
F A S C I C U L I M A T H E M A T I C I

Nr 54 2015
DOI:10.1515/fascmath-2015-0007

Sabir Hussain

SOME MORE PROPERTIES OF γ-s-CLOSED

SPACES

Abstract. The concept of γ-s-closed spaces have been introduced
and explored by S. Hussain and B. Ahmad [6]. In this paper, some
more interesting characterizations have been constructed for the
description of such spaces.

Key words: γ-closed (open), γ-interior (closure), γ-semi-open
(closed), γ-s-closed, γ-s-θ-converges, γ-s-θ-accumulate, γ-s-θ-com-
plete accumulation, γ-s-θ-adherence.

AMS Mathematics Subject Classification: 54A05, 54A10, 54D10,

54D99.

1. Introduction

One of the important areas of mathematics is Topology. Whose study
is not only interesting and present new results but also put into context
old ones like continuous functions. Therefore, we may find its influence in
approximately all fields of mathematics.

S. Kasahara [10] introduced and discussed an operation γ of a topology
τ into the power set P (X) of a space X. H. Ogata [15] introduced the
concept of γ-open sets and investigated the related topological properties of
the associated topology τγ and τ by using operation γ.

S. Hussain and B. Ahmad [1-9] continued studying the properties of
γ-operations on topological spaces and investigated many interesting re-
sults. In 2007-08, they introduced and discussed γ-s-closed spaces and
subspaces[5-6]. It is shown that the concept of γ-s-closed spaces general-
ized s-closed spaces [12]. It is interesting to note that γ-s-closedness is the
generalization of γ0-compactness (which generalized compactness) defined
and investigated in [3].

In this paper, some more interesting characterizations have been con-
structed for the description of such spaces.

First, we recall some definitions and results used in this paper. Hereafter,
we shall write a space in place of a topological space.
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2. Preliminaries

Definition 1 ([15]). Let X be a space. An operation γ : τ → P (X) is a
function from τ to the power set of X such that V ⊆ V γ, for each V ∈ τ ,
where V γ denotes the value of γ at V . The operations defined by γ(G) = G,
γ(G) = cl(G) and γ(G) = intcl(G) are examples of operation γ.

Definition 2 ([15]). Let A ⊆ X. A point x ∈ A is said to be γ-interior
point of A, if there exists an open nbd N of x such that Nγ ⊆ A and we
denote the set of all such points by intγ(A). Thus

intγ(A) = {x ∈ A : x ∈ N ∈ τ and Nγ ⊆ A} ⊆ A.

Note that A is γ-open [15] iff A = intγ(A). A set A is called γ- closed
[1] iff X −A is γ-open.

Definition 3 ([15]). A point x ∈ X is called a γ-closure point of A ⊆ X,
if Uγ ∩A 6= φ, for each open nbd U of x. The set of all γ-closure points of A
is called γ-closure of A and is denoted by clγ(A). A subset A of X is called
γ-closed, if clγ(A) ⊆ A. Note that clγ(A) is contained in every γ-closed
superset of A.

Definition 4 ([1]). The γ-exterior of A, written extγ(A) is defined as
the γ-interior of X −A. That is, extγ(A) = intγ(X −A).

Definition 5 ([1]). The γ-boundary of A, written bdγ(A) is defined as
the set of points which do not belong to the γ-interior or the γ-exterior of A.

Definition 6 ([15]). An operation γ on τ is said be regular, if for any
open nbds U ,V of x ∈ X, there exists an open nbd W of x such that Uγ ∩
V γ ⊇W γ.

Definition 7 ([15]). An operation γ on τ is said to be open, if for any
open nbd U of each x ∈ X, there exists γ-open set B such that x ∈ B and
Uγ ⊇ B.

Definition 8 ([15]). A space X is said to be γ-T2 space, if for each
disjoint points x, y of X, there exist open sets U and V such that x ∈ U ,
y ∈ V and Uγ ∩ V γ = φ.

Definition 9 ([5]). A subset A of a space X is called γ-regular open, if
A = intγ(clγ(A)). The set of γ-regular open sets is denoted by ROγ(X).

