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1. Introduction

The study of metric fixed point theory has been at the centre of vigorous
research activity and it has a wide range of applications in applied math-
ematics and sciences. Over the past two decades a considerable amount
of research work for the development of fixed point theory have executed
by several mathematicians. There has been a number of generalizations of
the usual notion of a metric space. One such generalization is a b-metric
space introduced and studied by Bakhtin [5] and Czerwik [11]. After that
a series of articles have been dedicated to the improvement of fixed point
theory in b-metric spaces. Recently, Hussain et.al.[16] introduced a new
concept of wt-distance on b-metric spaces, which is a b-metric version of
the w-distance of Kada et.al.[20] and proved some fixed point results in a
partially ordered b-metric space by using the wt-distance. In this work, we
prove some common fixed point theorems for a pair of self mappings by using
the wt-distance. Further, our results are used to obtain several important
fixed point theorems in b-metric spaces. Finally, some examples are provided
to examine the strength of the hypothesis of the main result.

2. Preliminaries

In this section we need to recall some basic notations, definitions, and
necessary results from existing literature.
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Definition 1 ([11]). Let X be a nonempty set and s ≥ 1 be a given real
number. A function d : X ×X → R+ is said to be a b-metric on X if the
following conditions hold:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) ≤ s (d(x, z) + d(z, y)) for all x, y, z ∈ X.

The pair (X, d) is called a b-metric space.

Observe that if s = 1, then the ordinary triangle inequality in a metric
space is satisfied, however it does not hold true when s > 1. Thus the class of
b-metric spaces is effectively larger than that of the ordinary metric spaces.
That is, every metric space is a b-metric space, but the converse need not
be true. The following examples illustrate the above remarks.

Example 1. Let X = {−1, 0, 1}. Define d : X ×X → R+ by d(x, y) =
d(y, x) for all x, y ∈ X, d(x, x) = 0, x ∈ X and d(−1, 0) = 3, d(−1, 1) =
d(0, 1) = 1. Then (X, d) is a b-metric space, but not a metric space since
the triangle inequality is not satisfied. Indeed, we have that

d(−1, 1) + d(1, 0) = 1 + 1 = 2 < 3 = d(−1, 0).

It is easy to verify that s = 3
2 .

Example 2 ([16]). Let X = R and d : X ×X → R+ be such that

d(x, y) =| x− y |2 for any x, y ∈ X.

Then (X, d) is a b-metric space with s = 2, but not a metric space.

Definition 2 ([9]). Let (X, d) be a b-metric space, x ∈ X and (xn) be a
sequence in X. Then

(i) (xn) converges to x if and only if lim
n→∞

d(xn, x) = 0. We denote this

by lim
n→∞

xn = x or xn → x(n→∞).

(ii) (xn) is Cauchy if and only if lim
n,m→∞

d(xn, xm) = 0.

(iii) (X, d) is complete if and only if every Cauchy sequence in X is
convergent.

Definition 3. Let (X, d) be a b-metric space and let T : X → X be a
given mapping. We say that T is continuous at x0 ∈ X if for every sequence
(xn) in X, we have xn → x0 as n → ∞ =⇒ T (xn) → T (x0) as n → ∞.
If T is continuous at each point x0 ∈ X, then we say that T is continuous
on X.

Theorem 1 ([1]). Let (X, d) be a b-metric space and suppose that (xn)
and (yn) converge to x, y ∈ X, respectively. Then, we have

1

s2
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).
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In particular, if x = y, then lim
n→∞

d(xn, yn) = 0. Moreover, for each

z ∈ X, we have

1

s
d(x, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z).

Definition 4 ([16]). Let (X, d) be a b-metric space with constant s ≥ 1.
Then a function p : X × X → [0,∞) is called a wt-distance on X if the
following conditions are satisfied:

(i) p(x, z) ≤ s (p(x, y) + p(y, z)) for any x, y, z ∈ X;
(ii) for any x ∈ X, p(x, .) : X → [0,∞) is s-lower semi-continuous;
(iii) for any ε > 0 there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ

imply d(x, y) ≤ ε.

