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1. Introduction

The notion of fuzzy sets was introduced by Zadeh [16]. After that many
authors have studied and generalized this notion in many ways, due to the
potential of the introduced notion. Also it has wide range of applications in
almost all the branches of studied in particular science, where mathematics
is used. It attracted many workers to introduce different types of fuzzy
sequence spaces.

Bounded and convergent sequences of fuzzy numbers were studied by
Matloka [8]. Later on sequences of fuzzy numbers have been studied by
Kaleva and Seikkala [2], Tripathy and Sarma ([13], [14]) and many others.

I-convergence of real valued sequence was studied at the initial stage by
Kostyrko, Šalát and Wilczyński [4] which generalizes and unifies different
notions of convergence of sequences. The notion was further studied by
Šalát, Tripathy and Ziman [9].

Let X be a non-empty set, then a non-void class ⊆ 2X (power set of X)
is called an ideal if I is additive (i.e. A,B ∈ I ⇒ A ∪BinI) and hereditary
(i.e. A ∈ I and B ∪ A ⇒ BinI). An ideal I ⊆ 2X is said to be non-trivial
if I 6= 2X . A non-trivial ideal I is said to be admissible if I contains every
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finite subset of N . A non-trivial ideal I is said to be maximal if there does
not exist any non-trivial ideal J 6= I containing I as a subset.

Let X be a non-empty set, then a non-void class F ⊆ 2X is said to be a
filter in X if φ /∈ F , A,B ∈ F ⇒ A ∩ B ∈ F and A ∈ F , A ⊆ B ⇒ B ∈ F .
For any ideal I, there is a filter Ψ(I) corresponding to I, given by

Ψ(I) = {K ⊆ N : N\K ∈ I}.

A modulus function f is a function from [0,∞) to [0,∞) such that:
(i) f(x) = 0 iff x = 0

(ii) f(x+ y) ≤ f(x) + f(y) for all x, y ≥ 0,
(iii) f is increasing,
(iv) f is continuous from the right at 0.
It follows that f must be continous everywhere on [0,∞) and a modulus

function may be bounded or not bounded.
Let X be a linear metric space. A function is called paranorm if:

(1) p(x) ≥ 0 for all x ∈ X
(2) p(−x) = p(x) for all x ∈ X
(3) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X,
(4) If (λn) be a sequence of scalars such that as λn → 0 and (xn) be a

sequence of vectors with p(xn−x)→ 0 as n→∞, then p(λnxn−λx)→ 0
as n→∞.

A paranorm p for which p(x) = 0⇒ x = 0 is called total paranorm and the
pair (X, p) is called a total paranormed space.

2. Definitions and background

Let D denote the set of all closed and bounded intervals X = [a1, b1] on
the real line R. For X = [a1, b1] ∈ D and Y = [a2, b2] ∈ D, define d(X,Y )
by

d(X,Y ) = max(|a1 − b1|, |a2 − b2|).

It is known that (D, d) is a complete metric space.
A fuzzy real number X is a fuzzy set on R i.e. a mapping X : R→ L(=

[0, 1]) associating each real number t with its grade of membership X(t).
The α-level set [X]α set of a fuzzy real number X for 0 < α ≤ 1, defined

as Xα = {t ∈ R : X(t) ≥ α}.
A fuzzy real number X is called convex, if X(t) ≥ X(s) ∧ X(r) =

min(X(s), X(r)), where s < t < r.
If there exists t0 ∈ R such that X(t0) = 1, then the fuzzy real number X

is called normal. A fuzzy real number X is said to be upper semi- continuous
if for each ε > 0, X−1([0, a+ ε)), for all a ∈ L is open in the usual topology
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of R. The set of all upper semi-continuous, normal, convex fuzzy number is
denoted by L(R).

The absolute value |X| of X ∈ L(R) is defined as (see for instance Kaleva
and Seikkala [2])

|X|(t) =

{
max{X(t), X(−t)}, if t ≥ 0,

0, t < 0.

Let d̄ : L(R)× L(R)→ R be defined by

d̄(X,Y ) = sup
0≤α≤1

d(Xα, Y α).

Then d̄ defines a metric on L(R).
A sequence X = (Xk) of fuzzy numbers is a function X from the set N

of all positive integers into L(R). The fuzzy number Xk denotes the value
of the function at k ∈ N and is called the k-th term or general term of the
sequence. The set of all sequences of fuzzy numbers is denoted by .

A sequence (Xk) of fuzzy real numbers is said to be convergent to the
fuzzy real number, if for every ε > 0, there exists k0 ∈ N such that
d̄(Xk, X0) < ε for all k ≥ k0.