Note that ROγ(X) ⊆ τγ ⊆ τ . Where τγ denotes the set of all γ-open sets
in X.
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Definition 10 ([5]). A subset A of a space X is called γ-regular closed,
denoted by RCγ(X), if one of the following conditions holds:

(i) A = clγ(intγ(A)).
(ii) (X −A) ∈ ROγ(X).

Clearly A is γ-regular open if and only if X −A is γ-regular closed.

Definition 11 ([3]). A subset A of a space X is said to be γ0-compact
relative to X, if every cover {Vi : i ∈ I} of X by γ-open sets of X, there
exists a finite subset I0 of I such that A ⊆

⋃
i∈I0 clγ(Vi). A space X is

γ0-compact, if X =
⋃
i∈I0 clγ(Vi).

Definition 12 ([3]). A space X is said to be a γ-regular space, if for any
γ-closed set A and any point x /∈ A, there exist γ-open sets U and V such
that x ∈ U , and A ⊆ V and U ∩ V = φ.

Definition 13 ([2]). Let X be a space and x ∈ X. Then x is called a
γ-limit point (γ-adherent point) of A if and only if Uγ ∩ (A − {x}) 6= φ,
where U is open set in X. The set of all γ-limit points (γ-adherent points)
is called a γ-derived set (γ-adherent) and is denoted by Adγ (adγ).

Definition 14 ([1]). Let A ⊆ X. Then A is called γ-dense in itself, if
A ⊆ Adγ.

Definition 15 ([9]). A subset A of a space X is said to be a γ-semi-open
set, if there exists a γ-open set O such that O ⊆ A ⊆ clγ(O). The set of
all γ-semi-open sets is denoted by SOγ(X). A is γ-semi-closed if and only
if X − A is γ-semi-open in X. Note that A is γ-semi-closed if and only if
intγ(clγ(A)) ⊆ A [4].

It is shown that every γ-open sets is γ-semi-open but converse is not true
in general [4].

Definition 16 ([4]). Let X be a space and A ⊆ X. The intersection
of all γ-semi-closed sets containing A is called γ-semi-closure of A and is
denoted by sclγ(A) . A is γ-semi-closed iff sclγ(A) = A.

Definition 17 ([4]). Let X be a space and A ⊆ X. The union of
γ-semi-open subsets of A is called γ-semi-interior of A and is denoted by
sintγ(A).

Definition 18 ([8]). A space X is said to be γ-s-regular, if for any
γ-semi-regular set A and x /∈ A, there exist disjoint γ-open sets U and V
such that A ⊆ U and x ∈ V .

Definition 19 ([9]). A subset A of a space X is said to be γ-semi-regular,
if it is both γ-semi-open and γ-semi-closed. The class of all γ-semi-regular
sets of X is denoted by SRγ(A). If γ is regular, then the union of γ-semi-re-
gular sets is γ-semi-regular.
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Definition 20 ([6]). A space X is γ-extremally disconnected space, if
clγ(U) is γ-open set, for every γ-open set U in X.

It is also shown [6] that clγ(U) = sclγ(U), if X is γ-extremally discon-
nected.

Proposition 1 ([6]). If A ∈ SOγ(X), then sclγ(A) ∈ SRγ(X).

Definition 21 ([6]). A point x ∈ X is said to be a γ-semi-θ-adherent
point of a subset A of X if sclγ(U) ∩ A 6= φ, for every U ∈ SOγ(X). The
set of all γ-semi-θ-adherent points of A is called the γ-semi-θ-closure of A
and is denoted by sγclθ(A).

A subset A is called γ-semi-θ-closed if sγclθ(A) = A.

Proposition 2 ([6]). Let A be a subset of a space X. Then we have
(i) If A ∈ SOγ(X), then sclγ(A) = sγclθ(A).
(ii) If A ∈ SRγ(X), then A is γ-semi-θ-closed.