Let us recall that a real valued function f defined on a b-metric space X
is said to be s-lower semi-continuous at a point x0 in X if lim inf

xn→x0
f(xn) =∞

or f(x0) ≤ lim inf
xn→x0

sf(xn), whenever xn ∈ X for each n ∈ N and xn → x0

[18].

Lemma 1 ([16]). Let (X, d) be a b-metric space with constant s ≥ 1 and
let p be a wt-distance on X. Let (xn) and (yn) be sequences in X, let (αn)
and (βn) be sequences in [0,∞) converging to 0, and let x, y, z ∈ X. Then
the following hold:

(i) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then y = z.
In particular, if p(x, y) = 0 and p(x, z) = 0, then y = z;

(ii) if p(xn, yn) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then (yn)
converges to z;

(iii) if p(xn, xm) ≤ αn for any n,m ∈ N with m > n, then (xn) is
a Cauchy sequence;

(iv) if p(y, xn) ≤ αn for any n ∈ N, then (xn) is a Cauchy sequence.

Example 3 ([16]). Let (X, d) be a b-metric space. Then d is a wt-distance
on X.

Example 4 ([16]). Let X = R and d(x, y) = (x−y)2. Then the function
p : X ×X → [0,∞) defined by p(x, y) =| x |2 + | y |2 for every x, y ∈ X is
a wt-distance on X.

Example 5 ([16]). Let X = R and d(x, y) = (x−y)2. Then the function
p : X × X → [0,∞) defined by p(x, y) =| y |2 for every x, y ∈ X is a
wt-distance on X.

Definition 5. Let (X, d) be a b-metric space with constant s ≥ 1. A
mapping T : X → X is called expansive if there exists a real constant k > s
such that

d(T (x), T (y)) ≥ k d(x, y) for all x, y ∈ X.
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3. Main results

In this section, we present our new results.

Theorem 2. Let p be a wt-distance on a complete b-metric space (X, d)
with constant s ≥ 1. Let T1, T2 be mappings from X into itself. Suppose
that there exists r ∈ [0, 1s ) such that

(1) max


p(T1(x), T2T1(x)),

p(T2(x), T1T2(x))

 ≤ r min { p(x, T1(x)), p(x, T2(x))}

for every x ∈ X and that

(2) inf {p(x, y) + min {p(x, T1(x)), p(x, T2(x))} : x ∈ X} > 0

for every y ∈ X with y is not a common fixed point of T1 and T2. Then T1
and T2 have a common fixed point in X. Moreover, if v = T1(v) = T2(v),
then p(v, v) = 0.

Proof. Let u0 ∈ X be arbitrary and define a sequence (un) by

un =

{
T1(un−1), if n is odd

T2(un−1), if n is even.

If n ∈ N is odd, then by using (1)

p(un, un+1) = p(T1(un−1), T2(un))

= p(T1(un−1), T2T1(un−1))

≤ max {p(T1(un−1), T2T1(un−1)),
p(T2(un−1), T1T2(un−1))}

≤ rmin {p(un−1, T1(un−1)), p(un−1, T2(un−1))}
≤ rp(un−1, T1(un−1))

= rp(un−1, un).

If n is even,then by (1), we have

p(un, un+1) = p(T2(un−1), T1(un))

= p(T2(un−1), T1T2(un−1))

≤ max {p(T2(un−1), T1T2(un−1)),
p(T1(un−1), T2T1(un−1))}

≤ rmin {p(un−1, T2(un−1)), p(un−1, T1(un−1))}
≤ rp(un−1, T2(un−1))

= rp(un−1, un).
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Thus for any positive integer n, we obtain

(3) p(un, un+1) ≤ r p(un−1, un).

By repeated application of (3), we get

(4) p(un, un+1) ≤ rn p(u0, u1).

For m,n ∈ N with m > n, we have by repeated use of (4)

p(un, um) ≤ s [p(un, un+1) + p(un+1, um)]

≤ sp(un, un+1) + s2p(un+1, un+2) + . . .