A sequence X = (Xk) of fuzzy numbers is said to be I-convergent if
there exists a fuzzy number X0 such that for all ε > 0, the set {k ∈ N :
d̄(Xk, X0) ≥ ε} ∈ I. We write I − limXk = X0.

A sequence (Xk) of fuzzy numbers is said to be I-bounded if there exists
a real number µ such that the set {k ∈ N : d̄(Xk, 0̄) > µ} ∈ I.

If I = If , then If convergence coincides with the usual convergence
of fuzzy sequences. If I = Id(Iδ), then Id(Iδ) convergence coincides with
statistical convergence (logarithmic convergence) of fuzzy sequences. If I =
Iu, Iu convergence is said to be uniform convergence of fuzzy sequences.

A double sequence of fuzzy real numbers is a double infinite array of
fuzzy real numbers. We denote a double sequence of fuzzy real numbers by
(Xk,l), where (Xk, l′s are fuzzy real numbers for each k, l ∈ N . Throughout
the article 2w

F denote the set of all double sequences of fuzzy real numbers.
A double sequence (Xk,l) of fuzzy numbers is said to be convergent in

Pringsheim sence or P -convergent to a fuzzy real number X0 if for each
ε > 0 there exist k0, l0 ∈ N such that

d̄(Xk,l, X0) > ε for all k ≥ k0, l ≥ l0. We write P − limxk,l = X0.

A double sequence (Xk,l) of fuzzy numbers is said to be null in Pringsheim
sence or P -null if P − limXk,l = 0̄.

A double sequence (Xk,l) of fuzzy numbers is said to be bounded in
Pringsheim sence or P -bounded if supk,l d̄(Xk,l, X0) <∞.
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Let I2 be an ideal of 2N×N . A double sequence (Xk,l) of fuzzy numbers
is said to be I-convergent in Pringsheim sense if for each ε > 0 such that

{(k, l) ∈ N ×N : d̄(xk,l, X0) ≥ ε} ∈ I2

We write I − limXk,l = X0. For X0 = 0̄, it is called I-null in Pringsheim
sence.

Let I2 be an ideal of 2N×N and I be an ideal of 2N . A double se-
quence (Xk,l) of fuzzy numbers is said to be regularly I-convergent to a
fuzzy number if it is I-convergent in Pringsheim sense and for each ε > 0
the followings hold: For each l ∈ N there exists Ll ∈ L(R) such that
{k ∈ N : d̄(Xk,l, Ll) ≥ ε} ∈ I, and for each k ∈ N there exists k ∈ L(R)
such that {l ∈ N : d̄(Xk,l,MK) ≥ ε} ∈ I. If Ll = Mk = 0̄ for all l ∈ N , the
sequence (Xk,l) is said to be regularly I-null.

A double sequence (Xk,l) of fuzzy numbers is said to be I-Cauchy if for
each ε > 0 there exists s = s(ε), t = t(ε) ∈ N such that {(k, l) ∈ N × N :
d̄(Xk,l, Xs,t) ≥ ε} ∈ I2.

A double sequence (Xk,l) of fuzzy numbers is said to be I-bounded if there
exists a real number M > 0 such that {(k, l) ∈ N×N : d̄(Xk,l, 0̄) ≥M} ∈ I2.

Throughout, 2w
I(F ), 2w

I(F )
0 and 2w

I(F )
∞ denote the spaces of fuzzy real-

valued I-convergent, I-null and I-bounded sequences respectively.

It is clear from the definitions that 2w
I
0(F ) ⊂2 w

I(F ) ⊂2 w
I(F )
∞ and the

inclusions are proper.

It can be easily shown that 2w
I(F )
∞ is complete with respect to the metric

f defined by f(X,Y ) = supk,l d̄(Xk,l, Yk,l), where X = (Xk,l), Y = (Yk,l) ∈
2w

I(F )
∞ .

Lemma 1. Let (αK) and (βk) be sequences of real or complex numbers
and (pk) be a bounded sequence of positive real numbers, then

|αk + βk|pk ≤ D(|αk|pk + |βk|pk)

and
|λ|pk ≤ max(1, |λ|H)

where D = max(1, |λ|H−1, H = sup pk, λ is any real or complex number.

Lemma 2. If d̄ is translation invariant then
(a) d̄(Xk,l + Yk,l, 0) ≤ d̄(Xk,l, 0) + d̄(Yk,l, 0)
(b) d̄(αXk,l, 0) ≤ |α|d̄(Xk,l, 0), |α| > 1.
Let f be a double sequence of modulus functions, p = (pk,l) be a bounded

double sequence of strictly positive real numbers. We define the following
new sequence spaces as:

2w
I(F )(f, p) =

{
X = (Xk,l) ∈2 w

F : I − lim f([d̄(Xk,l, X0)]p) = 0,

for X0 ∈ L(R)} ∈ I2,
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2w
I(F )
0 (f, p) =

{
X = (Xk,l) ∈2 w

F : I − lim f([d̄(Xk,l, 0̄)]p) = 0
}
∈ I2,

2w
I(F )
∞ (f, p) =

{
X = (Xk,l) ∈2 w

F : I − sup
k,l

f([d̄(Xk,l, 0̄)]p) <∞

}
∈ I2.