Definition 22 ([6]). A filter base Γ on X is said to γ-SR-converges to
x ∈ X, if for each V ∈ SRγ(X), there exists F ∈ Γ such that F ⊆ V .

Proposition 3 ([6]). A filter base Γ is said to be γ-SR-accumulate at
x ∈ X if V ∩ F 6= φ, for every V ∈ SRγ(X) and every F ∈ Γ.

3. Characterizations of γ-s-closed spaces

Definition 23 ([6]). A space X is said to be γ-s-closed, if for any cover
{Vα : α ∈ I} of X by γ-semi-open sets of X, there exists a finite subset I0
of I such that X =

⋃
α∈I0 sclγ(Vα).

Definition 24 ([6]). A filter base Γ on X is said to γ-s-θ-converges to
x ∈ X, if for each V ∈ SOγ(X) containing x , there exists Ai ∈ Γ such that
Ai ⊆ sclγ(V ).

Definition 25 ([6]). A filter base Γ is said to be γ-s-θ-accumulate at
x ∈ X, if Ai ∩ sclγ(V ) 6= φ, for every V ∈ SOγ(X) containing x and each
Ai ∈ Γ.

Definition 26 ([6]). The γ-s-θ-adherence of filterbase Γ denoted by
sγadθ(Γ) and is defined as

⋂
{sγclθ(A) : A ∈ Γ}.

The proof of the following theorem follows from the definitions and is
thus omitted:

Theorem 1. Let X be a space and Γ be a filterbase on X. Then
(i) Γ γ-s-θ-accumulates to a point x ∈ X if and only if it γ-SR-accumula-

tes to x.
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(ii) Γ γ-s-θ-converges to a point x ∈ X if and only if it γ-SR-converges
to x.

Definition 27 ([6]). Let X be a space and |C| denotes the cardinality of
C ⊆ X. A point x ∈ X is said to be γ-s-θ-complete accumulation point of
C ⊆ X, if |C ∩B| = |C| for each B ∈ SRγ(X).

Proposition 4 ([6]). For any space X, the following are equivalent:
(i) X is γ-s-closed.
(ii) Every cover of X by γ-semi-regular sets has a finite sub cover.
(iii) For every family {Vα : α ∈ I} of γ-semi-regular sets such that⋂

{Vα : α ∈ I} = φ, there exists a finite subset I0 of I such that⋂
{Vα : α ∈ I0} = φ.

(iv) Every filter base γ-SR-accumulates at some point of X.
(v) Every maximal filter base γ-SR-converges to some point of X.

Theorem 2. A space X is γ-s-closed if and only if every infinite subset
A ⊆ X has a γ-s-θ-complete accumulation point in X.

Proof. Suppose X is γ-s-closed and A is an infinite subset of X. Let
S = {x ∈ X : x is not a γ-s-θ-complete accumulation point of A}. For each
x ∈ S, we can find a γ-semi-regular set Rx in X such that |Rx ∩ A| < |A|.
If S = X, then U = {Rx : x ∈ S} is a cover of X by γ-semi-regular sets.
Since X is γ-s-closed by Proposition 4, we can select a finite subcover say
U0 = {Rx1 , . . . , Rxn} ⊆ U . Then A ⊆

⋃
{Rxi ∩ A : i = 1, 2, . . . , n} and

|A| = max{|Rxi ∩ A| : i = 1, 2, . . . , n}, a contradiction. Consequently,
X −A 6= φ implies that A has a γ-s-θ-complete accumulation point.

Conversely, suppose that every infinite subset A ofX has a γ-s-θ-complete
accumulation point in X, and if possible, let X be not γ-s-closed. Then there
is a cover U of X by γ-semi-regular sets, which has no finite subcover. Put
α = min{|v| : v ⊂ U and v is a cover of X}. Fix v∗ ⊂ U , for which
|v∗| = α and

⋃
{U : U ∈ v∗} = X. Obviously, by assumption α ≥ d where

d is the cardinality of the set of natural numbers. Well order the set v∗ by
some minimal well ordering ′ ≺′. Let U be any element of v∗, since ′ ≺′
is a minimal well ordering |{V : V ∈ v∗ and v ≺ U}| < |{V : V ∈ v∗}|.
Obviously v∗ can not have any subcover with cardinality less than α and
so

