Sushanta Kumar Mohanta

SOME FIXED POINT THEOREMS USING $w t$-DISTANCE IN b-METRIC SPACES

Abstract

In this paper we establish some common fixed point theorems by using the concept of $w t$-distance in a b-metric space. Our results extend and generalize several well known comparable results in the existing literature. Finally, some examples are provided to illustrate our results. KEY words: b-metric space, wt-distance, expansive mapping, common fixed point.

AMS Mathematics Subject Classification: 54H25, 47H10.

1. Introduction

The study of metric fixed point theory has been at the centre of vigorous research activity and it has a wide range of applications in applied mathematics and sciences. Over the past two decades a considerable amount of research work for the development of fixed point theory have executed by several mathematicians. There has been a number of generalizations of the usual notion of a metric space. One such generalization is a b-metric space introduced and studied by Bakhtin [5] and Czerwik [11]. After that a series of articles have been dedicated to the improvement of fixed point theory in b-metric spaces. Recently, Hussain et.al.[16] introduced a new concept of $w t$-distance on b-metric spaces, which is a b-metric version of the w-distance of Kada et.al.[20] and proved some fixed point results in a partially ordered b-metric space by using the $w t$-distance. In this work, we prove some common fixed point theorems for a pair of self mappings by using the $w t$-distance. Further, our results are used to obtain several important fixed point theorems in b-metric spaces. Finally, some examples are provided to examine the strength of the hypothesis of the main result.

2. Preliminaries

In this section we need to recall some basic notations, definitions, and necessary results from existing literature.

Definition 1 ([11]). Let X be a nonempty set and $s \geq 1$ be a given real number. A function $d: X \times X \rightarrow \mathbb{R}^{+}$is said to be ab-metric on X if the following conditions hold:
(i) $d(x, y)=0$ if and only if $x=y$;
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(iii) $d(x, y) \leq s(d(x, z)+d(z, y))$ for all $x, y, z \in X$.

The pair (X, d) is called a b-metric space.
Observe that if $s=1$, then the ordinary triangle inequality in a metric space is satisfied, however it does not hold true when $s>1$. Thus the class of b-metric spaces is effectively larger than that of the ordinary metric spaces. That is, every metric space is a b-metric space, but the converse need not be true. The following examples illustrate the above remarks.

Example 1. Let $X=\{-1,0,1\}$. Define $d: X \times X \rightarrow \mathbb{R}^{+}$by $d(x, y)=$ $d(y, x)$ for all $x, y \in X, d(x, x)=0, x \in X$ and $d(-1,0)=3, d(-1,1)=$ $d(0,1)=1$. Then (X, d) is a b-metric space, but not a metric space since the triangle inequality is not satisfied. Indeed, we have that

$$
d(-1,1)+d(1,0)=1+1=2<3=d(-1,0)
$$

It is easy to verify that $s=\frac{3}{2}$.
Example $2([16])$. Let $X=\mathbb{R}$ and $d: X \times X \rightarrow \mathbb{R}^{+}$be such that

$$
d(x, y)=|x-y|^{2} \text { for any } x, y \in X
$$

Then (X, d) is a b-metric space with $s=2$, but not a metric space.
Definition 2 ([9]). Let (X, d) be a b-metric space, $x \in X$ and $\left(x_{n}\right)$ be a sequence in X. Then
(i) $\left(x_{n}\right)$ converges to x if and only if $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$. We denote this by $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x(n \rightarrow \infty)$.
(ii) $\left(x_{n}\right)$ is Cauchy if and only if $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$.
(iii) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

Definition 3. Let (X, d) be a b-metric space and let $T: X \rightarrow X$ be a given mapping. We say that T is continuous at $x_{0} \in X$ if for every sequence $\left(x_{n}\right)$ in X, we have $x_{n} \rightarrow x_{0}$ as $n \rightarrow \infty \Longrightarrow T\left(x_{n}\right) \rightarrow T\left(x_{0}\right)$ as $n \rightarrow \infty$. If T is continuous at each point $x_{0} \in X$, then we say that T is continuous on X.

Theorem 1 ([1]). Let (X, d) be a b-metric space and suppose that $\left(x_{n}\right)$ and $\left(y_{n}\right)$ converge to $x, y \in X$, respectively. Then, we have

$$
\frac{1}{s^{2}} d(x, y) \leq \liminf _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \leq \limsup _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \leq s^{2} d(x, y)
$$

In particular, if $x=y$, then $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0$. Moreover, for each $z \in X$, we have

$$
\frac{1}{s} d(x, z) \leq \liminf _{n \rightarrow \infty} d\left(x_{n}, z\right) \leq \limsup _{n \rightarrow \infty} d\left(x_{n}, z\right) \leq s d(x, z)
$$

Definition 4 ([16]). Let (X, d) be a b-metric space with constant $s \geq 1$. Then a function $p: X \times X \rightarrow[0, \infty)$ is called a $w t$-distance on X if the following conditions are satisfied:
(i) $p(x, z) \leq s(p(x, y)+p(y, z))$ for any $x, y, z \in X$;
(ii) for any $x \in X, p(x,):. X \rightarrow[0, \infty)$ is s-lower semi-continuous;
(iii) for any $\epsilon>0$ there exists $\delta>0$ such that $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$ imply $d(x, y) \leq \epsilon$.

Let us recall that a real valued function f defined on a b-metric space X is said to be s-lower semi-continuous at a point x_{0} in X if $\liminf _{x_{n} \rightarrow x_{0}} f\left(x_{n}\right)=\infty$ or $f\left(x_{0}\right) \leq \liminf _{x_{n} \rightarrow x_{0}} s f\left(x_{n}\right)$, whenever $x_{n} \in X$ for each $n \in \mathbb{N}$ and $x_{n} \rightarrow x_{0}$ [18].

