,p(ξ2), Ffxn+1,fz1,p(φ(t1 + t2))

)
≥ ∆

(
Fz,yn+1,fz1(ξ1),Fz,yn+1,p(ξ2),

Ψ(Fgxn+1,fxn+1,p(φ(
t1
a

)), Ffz1,gz1,p(φ(
t2
b

)))
)

≥ ∆
(
Fz,yn+1,fz1(ξ1),Fz,yn+1,p(ξ2)

)
,

Ψ
(
Fyn,yn+1,p(φ(

t1
a

)), Ffz1,z,p(φ(t))
)
.

By (11), (12), (13), there exists a positive integer δ1 such that

Fz,yn+1,fz1(ξ1),Fz,yn+1,p(ξ2)
, Fyn,yn+1,p(φ(

t1
a

)) > Ffz1,z,p(φ(t))

for all n > δ1. Then we have from (13), Fz,fz1,p(φ(t)) > Fz,fz1,p(φ(t)),
which is a contradiction, therefore Fz,fz1,p(φ(t)) = 1 for all t > 0, which
implies fz1 = z = gz1. Since f and g are weakly compatible, it follows that
fgz1 = gfz1 i.e fz = gz.

Now we show that z is a fixed point of f and g. From(3), we have

Ffz,fxn,p(φ(t)) ≥ Ψ
(
Fgz,fz,p(φ(

t1
a

)), Ffxn,gxn,p(φ(
t2
b

))
)

where t = t1 + t2. Then,

Ffz,fxn,p(φ(t)) ≥ Ψ
(
Fgz,fz,p(φ(

t1
a

)), Fyn,yn−1,p(φ(
t2
b

))
)
.

Taking limit as n → ∞, we have Ffz,z,p(φ(t)) ≥ Ψ(1, 1) = 1 and using
property of Φ, we have fz = z = gz. Thus z is a fixed point of f and g.

Uniqueness. Let u, v be two fixed points, therefore, for all t > 0,

Fu,v,p(φ(t)) = Ffu,fv,p(φ(t))

≥ Ψ
(
Fgu,fu,pφ((

t1
a

)), Ffv,gv,pφ((
t2
b

))
)

for t1, t2 > 0 and t1 + t2 = t

≥ Ψ
(
Fu,u,pφ((

t1
a

)), Fv,v,pφ((
t2
b

))
)

= Ψ(1, 1) = 1.

Therefore u = v. This completeness the proof of the theorem. �

Now we construct an example with the help of example in [2]
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Example 3. Let X = {α, β, γ, δ} , the t-norm ∆ is 3rd order minimum
t-norm and F be defined as:

Fα,β,γ(t) = Fα,β,δ(t) =


0, if t ≤ 0

0.40, if 0 < t < 4

1, if t ≥ 4

and

Fα,γ,δ(t) = Fβ,γ,δ(t) =

{
0, if t ≤ 0

1, if t > 0.

Then (X,F,∆) is a complete 2-Menger space. Now we define f : X → X
and g : X → X as follows:

fα = δ, fβ = γ, fγ = γ, fδ = γ and gx = x for all x ∈ X.

Then the mapping f and g satisfy all the conditions of the theorem 2, where

φ(t) =

{√
t, if t > 0

0, if t ≤ 0.

and γ is the unique fixed point of f and g.

Theorem 3. Theorem 2 remains true if a weakly compatible property is
replaced by any one (retaining the rest of the hypothesis) of the following:

(i) R-weakly commuting property,
(ii) R-weakly commuting property of type (Af ),
(iii) R-weakly commuting property of type (Ag),
(iv) R-weakly commuting property of type (P ),
(v) Weakly commuting property.

Proof. Since all the conditions of Theorem 2 are satisfied, then the
existence of coincidence points for the pair (f, g) is insured. Let z be an
arbitrary point of coincidence for (f, g), then using R-weakly commuting
one gets

F (fgz, gfz, p, t) ≥ F (fz, gz, p,
t

R
) = 1

which amounts to say that fgz = gfz. Thus the pair (f, g) is coincidently
commuting. Now applying Theorem 2, one concludes that f and g have a
unique common fixed point.

In case (f, g) is an R-weakly commuting property of type Af , then

F (fgz, g2z, p, t) ≥ F (fz, gz, p,
t

R
) = 1

which amounts to say that fgz = g2z i.e., fgz = gfz (by Theorem 2).
Similarly, if the pair is R-weakly commuting mappings of type (Ag) or type
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(P ) or weakly commuting, then (f, g) also commutes at their point of coin-
cidence. Now in view of Theorem 2, in all four cases f and g have a unique
common fixed point. This completes the proof. �

As an application of Theorem 2, we prove common fixed point theorems
for two finite families of mapping which runs as follows:

Theorem 4. Let {f1, f2, . . . , fm} and {g1, g2, . . . , gn} be two finite fami-
lies of self-mappings of a 2-Menger space (X,F,∆) with continuous t-norm
of Hadzic type such that f = f1f2 . . . fm, g = g1g2 . . . gn, satisfy condition
(1),(2),(3),(4), then

(i) f and g have a point of coincidence.
Moreover, if fifj = fjfi, grgs = gsgr, figr = grfi, for all i, j ∈ I1 =
{1, 2, . . . ,m}, r, s ∈ I2 = {1, 2, . . . , n}, then for all i ∈ I1, r ∈ I2, then fi, gr
have a common fixed point.