Some special cases:
a. If F (x) = x, then the above spaces becomes,

2w
I(F )(p) =

{
X = (Xk,l) ∈2 w

F : I − lim[d̄(Xk,l, X0)]p = 0,

forX0 ∈ L(R)} ∈ I2,

2w
I(F )
0 (p) =

{
X = (Xk,l) ∈2 w

F : I − lim[d̄(Xk,l, 0̄)]p = 0
}
∈ I2,

2w
I(F )
∞ (p) =

{
X = (Xk,l) ∈2 w

F : I − sup
k,l

[d̄(Xk,l, 0̄)]p) <∞

}
∈ I2.

b. If (pk,l) = 1 for all k, l ∈ N , we have,

2w
I(F )(f) =

{
X = (Xk,l) ∈2 w

F : I − lim f([d̄(Xk,l, X0)]) = 0,

for X0 ∈ L(R)} ∈ I2,

2w
I(F )
0 (f) =

{
X = (Xk,l) ∈2 w

F : I − lim f([d̄(Xk,l, 0̄)]) = 0
}
∈ I2,

2w
I(F )
∞ (f) =

{
X = (Xk,l) ∈2 w

F : I − sup
k,l

f([d̄(Xk,l, 0̄)]) <∞

}
∈ I2.

c. If f(x) = x and (pk,l) = 1 for all k, l ∈ N , then

2w
I(F ) =

{
X = (Xk,l) ∈2 w

F : I − lim[d̄(Xk,l, X0)] = 0,

for X0 ∈ L(R)} ∈ I2,

2w
I(F )
0 =

{
X = (Xk,l) ∈2 w

F : I − lim[d̄(Xk,l, 0̄)] = 0
}
∈ I2,

2w
I(F )
∞ =

{
X = (Xk,l) ∈2 w

F : I − sup
k,l

[d̄(Xk,l, 0̄)] <∞

}
∈ I2.

3. Main results

Theorem 1. Let f be a modulus function, then 2w
I(F )(f, p), 2w

I(F )
0 (f, p)

and 2w
I(F )
∞ (f, p) are linear spaces.

Proof. We will prove the result for 2w
I(f)
0 (f, p), others are same. Let,

X = (Xk,l) and Y = (Yk,l) ∈ 2w
I(F )
0 (f, p). For scalars α, β ∈ C, there exist

integers aα and bβ such that |α| ≤ aα and |β| ≤ bβ. Since f be a modulus
function, we have

f([d̄((αXk + βYk), 0̄)]p) ≤ D(aα)Hf([d̄(Xk,l, 0̄0]p)

+ D(bβ)Hf([d̄(Yk,l, 0̄)]p)→ 0 as k, l→∞.
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Therefore, αXk + βYk ∈ 2w
I(F )
0 (F, p). This completes the proof. �

Theorem 2. Let f be a modulus function, then 2w
I(F )
∞ (p) ⊂ 2w

I(F )
∞ (f, p).

Proof. LetX = (Xk,l) ∈ 2w
I(F )
∞ (p), then we have I−supk,l f([d̄(Xk,l, 0̄)]p)

< ∞. Let ε > 0 and choose a δ > 0 with 0 < δ < 1 such that f(t) < ε for
0 ≤ δ ≤ 1. Thus

I − sup
k,l

f([d̄(Xk,l, 0̄)]p) = I − sup
k,l,d̄(Xk,l,0̄≤δ

f([d̄(Xk,l, 0̄)]p)

+ I − sup
k,l,d̄(Xk,l,0̄>δ

f([d̄(Xk,l, 0̄)]p)

≤ ε+
M

δ
sup
k,l

[(d̄(xk,l, 0̄)p]

<∞ by properties of modulus function.

Hence X = (Xk,l) ∈ 2w
I(F )
∞ (f, p). This completes the proof. �

Theorem 3. Let f be a modulus function and α = limt→∞
f(t)
t > 0, then

2w
I(F )
∞ (F, p) ⊂ 2w

I(F )
∞ (p).