Lemma 1 ([16]). Let (X, d) be a b-metric space with constant $s \geq 1$ and let p be a wt-distance on X. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences in X, let $\left(\alpha_{n}\right)$ and $\left(\beta_{n}\right)$ be sequences in $[0, \infty)$ converging to 0 , and let $x, y, z \in X$. Then the following hold:
(i) If $p\left(x_{n}, y\right) \leq \alpha_{n}$ and $p\left(x_{n}, z\right) \leq \beta_{n}$ for any $n \in \mathbb{N}$, then $y=z$.

In particular, if $p(x, y)=0$ and $p(x, z)=0$, then $y=z$;
(ii) if $p\left(x_{n}, y_{n}\right) \leq \alpha_{n}$ and $p\left(x_{n}, z\right) \leq \beta_{n}$ for any $n \in \mathbb{N}$, then $\left(y_{n}\right)$ converges to z;
(iii) if $p\left(x_{n}, x_{m}\right) \leq \alpha_{n}$ for any $n, m \in \mathbb{N}$ with $m>n$, then $\left(x_{n}\right)$ is a Cauchy sequence;
(iv) if $p\left(y, x_{n}\right) \leq \alpha_{n}$ for any $n \in \mathbb{N}$, then $\left(x_{n}\right)$ is a Cauchy sequence.

Example 3 ([16]). Let (X, d) be a b-metric space. Then d is a $w t$-distance on X.

Example $4([16])$. Let $X=\mathbb{R}$ and $d(x, y)=(x-y)^{2}$. Then the function $p: X \times X \rightarrow[0, \infty)$ defined by $p(x, y)=|x|^{2}+|y|^{2}$ for every $x, y \in X$ is a $w t$-distance on X.

Example $5([16])$. Let $X=\mathbb{R}$ and $d(x, y)=(x-y)^{2}$. Then the function $p: X \times X \rightarrow[0, \infty)$ defined by $p(x, y)=|y|^{2}$ for every $x, y \in X$ is a $w t$-distance on X.

Definition 5. Let (X, d) be a b-metric space with constant $s \geq 1$. A mapping $T: X \rightarrow X$ is called expansive if there exists a real constant $k>s$ such that

$$
d(T(x), T(y)) \geq k d(x, y) \quad \text { for all } \quad x, y \in X
$$

3. Main results

In this section, we present our new results.
Theorem 2. Let p be a wt-distance on a complete b-metric space (X, d) with constant $s \geq 1$. Let T_{1}, T_{2} be mappings from X into itself. Suppose that there exists $r \in\left[0, \frac{1}{s}\right)$ such that

$$
\max \left\{\begin{array}{c}
p\left(T_{1}(x), T_{2} T_{1}(x)\right), \tag{1}\\
p\left(T_{2}(x), T_{1} T_{2}(x)\right)
\end{array}\right\} \leq r \min \left\{p\left(x, T_{1}(x)\right), p\left(x, T_{2}(x)\right)\right\}
$$

for every $x \in X$ and that

$$
\begin{equation*}
\inf \left\{p(x, y)+\min \left\{p\left(x, T_{1}(x)\right), p\left(x, T_{2}(x)\right)\right\}: x \in X\right\}>0 \tag{2}
\end{equation*}
$$

for every $y \in X$ with y is not a common fixed point of T_{1} and T_{2}. Then T_{1} and T_{2} have a common fixed point in X. Moreover, if $v=T_{1}(v)=T_{2}(v)$, then $p(v, v)=0$.

Proof. Let $u_{0} \in X$ be arbitrary and define a sequence $\left(u_{n}\right)$ by

$$
u_{n}= \begin{cases}T_{1}\left(u_{n-1}\right), & \text { if } n \text { is odd } \\ T_{2}\left(u_{n-1}\right), & \text { if } n \text { is even }\end{cases}
$$

If $n \in \mathbb{N}$ is odd, then by using (1)

$$
\begin{aligned}
p\left(u_{n}, u_{n+1}\right) & =p\left(T_{1}\left(u_{n-1}\right), T_{2}\left(u_{n}\right)\right) \\
& =p\left(T_{1}\left(u_{n-1}\right), T_{2} T_{1}\left(u_{n-1}\right)\right) \\
\leq & \max \left\{p\left(T_{1}\left(u_{n-1}\right), T_{2} T_{1}\left(u_{n-1}\right)\right)\right. \\
& \left.\quad p\left(T_{2}\left(u_{n-1}\right), T_{1} T_{2}\left(u_{n-1}\right)\right)\right\} \\
& \leq r \min \left\{p\left(u_{n-1}, T_{1}\left(u_{n-1}\right)\right), p\left(u_{n-1}, T_{2}\left(u_{n-1}\right)\right)\right\} \\
\leq & r p\left(u_{n-1}, T_{1}\left(u_{n-1}\right)\right) \\
& =r p\left(u_{n-1}, u_{n}\right)
\end{aligned}
$$

If n is even, then by (1), we have

$$
\begin{aligned}
p\left(u_{n}, u_{n+1}\right) & =p\left(T_{2}\left(u_{n-1}\right), T_{1}\left(u_{n}\right)\right) \\
& =p\left(T_{2}\left(u_{n-1}\right), T_{1} T_{2}\left(u_{n-1}\right)\right) \\
\leq & \max \left\{p\left(T_{2}\left(u_{n-1}\right), T_{1} T_{2}\left(u_{n-1}\right)\right)\right. \\
& \left.p\left(T_{1}\left(u_{n-1}\right), T_{2} T_{1}\left(u_{n-1}\right)\right)\right\} \\
& \leq r \min \left\{p\left(u_{n-1}, T_{2}\left(u_{n-1}\right)\right), p\left(u_{n-1}, T_{1}\left(u_{n-1}\right)\right)\right\} \\
\leq & r p\left(u_{n-1}, T_{2}\left(u_{n-1}\right)\right) \\
& =r p\left(u_{n-1}, u_{n}\right)
\end{aligned}
$$

Thus for any positive integer n, we obtain

$$
\begin{equation*}
p\left(u_{n}, u_{n+1}\right) \leq r p\left(u_{n-1}, u_{n}\right) \tag{3}
\end{equation*}
$$