+ sm−n−1 [p(um−2, um−1) + p(um−1, um)]

≤
[
srn + s2rn+1 + . . .+ sm−n−1rm−2 + sm−n−1rm−1

]
p(u0, u1)

≤
[
srn + s2rn+1 + · · ·+ sm−n−1rm−2 + sm−nrm−1

]
p(u0, u1)

= srn
[
1 + sr + (sr)2 + · · ·+ (sr)m−n−2 + (sr)m−n−1

]
p(u0, u1)

≤ srn

1− sr
p(u0, u1).

By Lemma 1(iii), (un) is a Cauchy sequence in X. Since X is complete,
(un) converges to some point z ∈ X. Let n ∈ N be fixed. Then since (um)
converges to z and p(un, .) is s-lower semi-continuous, we have

p(un, z) ≤ lim inf
m→∞

s p(un, um) ≤ s2rn

1− sr
p(u0, u1).

Assume that z is not a common fixed point of T1 and T2. Then by hypothesis

0 < inf {p(x, z) +min { p(x, T1(x)), p(x, T2(x))} : x ∈ X}
≤ inf {p(un, z) +min {p(un, T1(un)), p(un, T2(un))} : n ∈ N}

≤ inf

{
s2rn

1− sr
p(u0, u1) + p(un, un+1) : n ∈ N

}
≤ inf

{
s2rn

1− sr
p(u0, u1) + rn p(u0, u1) : n ∈ N

}
= 0

which is a contradiction. Therefore, z = T1(z) = T2(z).
If v = T1(v) = T2(v) for some v ∈ X, then

p(v, v) = max {p(T1(v), T2T1(v)), p(T2(v), T1T2(v))}
≤ rmin {p(v, T1(v)), p(v, T2(v))}
= rmin {p(v, v), p(v, v)}
= rp(v, v)

which gives that, p(v, v) = 0. �
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Corollary 1. Let (X, d) be a complete b-metric space with constant s ≥ 1,
let p be a wt-distance on X and let T be a mapping from X into itself.
Suppose that there exists r ∈ [0, 1s ) such that

p(T (x), T 2(x)) ≤ r p(x, T (x))

for every x ∈ X and that

inf {p(x, y) + p(x, T (x)) : x ∈ X} > 0

for every y ∈ X with y 6= T (y). Then T has a fixed point in X. Moreover,
if v = T (v), then p(v, v) = 0.

Proof. The result follows from Theorem 2 by taking T1 = T2 = T . �

As an application of Corollary 1, we have the following results.

Theorem 3. Let (X, d) be a complete b-metric space with constant s ≥ 1,
let p be a wt-distance on X and let T be a continuous mapping from X into
itself. Suppose that there exists r ∈ [0, 1s ) such that

p(T (x), T 2(x)) ≤ rp(x, T (x))

for every x ∈ X. Then T has a fixed point in X. Moreover, if v = T (v),
then p(v, v) = 0.

Proof. If possible, suppose there exists y ∈ X with y 6= T (y) and

inf {p(x, y) + p(x, T (x)) : x ∈ X} = 0.

Then there exists a sequence (xn) in X such that

lim
n→∞

{p(xn, y) + p(xn, T (xn))} = 0

which gives that p(xn, y)→ 0 and p(xn, T (xn))→ 0. By using Lemma 1, it
follows that T (xn)→ y. We also have

p(xn, T
2(xn)) ≤ s

[
p(xn, T (xn)) + p(T (xn), T 2(xn))

]
≤ s(1 + r)p(xn, T (xn)) −→ 0.

Therefore, (T 2(xn)) converges to y. But T : X → X being continuous, we
have

T (y) = T
(

lim
n→∞

T (xn)
)

= lim
n→∞

T 2(xn) = y

which contradicts the fact that y 6= T (y). Thus, if y 6= T (y), then

inf {p(x, y) + p(x, T (x)) : x ∈ X} > 0.

By applying Corollary 1, we obtain the desired conclusion. �
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Theorem 4. Let (X, d) be a complete b-metric space with constant s ≥ 1
and let T : X → X be such that

(5) d(T (x), T (y)) ≤ αd(x, y) + βd(x, T (x)) + γd(y, T (y))

for every x, y ∈ X, where α, β, γ ≥ 0 with α + β + γ < 1
s . Then T has a

unique fixed point in X.