⋃
{V : V ∈ v∗ and V ≺ U} 6= X for each U ∈ v∗. Choose a point

x(U) ∈ X −
⋃
{V ∪ {x(V )} : V ∈ v∗ and V ≺ U} for each U ∈ v∗. This can

always be done because otherwise one could select form v∗ a cover of small
cardinality. If M = {x(U) : U ∈ v∗} then we shall show that M has no
γ-s-θ-complete accumulation point in X. Let y ∈ X. Now y ∈ U1 for some
U1 ∈ v∗, since v∗ is a covering of Y . But x(U) ∈ U1 implies, by the choice
of x(U), that U ≺ U1. Hence {U : U ∈ v∗ and x(U) ∈ U1} ⊂ {V : V ∈ v∗
and V ≺ U1}. But |{U : U ∈ v∗ and U ≺ U1}| < α, by the minimality
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of ≺. Consequently |M ∩ U1| < α. But |M | < |α| ≥ d because V1 6= V2
and V1, V2 ∈ v∗ imply that x(V1) 6= x(V2). Thus M has no γ-s-θ-complete
accumulation point. �

Definition 28 ([6]). A function f : X → Y is said have a γ-s-θ-subclosed
graph, if for each x ∈ X and each filterbase Γ on X − {x} with Γ → x,
f(Γ) has almost one γ-s-θ-accumulation point viz. f(x). Equivalently f
has a γ-s-θ-subclosed graph if for each x ∈ X and each net {Sn : n ∈ D}
on X − {x} with Sn → x, f(Sn) is frequently in every γ-semi-regular set
containing f(x).

Definition 29 ([4]). A function f : X → Y is a γ-semi-continuous if
and only if for any γ-open set B in Y , f−1(B) is γ-semi-open in X.

Theorem 3 ([4]). Let f : X → Y be a function and x ∈ X. Then f
is γ-semi-continuous if and only if for each γ-open set B containing f(x),
there exists A ∈ SOγ(X) such that x ∈ A and f(A) ⊆ B, where γ is a
regular operation.

The proof of the following theorem is obvious.

Theorem 4. Let f : X → Y be a function. Then the following are
equivalent:

(i) f is γ-semi-continuous.
(ii) for each filtebase Γ on X, f(adγ(Γ)) ⊆ sγadθ(Γ).

Theorem 5. Let f : X → Y be a function from space X to Y such that
each filterbase on Y with atmost one γ-s-θ-adherent point is γ-s-θ-convergent.
Then f is γ-semi-continuous if f has a γ-s-θ-subclosed graph.

Proof. Let f has a γ-s-θ-subclosed graph. To show that f is γ-semi-conti-
nuous it suffices to show that f(adγ(Γ)) ⊆ sγadθ(Γ) for any filterbase Γ on
X. Let y ∈ f(adγ(Γ)). Then there exists a x ∈ adγ(Γ) such that y = f(x).
Let Γ∗ = {(V ∩ F ) − {x}, V ∈ τγ(x) and F ∈ Γ, where τγ(x) denotes the
class of all γ-open sets containing x}. We consider following two cases:

Case 1. Γ∗ is not a filterbase; then, for some F ∈ Γ, V ∩ (F −{x}) = Φ,
i.e. x ∈ F . We demand that x ∈ F , for each F ∈ Γ; infact, if possible, x /∈ F
for some F ∈ Γ say F1; then there exists a F2 for which F ∩ F1 ⊇ F2. But
V ∩ F2 − {x} ⊆ V ∩ F − {x} = φ which gives x ∈ F2 ⊆ F1, a contradiction.
Thus x ∈ F for each F ∈ Γ and so f(x) ∈ f(F ) for each F ∈ Γ. Consequently
f(x) ∈ sγadθf(Γ).