By repeated application of (3), we get

$$
\begin{equation*}
p\left(u_{n}, u_{n+1}\right) \leq r^{n} p\left(u_{0}, u_{1}\right) \tag{4}
\end{equation*}
$$

For $m, n \in \mathbb{N}$ with $m>n$, we have by repeated use of (4)

$$
\begin{aligned}
p\left(u_{n}, u_{m}\right) \leq & s\left[p\left(u_{n}, u_{n+1}\right)+p\left(u_{n+1}, u_{m}\right)\right] \\
\leq & s p\left(u_{n}, u_{n+1}\right)+s^{2} p\left(u_{n+1}, u_{n+2}\right)+\ldots \\
& +s^{m-n-1}\left[p\left(u_{m-2}, u_{m-1}\right)+p\left(u_{m-1}, u_{m}\right)\right] \\
\leq & {\left[s r^{n}+s^{2} r^{n+1}+\ldots+s^{m-n-1} r^{m-2}+s^{m-n-1} r^{m-1}\right] p\left(u_{0}, u_{1}\right) } \\
\leq & {\left[s r^{n}+s^{2} r^{n+1}+\cdots+s^{m-n-1} r^{m-2}+s^{m-n} r^{m-1}\right] p\left(u_{0}, u_{1}\right) } \\
= & s r^{n}\left[1+s r+(s r)^{2}+\cdots+(s r)^{m-n-2}+(s r)^{m-n-1}\right] p\left(u_{0}, u_{1}\right) \\
\leq & \frac{s r^{n}}{1-s r} p\left(u_{0}, u_{1}\right)
\end{aligned}
$$

By Lemma $1(i i i),\left(u_{n}\right)$ is a Cauchy sequence in X. Since X is complete, $\left(u_{n}\right)$ converges to some point $z \in X$. Let $n \in \mathbb{N}$ be fixed. Then since $\left(u_{m}\right)$ converges to z and $p\left(u_{n},.\right)$ is s-lower semi-continuous, we have

$$
p\left(u_{n}, z\right) \leq \liminf _{m \rightarrow \infty} s p\left(u_{n}, u_{m}\right) \leq \frac{s^{2} r^{n}}{1-s r} p\left(u_{0}, u_{1}\right)
$$

Assume that z is not a common fixed point of T_{1} and T_{2}. Then by hypothesis

$$
\begin{aligned}
0 & <\inf \left\{p(x, z)+\min \left\{p\left(x, T_{1}(x)\right), p\left(x, T_{2}(x)\right)\right\}: x \in X\right\} \\
& \leq \inf \left\{p\left(u_{n}, z\right)+\min \left\{p\left(u_{n}, T_{1}\left(u_{n}\right)\right), p\left(u_{n}, T_{2}\left(u_{n}\right)\right)\right\}: n \in \mathbb{N}\right\} \\
& \leq \inf \left\{\frac{s^{2} r^{n}}{1-s r} p\left(u_{0}, u_{1}\right)+p\left(u_{n}, u_{n+1}\right): n \in \mathbb{N}\right\} \\
& \leq \inf \left\{\frac{s^{2} r^{n}}{1-s r} p\left(u_{0}, u_{1}\right)+r^{n} p\left(u_{0}, u_{1}\right): n \in \mathbb{N}\right\} \\
& =0
\end{aligned}
$$

which is a contradiction. Therefore, $z=T_{1}(z)=T_{2}(z)$.
If $v=T_{1}(v)=T_{2}(v)$ for some $v \in X$, then

$$
\begin{aligned}
p(v, v) & =\max \left\{p\left(T_{1}(v), T_{2} T_{1}(v)\right), p\left(T_{2}(v), T_{1} T_{2}(v)\right)\right\} \\
& \leq r \min \left\{p\left(v, T_{1}(v)\right), p\left(v, T_{2}(v)\right)\right\} \\
& =r \min \{p(v, v), p(v, v)\} \\
& =r p(v, v)
\end{aligned}
$$

which gives that, $p(v, v)=0$.

Corollary 1. Let (X, d) be a complete b-metric space with constant $s \geq 1$, let p be a wt-distance on X and let T be a mapping from X into itself. Suppose that there exists $r \in\left[0, \frac{1}{s}\right)$ such that

$$
p\left(T(x), T^{2}(x)\right) \leq r p(x, T(x))
$$

for every $x \in X$ and that

$$
\inf \{p(x, y)+p(x, T(x)): x \in X\}>0
$$

for every $y \in X$ with $y \neq T(y)$. Then T has a fixed point in X. Moreover, if $v=T(v)$, then $p(v, v)=0$.

Proof. The result follows from Theorem 2 by taking $T_{1}=T_{2}=T$. As an application of Corollary 1, we have the following results.

Theorem 3. Let (X, d) be a complete b-metric space with constant $s \geq 1$, let p be a wt-distance on X and let T be a continuous mapping from X into itself. Suppose that there exists $r \in\left[0, \frac{1}{s}\right)$ such that

$$
p\left(T(x), T^{2}(x)\right) \leq r p(x, T(x))
$$

for every $x \in X$. Then T has a fixed point in X. Moreover, if $v=T(v)$, then $p(v, v)=0$.