Proof. The conclusion (i) is immediate as f and g satisfy all the con-
ditions of Theorem 3. Now appealing to component wise commutativity of
various pairs, one can immediately prove that fg = gf and hence, obviously
pair (f, g) are coincidently commuting. Note that all the conditions of The-
orem 3 (for mappings f , g) are satisfied ensuring the existence of a unique
common fixed point, say z. Now one need to show that z remains the fixed
point of all the component maps. For this consider

f(fiz) = ((f1, f2, . . . , fm)fi)z

= (f1, f2,0, fm−1)((fmfi)z)

= (f1, f2, . . . , fm−1)(fifmz)

= (f1, f2, . . . , fm−2)(fm−1fi(fmz))

= (f1, f2, . . . , fm−2)(fifm−1(fmz))

= . . .

= f1fi(f2f3f4, . . . , fmz)

= fif1(f2f3f4, . . . , fmz) = fi(fz) = fiz.

Similarly, one can show that

f(grz) = gr(fz) = grz,

g(grz) = gr(gz) = grz,

g(fiz) = fi(gz) = fiz,

which show that (for all i and r) fiz and grz are other fixed points of the
pair (f, g). Now appealing to the uniqueness of common fixed points of pair
(f, g), we get

z = fiz = grz
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which shows that z is a common fixed point of fi, gr, for all i and r. �

By setting f = f1 = f2 = . . . = fm, g = g1 = g2 = . . . = gn, one deduces
the following for certain iterates of maps, which runs as follows:

Corollary 1. Let f , g be two self-mappings of a 2-Menger space (X,F,∆)
such thatfm, gn, satisfy the conditions (1) and (3). If one of fm(X), gn(X)
is a closed subset of X, then f and g have a unique common fixed point
provided the pair (f, g) commute.

3. E.A. property

Now we prove a result for weakly compatible mappings along with E.A.
property as follows:

Theorem 5. Let f and g be self mappings of 2-Menger space (X,F,∆)
satisfying (3) and the following:

(14) f and g satisfy the E.A. property

(15) g(X) is a closed subspace of X

(16) f and g are weakly compatible on X,

provided 0 < Fx,y,p(t) < 1.

Then f and g have a unique common fixed point in X.

Proof. Since f and g satisfy the E.A. property, therefore there exists a
sequence {xn} in X such that

lim
n→∞

fxn = lim
n→∞

gxn = u ∈ X.

As g(x) is a closed subspace of X, therefore, every convergent sequence of
points of g(X) has a limit in g(X). Therefore,

(17) u = lim
n→∞

fxn = lim
n→∞

gxn = ga for some a ∈ X.

This implies u = ga ∈ g(X). We now show that fa = u = ga. If possible,
let 0 < Fu,fa,p(φ(t)) < 1, for some t > 0. By virtue of the property of φ we
can choose ξ1, ξ2, t1, t2 such that

φ(t) = ξ1 + ξ2 + φ(t1 + t2).
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Again, since 0 < b < 1, we can get φ( t2b ) > φ(t). Then we have,

Fu,fa,p(φ(t)) = Fu,fa,p

(
ξ1 + ξ2 + φ(t1 + t2)

)
(18)

≥ ∆
(
Fu,fa,fu(ξ1), Fu,fu,p(ξ2), Ffu,fa,p(φ(t1 + t2))

)
≥ ∆

(
Fu,fa,fu(ξ1), Fu,fu,p(ξ2)

)
,

Ψ
(
Fgu,fu,p(φ(

t1
a

)), Ffa,ga,p(φ(
t2
b

))
)

≥ ∆
(
Fu,fa,fu(ξ1), Fu,fu,p(ξ2)

)
,

Ψ
(
Fgu,fu,p(φ(

t1
a

)), Ffa,u,p(φ(t))
)
.

By (18),(17), there exists a positive integer δ2 such that

Fu,fa,fu(ξ1), Fu,fu,p(ξ2)
)
, Fgu,fu,p(φ(

t1
a

)) > Ffa,u,p(φ(t)) for all n > δ2.

Then we have from (18), Fu,fu,p(φ(t)) > Fu,fa,p(φ(t)), which is a con-
tradiction, therefore Fu,fa,p(φ(t)) = 1 for all t > 0, which implies that
fa = u = ga. Since f and g are weakly compatible, it follows that gfa = fga
i.e fu = gu.