Proof. We treat the b-metric d as a wt-distance on X. From (5), we
have

d(T (x), T 2(x)) ≤ αd(x, T (x)) + βd(x, T (x)) + γd(T (x), T 2(x))

which gives that

(6) d(T (x), T 2(x)) ≤ α+ β

1− γ
d(x, T (x)).

Let us put r = α+β
1−γ . Then r ∈ [0, 1s ) since s(α+ β) + γ ≤ s(α+ β + γ) < 1.

Therefore, (6) becomes

d(T (x), T 2(x)) ≤ rd(x, T (x))

for every x ∈ X.
Suppose there exists y ∈ X with y 6= T (y) and

inf {d(x, y) + d(x, T (x)) : x ∈ X} = 0.

Then there exists a sequence (xn) in X such that

lim
n→∞

{d(xn, y) + d(xn, T (xn))} = 0.

So, we get d(xn, y)→ 0 and d(xn, T (xn))→ 0. By Lemma 1, it follows that
T (xn)→ y. We also have

d(y, T (y)) ≤ s [d(y, T (xn)) + d(T (xn), T (y))]

≤ s [d(y, T (xn)) + αd(xn, y) + βd(xn, T (xn)) + γd(y, T (y))]

for any n ∈ N and hence

d(y, T (y)) ≤ sγd(y, T (y)).

Therefore, d(y, T (y)) = 0 i.e., y = T (y). This is a contradiction. Hence, if
y 6= T (y), then

inf {d(x, y) + d(x, T (x)) : x ∈ X} > 0.

By applying Corollary 1, we obtain a fixed point of T in X. Clearly, T has
unique fixed point in X. �
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Theorem 5. Let (X, d) be a complete b-metric space with constant s ≥ 1
and let T : X → X be such that

(7) d(T (x), T (y)) ≤ αd(x, T (y)) + βd(y, T (x))

for every x, y ∈ X, where α, β ≥ 0 with αs < 1
1+s or βs < 1

1+s . Then T has
a fixed point in X. Moreover, if α+ β < 1, then T has a unique fixed point
in X.

Proof. We treat the b-metric d as a wt-distance on X. From (7), we
have

d(T (x), T 2(x)) ≤ αd(x, T 2(x)) + βd(T (x), T (x))

≤ αs[d(x, T (x)) + d(T (x), T 2(x))]

which gives that

(8) d(T (x), T 2(x)) ≤ αs

1− αs
d(x, T (x)).

Let us put r = αs
1−αs . Then r ∈ [0, 1s ). Therefore, (8) becomes

d(T (x), T 2(x)) ≤ rd(x, T (x))

for every x ∈ X. Suppose there exists y ∈ X with y 6= T (y) and

inf {d(x, y) + d(x, T (x)) : x ∈ X} = 0.

Then there exists a sequence (xn) in X such that

lim
n→∞

{d(xn, y) + d(xn, T (xn))} = 0.

So, we get d(xn, y)→ 0 and d(xn, T (xn))→ 0. By Lemma 1, it follows that
T (xn)→ y. We also have

d(y, T (y)) ≤ s [d(y, T (xn)) + d(T (xn), T (y))]

≤ s [d(y, T (xn)) + αd(xn, T (y)) + βd(y, T (xn))]

≤ s [d(y, T (xn)) + αsd(xn, y) + αsd(y, T (y)) + βd(y, T (xn))]

for any n ∈ N and hence

d(y, T (y)) ≤ s2αd(y, T (y)).

Therefore, d(y, T (y)) = 0 i.e., y = T (y). This is a contradiction. Hence, if
y 6= T (y), then

inf {d(x, y) + d(x, T (x)) : x ∈ X} > 0.
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By applying Corollary 1, we obtain a fixed point of T in X.

Now suppose that α+ β < 1. Assume that there are u, v ∈ X such that
T (u) = u and T (v) = v. Then

d(u, v) = d(T (u), T (v)) ≤ αd(u, v) + βd(v, u) = (α+ β)d(u, v).