Proof. If possible, suppose there exists $y \in X$ with $y \neq T(y)$ and

$$
\inf \{p(x, y)+p(x, T(x)): x \in X\}=0
$$

Then there exists a sequence $\left(x_{n}\right)$ in X such that

$$
\lim _{n \rightarrow \infty}\left\{p\left(x_{n}, y\right)+p\left(x_{n}, T\left(x_{n}\right)\right)\right\}=0
$$

which gives that $p\left(x_{n}, y\right) \rightarrow 0$ and $p\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow 0$. By using Lemma 1 , it follows that $T\left(x_{n}\right) \rightarrow y$. We also have

$$
\begin{aligned}
p\left(x_{n}, T^{2}\left(x_{n}\right)\right) & \leq s\left[p\left(x_{n}, T\left(x_{n}\right)\right)+p\left(T\left(x_{n}\right), T^{2}\left(x_{n}\right)\right)\right] \\
& \leq s(1+r) p\left(x_{n}, T\left(x_{n}\right)\right) \longrightarrow 0
\end{aligned}
$$

Therefore, $\left(T^{2}\left(x_{n}\right)\right)$ converges to y. But $T: X \rightarrow X$ being continuous, we have

$$
T(y)=T\left(\lim _{n \rightarrow \infty} T\left(x_{n}\right)\right)=\lim _{n \rightarrow \infty} T^{2}\left(x_{n}\right)=y
$$

which contradicts the fact that $y \neq T(y)$. Thus, if $y \neq T(y)$, then

$$
\inf \{p(x, y)+p(x, T(x)): x \in X\}>0
$$

By applying Corollary 1, we obtain the desired conclusion.

Theorem 4. Let (X, d) be a complete b-metric space with constant $s \geq 1$ and let $T: X \rightarrow X$ be such that

$$
\begin{equation*}
d(T(x), T(y)) \leq \alpha d(x, y)+\beta d(x, T(x))+\gamma d(y, T(y)) \tag{5}
\end{equation*}
$$

for every $x, y \in X$, where $\alpha, \beta, \gamma \geq 0$ with $\alpha+\beta+\gamma<\frac{1}{s}$. Then T has a unique fixed point in X.

Proof. We treat the b-metric d as a $w t$-distance on X. From (5), we have

$$
d\left(T(x), T^{2}(x)\right) \leq \alpha d(x, T(x))+\beta d(x, T(x))+\gamma d\left(T(x), T^{2}(x)\right)
$$

which gives that

$$
\begin{equation*}
d\left(T(x), T^{2}(x)\right) \leq \frac{\alpha+\beta}{1-\gamma} d(x, T(x)) \tag{6}
\end{equation*}
$$

Let us put $r=\frac{\alpha+\beta}{1-\gamma}$. Then $r \in\left[0, \frac{1}{s}\right)$ since $s(\alpha+\beta)+\gamma \leq s(\alpha+\beta+\gamma)<1$. Therefore, (6) becomes

$$
d\left(T(x), T^{2}(x)\right) \leq r d(x, T(x))
$$

for every $x \in X$.
Suppose there exists $y \in X$ with $y \neq T(y)$ and

$$
\inf \{d(x, y)+d(x, T(x)): x \in X\}=0
$$

Then there exists a sequence $\left(x_{n}\right)$ in X such that

$$
\lim _{n \rightarrow \infty}\left\{d\left(x_{n}, y\right)+d\left(x_{n}, T\left(x_{n}\right)\right)\right\}=0
$$

So, we get $d\left(x_{n}, y\right) \rightarrow 0$ and $d\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow 0$. By Lemma 1 , it follows that $T\left(x_{n}\right) \rightarrow y$. We also have

$$
\begin{aligned}
d(y, T(y)) & \leq s\left[d\left(y, T\left(x_{n}\right)\right)+d\left(T\left(x_{n}\right), T(y)\right)\right] \\
& \leq s\left[d\left(y, T\left(x_{n}\right)\right)+\alpha d\left(x_{n}, y\right)+\beta d\left(x_{n}, T\left(x_{n}\right)\right)+\gamma d(y, T(y))\right]
\end{aligned}
$$

for any $n \in \mathbb{N}$ and hence

$$
d(y, T(y)) \leq s \gamma d(y, T(y))
$$

Therefore, $d(y, T(y))=0$ i.e., $y=T(y)$. This is a contradiction. Hence, if $y \neq T(y)$, then

$$
\inf \{d(x, y)+d(x, T(x)): x \in X\}>0
$$

By applying Corollary 1, we obtain a fixed point of T in X. Clearly, T has unique fixed point in X.

Theorem 5. Let (X, d) be a complete b-metric space with constant $s \geq 1$ and let $T: X \rightarrow X$ be such that

$$
\begin{equation*}
d(T(x), T(y)) \leq \alpha d(x, T(y))+\beta d(y, T(x)) \tag{7}
\end{equation*}
$$

for every $x, y \in X$, where $\alpha, \beta \geq 0$ with $\alpha s<\frac{1}{1+s}$ or $\beta s<\frac{1}{1+s}$. Then T has a fixed point in X. Moreover, if $\alpha+\beta<1$, then T has a unique fixed point in X.

Proof. We treat the b-metric d as a $w t$-distance on X. From (7), we have

$$
\begin{aligned}
d\left(T(x), T^{2}(x)\right) & \leq \alpha d\left(x, T^{2}(x)\right)+\beta d(T(x), T(x)) \\
& \leq \alpha s\left[d(x, T(x))+d\left(T(x), T^{2}(x)\right)\right]
\end{aligned}
$$

which gives that

$$
\begin{equation*}
d\left(T(x), T^{2}(x)\right) \leq \frac{\alpha s}{1-\alpha s} d(x, T(x)) \tag{8}
\end{equation*}
$$

Let us put $r=\frac{\alpha s}{1-\alpha s}$. Then $r \in\left[0, \frac{1}{s}\right)$. Therefore, (8) becomes

$$
d\left(T(x), T^{2}(x)\right) \leq r d(x, T(x))
$$

for every $x \in X$. Suppose there exists $y \in X$ with $y \neq T(y)$ and

$$
\inf \{d(x, y)+d(x, T(x)): x \in X\}=0
$$

Then there exists a sequence $\left(x_{n}\right)$ in X such that

$$
\lim _{n \rightarrow \infty}\left\{d\left(x_{n}, y\right)+d\left(x_{n}, T\left(x_{n}\right)\right)\right\}=0
$$