Case 2. Suppose Γ∗ is a filterbase on X − {x}. Then Γ∗ → x and by
definition of γ-s-θ-subclosed graph, f(Γ∗) has atmost one γ-s-θ-accumulation
point viz. f(x). Hence by the given condition, f(Γ∗) is γ-s-θ-convergent and
it γ-s-θ-converges to f(x) = y. Thus y ∈ sγadθf(Γ∗) ⊆ sγadθf(Γ). Thus f
is γ-semi-continuous. �



Some more properties of γ-s-closed. . . 123

Theorem 6. Let f : X → Y be a function from space X to Y such
that every filterbase on Y has atmost one γ-s-θ-accumulation point. If f is
γ-semi-continuous, then the graph of f is γ-s-θ-subclosed.

Proof. Let f : X → Y be γ-semi-continuous and let Γ be a filterbase on
X−{x} converging to x. Since f is γ-semi-continuous, f(ad(Γ)) ⊆ sγadθ(Γ).
That is, f(x) is a γ-s-θ-adherent point of f(Γ). By the given condition
f(x) is the only γ-s-θ-adherent point of f(Γ). Hence the graph of f is
γ-s-θ-subclosed. �

Theorem 7. Let X be a γ-s-closed space, then every filterbase on X
with atmost one γ-s-θ-accumulation point is γ-s-θ-convergent.

Proof. Let X be a γ-s-closed. Then by Proposition 4 and Theorem 1,
every filterbase has at least one γ-s-θ-accumulation point. Let x be the only
γ-s-θ-accumulation point of Γ. If possible, let Γ do not γ-s-θ-converge to
x ∈ X. Then for some R ∈ SRγ(x), F ∩ (X − R) 6= φ for each F ∈ Γ so
that Γ∗ = {F ∩ (X − R) : F ∈ Γ} is a filterbase on X and hence has a
γ-s-θ-accumulation point say x0. Since the γ-semi-regular set R containing
x has empty intersection with each member of Γ∗, x 6= x0. But every set
belongs to SRγ(x0) intersects each member of γ∗ and hence each member
of Γ. Thus Γ γ-s-θ-accumulates to x0 which is a contradiction. �

Theorem 8. Let f : X → Y be a function from space X to Y . If f
is γ-semi-continuous whenever f has a γ-s-θ-subclosed graph. Then Y is
γ-s-closed.

Proof. To prove that Y is γ-s-closed, it is sufficient to show by virtue of
Proposition 4 and Theorem 2 that every filterbase on Y has a γ-s-θ-accu-
mulation point. If not, then suppose that there exists a filterbase Γ on Y
such that sγadθ(Γ) = φ. Choose x0 ∈ Y . Define f : (Y, (x0,Γ)) → (Y, τ),
where τ is the given topology on Y , as follows: f(y) = y for each y ∈
Y . Let p ∈ Y and let Γ∗ be a filterbase on Y − {p} such that Γ∗ → p
in (Y, (x0,Γ)). Then p = x0 and so Γ∗ is a filterbase on Y − {x0} and
f(Γ∗) = sγadθ(Γ

∗) ⊆ sγadθ(Γ)(since Γ ⊆ Γ∗) = φ ⊆ {f(x0)}. This shows
that f has a γ-s-θ-subclosed graph. But f is not γ-semi-continuous. In
fact, adγ(Γ) = {x0} and f(x0) = x0; but sγadθ(Γ) = φ and hence we can
not say that f(adγ(Γ)) ⊆ sγadθ(f(Γ)). But this leads to a contradiction.
Therefore every filterbase on Y has a γ-s-θ-accumulation point and hence Y
is γ-s-closed. �

Theorem 9. A space Y is γ-s-closed if and only if every filterbase on Y
with almost one γ-s-θ-accumulation point is γ-s-θ-convergent.

Proof. Necessity. This follows form Theorem 7.
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Sufficiency. Let X be any space and suppose f : X → Y have γ-s-θ-sub-
closed graph. By Theorem 5, f is γ-semi-continuous. Thus γ-s-closedness
of Y assures from Theorem 8. �
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