This shows that d(u, v) = 0 i.e., u = v. Therefore, T has a unique fixed
point in X. �

Theorem 6. Let (X, d) be a complete b-metric space with constant s ≥ 1
and let T be a mapping from X into itself. Suppose there exists r ∈ [0, 1s )
such that

(9) d(T (x), T (y)) ≤ rmax{d(x, y), d(x, T (x)), d(y, T (y)), d(y, T (x))}

for every x, y ∈ X. Then T has a unique fixed point in X.

Proof. We treat the b-metric d as a wt-distance on X. From (9), we
have

d(T (x), T 2(x)) ≤ rmax

{
d(x, T (x)), d(x, T (x)),
d(T (x), T 2(x)), d(T (x), T (x))

}
(10)

= rmax{d(x, T (x)), d(T (x), T 2(x))}.

Without loss of generality, we assume that T (x) 6= T 2(x). For, otherwise, T
has a fixed point. Since r < 1

s , we obtain from (10) that

d(T (x), T 2(x)) ≤ rd(x, T (x))

for every x ∈ X. Assume that there exists y ∈ X with y 6= T (y) and

inf {d(x, y) + d(x, T (x)) : x ∈ X} = 0.

Then there exists a sequence (xn) in X such that

lim
n→∞

{d(xn, y) + d(xn, T (xn))} = 0.

So, we get d(xn, y)→ 0 and d(xn, T (xn))→ 0. By Lemma 1, it follows that
T (xn)→ y. We also have

d(y, T (y)) ≤ s [d(y, T (xn)) + d(T (xn), T (y))]

≤ s d(y, T (xn))

+ srmax {d(xn, y), d(xn, T (xn)), d(y, T (y)), d(y, T (xn))}
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for any n ∈ N and hence

d(y, T (y)) ≤ srd(y, T (y)).

Therefore, d(y, T (y)) = 0 i.e., y = T (y). This is a contradiction. Hence, if
y 6= T (y), then

inf {d(x, y) + d(x, T (x)) : x ∈ X} > 0.

By applying Corollary 1, we obtain a fixed point of T in X. Clearly, fixed
point of T is unique. �

Theorem 7. Let p be a wt-distance on a complete b-metric space (X, d)
with constant s ≥ 1. Let T1, T2 be mappings from X onto itself. Suppose
that there exists r > s such that

(11) min

{
p(T2T1(x), T1(x)),
p(T1T2(x), T2(x))

}
≥ rmax {p(T1(x), x), p(T2(x), x)}

for every x ∈ X and that

(12) inf {p(x, y) + min {p(T1(x), x), p(T2(x), x)} : x ∈ X} > 0

for every y ∈ X with y is not a common fixed point of T1 and T2. Then T1
and T2 have a common fixed point in X. Moreover, if v = T1(v) = T2(v),
then p(v, v) = 0.

Proof. Let u0 ∈ X be arbitrary. Since T1 is onto, there is an element
u1 satisfying u1 ∈ T−11 (u0). Since T2 is also onto, there is an element u2
satisfying u2 ∈ T−12 (u1). Proceeding in the same way, we can find u2n+1 ∈
T−11 (u2n) and u2n+2 ∈ T−12 (u2n+1) for n = 1, 2, 3, . . ..

Therefore, u2n = T1(u2n+1) and u2n+1 = T2(u2n+2) for n = 0, 1, 2, . . ..
If n = 2m, then using (11)

p(un−1, un) = p(u2m−1, u2m)

= p(T2(u2m), T1(u2m+1))

= p(T2T1(u2m+1), T1(u2m+1))

≥ min {p(T2T1(u2m+1), T1(u2m+1)),

p(T1T2(u2m+1), T2(u2m+1))}
≥ rmax {p(T1(u2m+1), u2m+1), p(T2(u2m+1), u2m+1)}
≥ rp(T1(u2m+1), u2m+1)

= rp(u2m, u2m+1)

= rp(un, un+1).
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If n = 2m+ 1, then by (11), we have

p(un−1, un) = p(u2m, u2m+1)

= p(T1(u2m+1), T2(u2m+2))

= p(T1T2(u2m+2), T2(u2m+2))

≥ min {p(T2T1(u2m+2), T1(u2m+2)),

p(T1T2(u2m+2), T2(u2m+2))}
≥ rmax {p(T1(u2m+2), u2m+2), p(T2(u2m+2), u2m+2)}
≥ rp(T2(u2m+2), u2m+2)

= rp(u2m+1, u2m+2)

= rp(un, un+1).