So, we get $d\left(x_{n}, y\right) \rightarrow 0$ and $d\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow 0$. By Lemma 1, it follows that $T\left(x_{n}\right) \rightarrow y$. We also have

$$
\begin{aligned}
d(y, T(y)) & \leq s\left[d\left(y, T\left(x_{n}\right)\right)+d\left(T\left(x_{n}\right), T(y)\right)\right] \\
& \leq s\left[d\left(y, T\left(x_{n}\right)\right)+\alpha d\left(x_{n}, T(y)\right)+\beta d\left(y, T\left(x_{n}\right)\right)\right] \\
& \leq s\left[d\left(y, T\left(x_{n}\right)\right)+\alpha s d\left(x_{n}, y\right)+\alpha \operatorname{sd}(y, T(y))+\beta d\left(y, T\left(x_{n}\right)\right)\right]
\end{aligned}
$$

for any $n \in \mathbb{N}$ and hence

$$
d(y, T(y)) \leq s^{2} \alpha d(y, T(y))
$$

Therefore, $d(y, T(y))=0$ i.e., $y=T(y)$. This is a contradiction. Hence, if $y \neq T(y)$, then

$$
\inf \{d(x, y)+d(x, T(x)): x \in X\}>0
$$

By applying Corollary 1, we obtain a fixed point of T in X.
Now suppose that $\alpha+\beta<1$. Assume that there are $u, v \in X$ such that $T(u)=u$ and $T(v)=v$. Then

$$
d(u, v)=d(T(u), T(v)) \leq \alpha d(u, v)+\beta d(v, u)=(\alpha+\beta) d(u, v)
$$

This shows that $d(u, v)=0$ i.e., $u=v$. Therefore, T has a unique fixed point in X.

Theorem 6. Let (X, d) be a complete b-metric space with constant $s \geq 1$ and let T be a mapping from X into itself. Suppose there exists $r \in\left[0, \frac{1}{s}\right)$ such that
(9) $\quad d(T(x), T(y)) \leq r \max \{d(x, y), d(x, T(x)), d(y, T(y)), d(y, T(x))\}$
for every $x, y \in X$. Then T has a unique fixed point in X.
Proof. We treat the b-metric d as a $w t$-distance on X. From (9), we have

$$
\begin{align*}
d\left(T(x), T^{2}(x)\right) & \leq r \max \left\{\begin{array}{l}
d(x, T(x)), d(x, T(x)), \\
d\left(T(x), T^{2}(x)\right), d(T(x), T(x))
\end{array}\right\} \tag{10}\\
& =r \max \left\{d(x, T(x)), d\left(T(x), T^{2}(x)\right)\right\}
\end{align*}
$$

Without loss of generality, we assume that $T(x) \neq T^{2}(x)$. For, otherwise, T has a fixed point. Since $r<\frac{1}{s}$, we obtain from (10) that

$$
d\left(T(x), T^{2}(x)\right) \leq r d(x, T(x))
$$

for every $x \in X$. Assume that there exists $y \in X$ with $y \neq T(y)$ and

$$
\inf \{d(x, y)+d(x, T(x)): x \in X\}=0
$$

Then there exists a sequence $\left(x_{n}\right)$ in X such that

$$
\lim _{n \rightarrow \infty}\left\{d\left(x_{n}, y\right)+d\left(x_{n}, T\left(x_{n}\right)\right)\right\}=0
$$

So, we get $d\left(x_{n}, y\right) \rightarrow 0$ and $d\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow 0$. By Lemma 1 , it follows that $T\left(x_{n}\right) \rightarrow y$. We also have

$$
\begin{aligned}
d(y, T(y)) \leq & s\left[d\left(y, T\left(x_{n}\right)\right)+d\left(T\left(x_{n}\right), T(y)\right)\right] \\
\leq & s d\left(y, T\left(x_{n}\right)\right) \\
& +\operatorname{sr} \max \left\{d\left(x_{n}, y\right), d\left(x_{n}, T\left(x_{n}\right)\right), d(y, T(y)), d\left(y, T\left(x_{n}\right)\right)\right\}
\end{aligned}
$$

for any $n \in \mathbb{N}$ and hence

$$
d(y, T(y)) \leq \operatorname{srd}(y, T(y))
$$

Therefore, $d(y, T(y))=0$ i.e., $y=T(y)$. This is a contradiction. Hence, if $y \neq T(y)$, then

$$
\inf \{d(x, y)+d(x, T(x)): x \in X\}>0
$$

By applying Corollary 1, we obtain a fixed point of T in X. Clearly, fixed point of T is unique.

Theorem 7. Let p be a wt-distance on a complete b-metric space (X, d) with constant $s \geq 1$. Let T_{1}, T_{2} be mappings from X onto itself. Suppose that there exists $r>s$ such that

$$
\min \left\{\begin{array}{l}
p\left(T_{2} T_{1}(x), T_{1}(x)\right), \tag{11}\\
p\left(T_{1} T_{2}(x), T_{2}(x)\right)
\end{array}\right\} \geq r \max \left\{p\left(T_{1}(x), x\right), p\left(T_{2}(x), x\right)\right\}
$$

for every $x \in X$ and that

$$
\begin{equation*}
\inf \left\{p(x, y)+\min \left\{p\left(T_{1}(x), x\right), p\left(T_{2}(x), x\right)\right\}: x \in X\right\}>0 \tag{12}
\end{equation*}
$$

for every $y \in X$ with y is not a common fixed point of T_{1} and T_{2}. Then T_{1} and T_{2} have a common fixed point in X. Moreover, if $v=T_{1}(v)=T_{2}(v)$, then $p(v, v)=0$.

Proof. Let $u_{0} \in X$ be arbitrary. Since T_{1} is onto, there is an element u_{1} satisfying $u_{1} \in T_{1}^{-1}\left(u_{0}\right)$. Since T_{2} is also onto, there is an element u_{2} satisfying $u_{2} \in T_{2}^{-1}\left(u_{1}\right)$. Proceeding in the same way, we can find $u_{2 n+1} \in$ $T_{1}^{-1}\left(u_{2 n}\right)$ and $u_{2 n+2} \in T_{2}^{-1}\left(u_{2 n+1}\right)$ for $n=1,2,3, \ldots$.