Now, we show that u is a fixed point of f and g. From (3), we have

Ffu,fxn,p(φ(t)) ≥ Ψ
(
Fgu,fu,p(φ(

t1
a

)), Ffxn,gxn,p(φ(
t2
b

))
)

where t = t1 + t2. Taking limit as n→∞, we have

Ffu,u,p(φ(t)) ≥ Ψ
(
Ffu,fu,p(φ(

t1
a

)), Fu,u,p(φ(
t2
b

))
)

Ffu,u,p(φ(t)) ≥ Ψ
(

1, 1
)

and using of φ, we have
fu = u = gu.

Thus u is a fixed point of f and g.

Uniqueness. Let u, v be two fixed points, therefore for all t > 0,

Fu,v,p(φ(t)) = Ffu,fv,p(φ(t))

≥ Ψ
(
Fgu,fu,p(φ(

t1
a

)), Ffv,gv,p(φ(
t2
b

))
)

for t1, t2 > 0 and t = t1 + t2

≥ Ψ
(
Fu,u,p(φ(

t1
a

)), Fv,v,p(φ(
t2
b

))
)

= Ψ
(

1, 1
)

= 1.

Therefore, u = v. Thus u is a unique fixed point of f and g. �
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4. (CLRg) property and weakly compatible maps

Now we prove a theorem for weakly compatible mappings along with
(CLRg) property as follows:

Theorem 6. Let f and g be self mappings of 2-Menger space (X,F,∆)
satisfying (3) and the following:

(19) f and g satisfy the (CLRg) property

(20) f and g are weakly compatible on X, provided 0 < Fx,y,p(t) < 1.

Then f and g have a unique common fixed point in X.

Proof. Since f and g satisfy the (CLRg) property, therefore there exists
a sequence {xn} in X such that

(21) lim
n→∞

fxn = lim
n→∞

gxn = gx ∈ X.

We now show that fx = gx. If possible, let 0 < Ffx,gx,p(φ(t)) < 1, for some
t > 0. By virtue of the property of φ we can choose ξ1, ξ2, t1, t2 such that

φ(t) = ξ1 + ξ2 + φ(t1 + t2)

Again, since 0 < b < 1, we can get φ( t2b ) > φ(t). Then we have,

Fgxn,fx,p(φ(t)) = Fgxn,fx,p

(
ξ1 + ξ2 + φ(t1 + t2)

)
≥ ∆

(
Fgxn,fx,fu(ξ1), Fgxn,fu,p(ξ2), Ffu,fx,p(φ(t1 + t2))

)
.

for all n ∈ N . Taking limn→∞, we have

Fgx,fx,p(φ(t)) ≥ ∆
(
Fgx,fx,fu(ξ1), Fgx,fu,p(ξ2)

)
(22)

Ψ
(
Fgu,fu,p(φ(

t1
a

)), Ffx,gx,p(φ(
t2
b

))
)

≥ ∆
(
Fgx,fx,fu(ξ1), Fgx,fu,p(ξ2)

)
Ψ
(
Fgu,fu,p(φ(

t1
a

)), Ffx,gx,p(φ(t))
)

By (21),(22), there exists a positive integer δ3 such that

Fgx,fx,fu(ξ1), Fgx,fu,p(ξ2), Fgu,fu,p(φ(
t1
a

)) > Ffx,gx,p(φ(t))
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for all n > δ3. Then we have from (22),

Fgx,fx,p(φ(t)) > Fgx,fx,p(φ(t)),

which is a contradiction. Therefore Fgx,fx,p(φ(t)) = 1 for all t > 0 which
implies that fx = gx = u. Now from Theorem 5 we can obtain that u is a
unique fixed point of f and g. �

5. Conclusions

Fixed point theorem for weakly compatible, weakly compatible along
with E.A. property, weakly compatible along with CLR property have been
proved and that reflects the utility of weakly compatible maps along with
E.A. and CLR properties. Now, there arises a natural question: “How
fixed point theorems can be improved to the setting of non-complete metric
spaces and without continuity of f and g over the whole space X?” We give
the partial answer. It seems that fixed point theorems can be improved by
using E.A. property. Aamri and El Moutawakil generalized the concept of
non compatiblity in metric spaces by defining the notion E.A. property and
proved common fixed point theorems under strict contractive conditions.
A major benefit of E.A. property is that it ensures convergence of desired
sequences without completeness. Further it was pointed out in [1] that E. A.
property buys containment of ranges without any continuity requirements
besides minimizes the commutativity conditions of the maps to the com-
mutativity at their points of coincidence. Moreover, E.A. property Allows
replacing the completeness requirement of the space with a more natural
condition of closeness of the range.
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