Thus for any positive integer n, we obtain

p(un−1, un) ≥ rp(un, un+1)

which implies that,

(13) p(un, un+1) ≤
1

r
p(un−1, un) ≤ . . . ≤

(
1

r

)n
p(u0, u1).

Let α = 1
r , then 0 < α < 1

s since r > s.
Now, (13) becomes

p(un, un+1) ≤ αn p(u0, u1).

So, if m > n, then

p(un, um) ≤ s [p(un, un+1) + p(un+1, um)]

≤ sp(un, un+1) + s2p(un+1, un+2) + . . .

+ sm−n−1 [p(um−2, um−1) + p(um−1, um)]

≤
[
sαn + s2αn+1 + . . .+ sm−n−1αm−2 + sm−n−1αm−1

]
p(u0, u1)

≤
[
sαn + s2αn+1 + . . .+ sm−n−1αm−2 + sm−nαm−1

]
p(u0, u1)

= sαn
[
1 + sα+ (sα)2 + . . .+ (sα)m−n−2 + (sα)m−n−1

]
p(u0, u1)

≤ sαn

1− sα
p(u0, u1).

By Lemma 1(iii), (un) is a Cauchy sequence in X. Since X is complete,
(un) converges to some point z ∈ X. Let n ∈ N be fixed. Then since (um)
converges to z and p(un, .) is s-lower semi-continuous, we have

(14) p(un, z) ≤ lim inf
m→∞

sp(un, um) ≤ s2αn

1− sα
p(u0, u1).
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Assume that z is not a common fixed point of T1 and T2. Then by hypothesis

0 < inf {p(x, z) + min {p(T1(x), x), p(T2(x), x)} : x ∈ X}
≤ inf {p(un, z) +min { p(T1(un), un), p(T2(un), un)} : n ∈ N}

≤ inf

{
s2αn

1− sα
p(u0, u1) + p(un−1, un) : n ∈ N

}
≤ inf

{
s2αn

1− sα
p(u0, u1) + αn−1p(u0, u1) : n ∈ N

}
= 0

which is a contradiction. Therefore, z = T1(z) = T2(z).
If v = T1(v) = T2(v) for some v ∈ X, then

p(v, v) = min {p(T2T1(v), T1(v)), p(T1T2(v), T2(v))}
≥ rmax {p(T1(v), v), p(T2(v), v)}
= rmax {p(v, v), p(v, v)}
= rp(v, v)

which gives that, p(v, v) = 0. �

Corollary 2. Let p be a wt-distance on a complete b-metric space (X, d)
with constant s ≥ 1 and let T : X → X be an onto mapping. Suppose that
there exists r > s such that

(15) p(T 2(x), T (x)) ≥ rp(T (x), x)

for every x ∈ X and that

(16) inf{p(x, y) + p(T (x), x) : x ∈ X} > 0

for every y ∈ X with y 6= T (y). Then T has a fixed point in X. Moreover,
if v = T (v), then p(v, v) = 0.

Proof. Taking T1 = T2 = T in Theorem 7, we have the desired result. �

As an application of Corollary 2, we have the following results.

Theorem 8. Let (X, d) be a complete b-metric space with constant s ≥ 1
and let T : X → X be an onto continuous mapping. Suppose there exists
r > s such that

d(T 2(x), T (x)) ≥ rd(T (x), x)

for every x ∈ X. Then T has a fixed point in X.



Some fixed point theorems using . . . 137

Proof. We consider d as a wt-distance on X. Then d satisfies condition
(15) of Corollary 2.

Assume that there exists y ∈ X with y 6= T (y) and

inf{d(x, y) + d(T (x), x) : x ∈ X} = 0.

Then there exists a sequence (xn) such that

lim
n→∞

{d(xn, y) + d(T (xn), xn)} = 0.