Therefore, $u_{2 n}=T_{1}\left(u_{2 n+1}\right)$ and $u_{2 n+1}=T_{2}\left(u_{2 n+2}\right)$ for $n=0,1,2, \ldots$.
If $n=2 m$, then using (11)

$$
\begin{aligned}
p\left(u_{n-1}, u_{n}\right) & =p\left(u_{2 m-1}, u_{2 m}\right) \\
& =p\left(T_{2}\left(u_{2 m}\right), T_{1}\left(u_{2 m+1}\right)\right) \\
& =p\left(T_{2} T_{1}\left(u_{2 m+1}\right), T_{1}\left(u_{2 m+1}\right)\right) \\
& \geq \min \left\{p\left(T_{2} T_{1}\left(u_{2 m+1}\right), T_{1}\left(u_{2 m+1}\right)\right)\right. \\
& \left.\quad p\left(T_{1} T_{2}\left(u_{2 m+1}\right), T_{2}\left(u_{2 m+1}\right)\right)\right\} \\
& \geq r \max \left\{p\left(T_{1}\left(u_{2 m+1}\right), u_{2 m+1}\right), p\left(T_{2}\left(u_{2 m+1}\right), u_{2 m+1}\right)\right\} \\
& \geq r p\left(T_{1}\left(u_{2 m+1}\right), u_{2 m+1}\right) \\
& =\operatorname{rp}\left(u_{2 m}, u_{2 m+1}\right) \\
& =\operatorname{rp}\left(u_{n}, u_{n+1}\right)
\end{aligned}
$$

If $n=2 m+1$, then by (11), we have

$$
\begin{aligned}
p\left(u_{n-1}, u_{n}\right) & =p\left(u_{2 m}, u_{2 m+1}\right) \\
& =p\left(T_{1}\left(u_{2 m+1}\right), T_{2}\left(u_{2 m+2}\right)\right) \\
& =p\left(T_{1} T_{2}\left(u_{2 m+2}\right), T_{2}\left(u_{2 m+2}\right)\right) \\
& \geq \min \left\{p\left(T_{2} T_{1}\left(u_{2 m+2}\right), T_{1}\left(u_{2 m+2}\right)\right)\right. \\
& \left.\quad p\left(T_{1} T_{2}\left(u_{2 m+2}\right), T_{2}\left(u_{2 m+2}\right)\right)\right\} \\
& \geq r \max \left\{p\left(T_{1}\left(u_{2 m+2}\right), u_{2 m+2}\right), p\left(T_{2}\left(u_{2 m+2}\right), u_{2 m+2}\right)\right\} \\
& \geq r p\left(T_{2}\left(u_{2 m+2}\right), u_{2 m+2}\right) \\
& =r p\left(u_{2 m+1}, u_{2 m+2}\right) \\
& =r p\left(u_{n}, u_{n+1}\right)
\end{aligned}
$$

Thus for any positive integer n, we obtain

$$
p\left(u_{n-1}, u_{n}\right) \geq r p\left(u_{n}, u_{n+1}\right)
$$

which implies that,

$$
\begin{equation*}
p\left(u_{n}, u_{n+1}\right) \leq \frac{1}{r} p\left(u_{n-1}, u_{n}\right) \leq \ldots \leq\left(\frac{1}{r}\right)^{n} p\left(u_{0}, u_{1}\right) \tag{13}
\end{equation*}
$$

Let $\alpha=\frac{1}{r}$, then $0<\alpha<\frac{1}{s}$ since $r>s$.
Now, (13) becomes

$$
p\left(u_{n}, u_{n+1}\right) \leq \alpha^{n} p\left(u_{0}, u_{1}\right) .
$$

So, if $m>n$, then

$$
\begin{aligned}
p\left(u_{n}, u_{m}\right) \leq & s\left[p\left(u_{n}, u_{n+1}\right)+p\left(u_{n+1}, u_{m}\right)\right] \\
\leq & s p\left(u_{n}, u_{n+1}\right)+s^{2} p\left(u_{n+1}, u_{n+2}\right)+\ldots \\
& +s^{m-n-1}\left[p\left(u_{m-2}, u_{m-1}\right)+p\left(u_{m-1}, u_{m}\right)\right] \\
\leq & {\left[s \alpha^{n}+s^{2} \alpha^{n+1}+\ldots+s^{m-n-1} \alpha^{m-2}+s^{m-n-1} \alpha^{m-1}\right] p\left(u_{0}, u_{1}\right) } \\
\leq & {\left[s \alpha^{n}+s^{2} \alpha^{n+1}+\ldots+s^{m-n-1} \alpha^{m-2}+s^{m-n} \alpha^{m-1}\right] p\left(u_{0}, u_{1}\right) } \\
= & s \alpha^{n}\left[1+s \alpha+(s \alpha)^{2}+\ldots+(s \alpha)^{m-n-2}+(s \alpha)^{m-n-1}\right] p\left(u_{0}, u_{1}\right) \\
\leq & \frac{s \alpha^{n}}{1-s \alpha} p\left(u_{0}, u_{1}\right) .
\end{aligned}
$$

By Lemma $1(i i i),\left(u_{n}\right)$ is a Cauchy sequence in X. Since X is complete, $\left(u_{n}\right)$ converges to some point $z \in X$. Let $n \in \mathbb{N}$ be fixed. Then since $\left(u_{m}\right)$ converges to z and $p\left(u_{n},.\right)$ is s-lower semi-continuous, we have

$$
\begin{equation*}
p\left(u_{n}, z\right) \leq \liminf _{m \rightarrow \infty} s p\left(u_{n}, u_{m}\right) \leq \frac{s^{2} \alpha^{n}}{1-s \alpha} p\left(u_{0}, u_{1}\right) \tag{14}
\end{equation*}
$$

Assume that z is not a common fixed point of T_{1} and T_{2}. Then by hypothesis

$$
\begin{aligned}
0 & <\inf \left\{p(x, z)+\min \left\{p\left(T_{1}(x), x\right), p\left(T_{2}(x), x\right)\right\}: x \in X\right\} \\
& \leq \inf \left\{p\left(u_{n}, z\right)+\min \left\{p\left(T_{1}\left(u_{n}\right), u_{n}\right), p\left(T_{2}\left(u_{n}\right), u_{n}\right)\right\}: n \in \mathbb{N}\right\} \\
& \leq \inf \left\{\frac{s^{2} \alpha^{n}}{1-s \alpha} p\left(u_{0}, u_{1}\right)+p\left(u_{n-1}, u_{n}\right): n \in \mathbb{N}\right\} \\
& \leq \inf \left\{\frac{s^{2} \alpha^{n}}{1-s \alpha} p\left(u_{0}, u_{1}\right)+\alpha^{n-1} p\left(u_{0}, u_{1}\right): n \in \mathbb{N}\right\} \\
& =0
\end{aligned}
$$

which is a contradiction. Therefore, $z=T_{1}(z)=T_{2}(z)$.
If $v=T_{1}(v)=T_{2}(v)$ for some $v \in X$, then

$$
\begin{aligned}
p(v, v) & =\min \left\{p\left(T_{2} T_{1}(v), T_{1}(v)\right), p\left(T_{1} T_{2}(v), T_{2}(v)\right)\right\} \\
& \geq r \max \left\{p\left(T_{1}(v), v\right), p\left(T_{2}(v), v\right)\right\} \\
& =r \max \{p(v, v), p(v, v)\} \\
& =r p(v, v)
\end{aligned}
$$

which gives that, $p(v, v)=0$.

Corollary 2. Let p be a wt-distance on a complete b-metric space (X, d) with constant $s \geq 1$ and let $T: X \rightarrow X$ be an onto mapping. Suppose that there exists $r>s$ such that

$$
\begin{equation*}
p\left(T^{2}(x), T(x)\right) \geq r p(T(x), x) \tag{15}
\end{equation*}
$$

for every $x \in X$ and that

$$
\begin{equation*}
\inf \{p(x, y)+p(T(x), x): x \in X\}>0 \tag{16}
\end{equation*}
$$

for every $y \in X$ with $y \neq T(y)$. Then T has a fixed point in X. Moreover, if $v=T(v)$, then $p(v, v)=0$.

Proof. Taking $T_{1}=T_{2}=T$ in Theorem 7, we have the desired result.
As an application of Corollary 2, we have the following results.
Theorem 8. Let (X, d) be a complete b-metric space with constant $s \geq 1$ and let $T: X \rightarrow X$ be an onto continuous mapping. Suppose there exists $r>s$ such that

$$
d\left(T^{2}(x), T(x)\right) \geq r d(T(x), x)
$$

for every $x \in X$. Then T has a fixed point in X.

Proof. We consider d as a $w t$-distance on X. Then d satisfies condition (15) of Corollary 2.

Assume that there exists $y \in X$ with $y \neq T(y)$ and

$$
\inf \{d(x, y)+d(T(x), x): x \in X\}=0
$$

Then there exists a sequence $\left(x_{n}\right)$ such that

$$
\lim _{n \rightarrow \infty}\left\{d\left(x_{n}, y\right)+d\left(T\left(x_{n}\right), x_{n}\right)\right\}=0
$$

So, we have $d\left(x_{n}, y\right) \rightarrow 0$ and $d\left(T\left(x_{n}\right), x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Now,

$$
d\left(T\left(x_{n}\right), y\right) \leq d\left(T\left(x_{n}\right), x_{n}\right)+d\left(x_{n}, y\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Since T is continuous, we have

$$
T(y)=T\left(\lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} T\left(x_{n}\right)=y
$$

This is a contradiction. Hence if $y \neq T(y)$, then

$$
\inf \{d(x, y)+d(T(x), x): x \in X\}>0
$$

which is condition (16) of Corollary 2. By Corollary 2, there exists $z \in X$ such that $z=T(z)$.

Theorem 9. Let (X, d) be a complete b-metric space with constant $s \geq 1$ and let $T: X \rightarrow X$ be an onto continuous mapping. If there is a real number r with $r>s$ satisfying

$$
\begin{equation*}
d(T(x), T(y)) \geq r \min \{d(x, T(x)), d(T(y), y), d(x, y)\} \tag{17}
\end{equation*}
$$

for every $x, y \in X$, then T has a fixed point in X.
Proof. We consider d as a $w t$-distance on X. Replacing y by $T(x)$ in (17), we have

$$
\begin{equation*}
d\left(T(x), T^{2}(x)\right) \geq r \min \left\{d(x, T(x)), d\left(T^{2}(x), T(x)\right), d(x, T(x))\right\} \tag{18}
\end{equation*}
$$

for every $x \in X$. Without loss of generality, we may assume that $T(x) \neq$ $T^{2}(x)$. For, otherwise, T has a fixed point. Since $r>s \geq 1$, it follows from (18) that

$$
d\left(T^{2}(x), T(x)\right) \geq r d(T(x), x)
$$

for every $x \in X$. By the argument similar to that used in Theorem 8, we can prove that, if $y \neq T(y)$, then

$$
\inf \{d(x, y)+d(T(x), x): x \in X\}>0
$$

So, Corollary 2 applies to obtain a fixed point of T.

Remark 1. The class of mappings satisfying condition (17) is strictly larger than that of expansive mappings. For, if $T: X \rightarrow X$ is expansive, then there exists $r>s$ such that

$$
d(T(x), T(y)) \geq r d(x, y) \geq r \min \{d(x, T(x)), d(T(y), y), d(x, y)\}
$$

for all $x, y \in X$. On the otherhand, the identity mapping satisfies condition (17) but it is not expansive.