So, we have d(xn, y)→ 0 and d(T (xn), xn)→ 0 as n→∞.
Now,

d(T (xn), y) ≤ d(T (xn), xn) + d(xn, y)→ 0 as n→∞.

Since T is continuous, we have

T (y) = T
(

lim
n→∞

xn

)
= lim

n→∞
T (xn) = y.

This is a contradiction. Hence if y 6= T (y), then

inf{d(x, y) + d(T (x), x) : x ∈ X} > 0,

which is condition (16) of Corollary 2. By Corollary 2, there exists z ∈ X
such that z = T (z). �

Theorem 9. Let (X, d) be a complete b-metric space with constant s ≥ 1
and let T : X → X be an onto continuous mapping. If there is a real number
r with r > s satisfying

(17) d(T (x), T (y)) ≥ rmin{d(x, T (x)), d(T (y), y), d(x, y)}

for every x, y ∈ X, then T has a fixed point in X.

Proof. We consider d as a wt-distance on X. Replacing y by T (x) in
(17), we have

(18) d(T (x), T 2(x)) ≥ rmin{d(x, T (x)), d(T 2(x), T (x)), d(x, T (x))}

for every x ∈ X. Without loss of generality, we may assume that T (x) 6=
T 2(x). For, otherwise, T has a fixed point. Since r > s ≥ 1, it follows from
(18) that

d(T 2(x), T (x)) ≥ rd(T (x), x)

for every x ∈ X. By the argument similar to that used in Theorem 8, we
can prove that, if y 6= T (y), then

inf{d(x, y) + d(T (x), x) : x ∈ X} > 0.

So, Corollary 2 applies to obtain a fixed point of T . �
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Remark 1. The class of mappings satisfying condition (17) is strictly
larger than that of expansive mappings. For, if T : X → X is expansive,
then there exists r > s such that

d(T (x), T (y)) ≥ r d(x, y) ≥ rmin{d(x, T (x)), d(T (y), y), d(x, y)}

for all x, y ∈ X. On the otherhand, the identity mapping satisfies condition
(17) but it is not expansive.

We now supplement Theorem 2 by examination of conditions (1) and (2)
in respect of their independence. We furnish Examples 6 and 7 below to
show that these two conditions are independent in the sense that Theorem
2 shall fall through by dropping one in favour of the other.

Example 6. Let X = {0} ∪
{

1
3n : n ≥ 1

}
and d(x, y) =| x− y |2 for all

x, y ∈ X. Then (X, d) is a complete b-metric space with constant s = 2.
Define T : X → X by T (0) = 1

3 and T
(

1
3n

)
= 1

3n+1 for n ≥ 1. Clearly, T has
no fixed point in X. It is easy to verify that d(T (x), T 2(x)) ≤ 1

9d(x, T (x))
for all x ∈ X. Therefore, condition (1) holds for T1 = T2 = T . On the other
hand, T (y) 6= y for all y ∈ X and so

inf {d(x, y) + d(x, T (x)) : x, y ∈ X with y 6= T (y)}
= inf {d(x, y) + d(x, T (x)) : x, y ∈ X} = 0.

Thus, condition (2) is not satisfied for T1 = T2 = T . We note that Theorem
2 does not hold without condition (2).

Example 7. Let X = [3,∞) ∪ {1, 2} and d(x, y) =| x − y |2 for all
x, y ∈ X. Then (X, d) is a complete b-metric space with constant s = 2.
Define T : X → X where

T (x) =

{
1, for x ∈ (X \ {1})
2, for x = 1.

Clearly, T possesses no fixed point in X.
Now,

inf {d(x, y) + d(x, T (x)) : x, y ∈ X with y 6= T (y)}
= inf {d(x, y) + d(x, T (x)) : x, y ∈ X} > 0.

Thus, condition (2) is satisfied for T1 = T2 = T . But, for x = 1, we find that
d(T (x), T 2(x)) = 1 > rd(x, T (x)) for any r ∈ [0, 1s ). So, condition (1) does
not hold for T1 = T2 = T . In this case we observe that Theorem 2 does not
work without condition (1).

Note. In examples above we treat the b-metric d as a wt-distance on X
in reference to Theorem 2.
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