We now supplement Theorem 2 by examination of conditions (1) and (2) in respect of their independence. We furnish Examples 6 and 7 below to show that these two conditions are independent in the sense that Theorem 2 shall fall through by dropping one in favour of the other.

Example 6. Let $X=\{0\} \cup\left\{\frac{1}{3^{n}}: n \geq 1\right\}$ and $d(x, y)=|x-y|^{2}$ for all $x, y \in X$. Then (X, d) is a complete b-metric space with constant $s=2$. Define $T: X \rightarrow X$ by $T(0)=\frac{1}{3}$ and $T\left(\frac{1}{3^{n}}\right)=\frac{1}{3^{n+1}}$ for $n \geq 1$. Clearly, T has no fixed point in X. It is easy to verify that $d\left(T(x), T^{2}(x)\right) \leq \frac{1}{9} d(x, T(x))$ for all $x \in X$. Therefore, condition (1) holds for $T_{1}=T_{2}=T$. On the other hand, $T(y) \neq y$ for all $y \in X$ and so

$$
\begin{gathered}
\inf \{d(x, y)+d(x, T(x)): x, y \in X \text { with } y \neq T(y)\} \\
=\inf \{d(x, y)+d(x, T(x)): x, y \in X\}=0
\end{gathered}
$$

Thus, condition (2) is not satisfied for $T_{1}=T_{2}=T$. We note that Theorem 2 does not hold without condition (2).

Example 7. Let $X=[3, \infty) \cup\{1,2\}$ and $d(x, y)=|x-y|^{2}$ for all $x, y \in X$. Then (X, d) is a complete b-metric space with constant $s=2$. Define $T: X \rightarrow X$ where

$$
T(x)= \begin{cases}1, & \text { for } x \in(X \backslash\{1\}) \\ 2, & \text { for } x=1\end{cases}
$$

Clearly, T possesses no fixed point in X.
Now,

$$
\begin{gathered}
\inf \{d(x, y)+d(x, T(x)): x, y \in X \text { with } y \neq T(y)\} \\
=\inf \{d(x, y)+d(x, T(x)): x, y \in X\}>0
\end{gathered}
$$

Thus, condition (2) is satisfied for $T_{1}=T_{2}=T$. But, for $x=1$, we find that $d\left(T(x), T^{2}(x)\right)=1>r d(x, T(x))$ for any $r \in\left[0, \frac{1}{s}\right)$. So, condition (1) does not hold for $T_{1}=T_{2}=T$. In this case we observe that Theorem 2 does not work without condition (1).

Note. In examples above we treat the b-metric d as a $w t$-distance on X in reference to Theorem 2.

References

[1] Aghajani A., Abbas M., Roshan JR., Common Fixed Point of Generalized Weak Contractive Mappings in Partially Ordered b-Metric Spaces, Math. Slovaca, 2012.
[2] Abbas M., Jungck G., Common fixed point results for noncommuting ma- ppings without continuity in cone metric spaces, J. Math. Anal. Appl., 341(2008), 416-420.
[3] Aydi H., Bota M-F., Karapinar E., Mitrovi’c E., A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory and Applications, 2012, doi:10.1186/1687-1812-2012-88.
[4] Aydi H., Bota M-F., Karapinar E., Moradi S., A common fixed point for weak ϕ-contractions on b-metric spaces, Fixed Point Theory, 13(2012), 337-346.
[5] Bakhtin I.A., The contraction mapping principle in almost metric spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk, 30(1989), 26-37.
[6] Beg I., Abbas M., Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed Point Theory and Applications, vol. 2006, Article ID 74503, 7 pages.
[7] Bota M., MolnÁr A., Varga C., On Ekeland's variational principle in b-metric spaces, Fixed Point Theory, 12(2011), 21-28.
[8] Boriceanu M., Petrusel A., Rus I.A., Fixed point theorems for some multivalued generalized contractions in b-metric spaces, Int. J. Math. Stat., 6(2010), 65-76.
[9] Boriceanu M., Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math., 4(2009), 285-301.
[10] Czerwik S., Nonlinear set valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fiz. Univ. Modena, 46(1998), 263-276.
[11] Czerwik S., Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav, 1(1993), 5-11.
[12] Fadail Z.M., Ahmad A.G.B., Coupled coincidence point and common coupled fixed point results in cone b-metric spaces, Fixed Point Theory and Applications, 2013, 2013:177, DOI:10.1186/1687-1812-2013-177, 15 pages.
[13] Hadzic O., Common fixed point theorem for family of mappings in complete metric spaces, Math. Japon, 29(1984), 127-134.
[14] Hussain N., Shah M.H., KKM mappings in cone b-metric spaces, Comput. Math. Appl., 62(2011), 1677-1684.
[15] Huang H., Xu S., Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed Point Theory and Applications, 2013, 2013:112, DOI:10.1186/1687-1812-2013-112, 10 pages.
[16] Hussain N., Saadati R., Agrawal R.P., On the topology and wt-distance on metric type spaces, Fixed Point Theory and Applications, 2014, 2014:88, 14 pages.
[17] Ilić D., Rakoc̆Ević V., Common fixed points for maps on cone metric space, J. Math. Anal. Appl., 341(2008), 876-882.
[18] Ilić D., Rakočević V., Common fixed points for maps on metric space with w-distance, Appl. Math. Comput., 199(2008), 599-610.
[19] Jungek G., Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci., 4(1996), 199-215.
[20] Kada O., Suzuki T., Takahashi W., Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japonica, 44(1996), 381-391.
[21] Olaleru J.O., Some generalizations of fixed point theorems in cone metric spaces, Fixed Point Theory and Applications, vol. 2009, Article ID 657914, 10 pages.

Sushanta Kumar Mohanta
Department of Mathematics
West Bengal State University
Barasat, 24 Parganas (North)
West Bengal, Kolkata 700126, India
e-mail: smwbes@yahoo.in

Received on 05.05.2014 and, in revised form, on 10.04.2015.