Proof. Let X = (Xk,l) ∈ 2w
I(F )
∞ (f, p). By definition of α, we have

f(t) ≥ αt for all t ≥ 0. Since, α > 0, we have t ≤ f(t)
α . Thus,

I − sup
k,l

([d̄(Xk,l, 0̄)]p) ≤ I − 1

α
sup
k,l

f([d̄(Xk,l, 0̄)]p) <∞.

This follows that X = (Xk,l) ∈ 2w
I(F )
∞ (p). �

Theorem 4. Let f be a modulus function then 2w
I(F )
∞ ⊂ 2w

I(F )
0 (f, p),

if limt→∞ f(t) = 0 for t > 0.

Proof. It is easy to prove, so omitted. �

Theorem 5. Let f be a modulus function and if limt→∞ f(t) = ∞ for

t > 0 then 2w
I(F )
∞ (f, p) ⊂ 2w

I(F )
0 .

Proof. Let limt→∞ f(t) = ∞ for t > 0. If X = (Xk,l) ∈ 2w
I(F )
∞ (f, p).

Then,
f([d̄(Xk,l, 0̄)]p) ≤M <∞ for all k, l.

If possible let X = (Xk) /∈ 2w
I(F )
0 , then for some ε > 0 there exists a

positive integer k0 such that d̄(Xk,l, 0̄) < ε for k ≥ k0, l ≥ l0. Therefore,

f(ε) ≥ f([d̄(xk,l, 0̄)]p) ≤M for k ≥ k0, l ≥ l0.



On some I-convergent double sequence . . . 25

This contradicts to our assumption that limt→∞ f(t) = ∞ for t > 0 and

hence X = (Xk,l) ∈ 2w
I(F )
0 and completes the proof. �

Theorem 6. If f be a modulus function, then 2w
I(F )
0 (f, p) and 2w

I(F )
∞ (f, p)

are paranormed spaces with the paranorm h defined by

h(X) = sup
k,l

{
f [d̄(Xk,l, 0̄)]p

} 1
M ,

where M = max{1 supk,l p}.

Proof. Obviously h(X) = h(−X) for all x ∈ 2w
I(F )
0 (f, p). It is trivial

that Xk,l = 0̄ for X = 0̄. Since, p
M ≤ 1, since d̄ is translation invariant and

by using Minkowski’s inequality, we have,{
f [d̄((Xk,l + Yk,l), 0̄)]p

} 1
M ≤

{
f [d̄((Xk,l, 0̄)]p

} 1
M +

{
f [d̄((Yk,l, 0̄)]p

} 1
M .

Hence,

h(X + Y ) ≤ h(X) + h(Y ).

Finally to check the continuity of scalar multiplication, let be any scalar, by
definition we have

h(λX) = sup
k,l

{
f [d̄(λXk,l, 0̄)]p

} 1
M ≤ K

H
M
λ h(X),

where H = supk,l p <∞. Where Kλ is positive integer such that |λ| ≤ Kλ.
Let λ → 0 for any fixed X with h(X) = 0. By definition for |λ| ≤ 1, we
have

sup
k,l

{
f [d̄(λXk,l, 0̄

p
}
≤ ε for N > N(ε).

Also for 1 ≤ n ≤ N by taking λ small enough, since f is continuous, we get

sup
k,l

{
f [d̄(λXk,l, 0̄

p
}
≤ ε.

Implies that h(λX)→ 0 as λ→ 0. This completes the proof. �

Theorem 7. If I is an admissible ideal then the spaces 2w
I(F )(f, p),

2w
I(F )
0 (f, p) and 2w

I(F )
∞ (f, p) are complete metric spaces under the metric

h(X,Y ) = sup
k

{
f [d̄(Xk,l, Yk,l)]

p
} 1

M ,

where M = max{1, supk,l p}.
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Proof. It is easy to see that h is a metric on 2w
I(F )(f, p). To show

completeness. Let (Xi) be a Cauchy sequence in 2w
I(F )(f, p) where (Xi) =

(Xi
k,l). Therefore for each ε > 0 there exists i0 ∈ N such that

h(Xi, Xj) < ε for all i, j ≥ i0

i.e

sup
k,l

(f [d̄(Xi
k,l, Y

j
k,l)]

p)
1
M < ε for all i, j ≥ i0.

This means

sup
k,l

{
f [d̄(Xi

k,l, Y
j
k,l)]

p
} 1

M
< ε for all i, j ≥ i0.

Since f is modulus function, so choosing suitable ε1 > 0 and we obtain

d̄(Xi
k,l, Y

j
k,l)] < ε1 for all and for each k, l

i.e

(Xi
k) is a Cauchy sequence in L(R) for each k, l.

Keeping fixed and letting j →∞, one can find that

sup
k,l

(f [d̄ik,l, Xk,l)]
p) < ε for all i ≥ i0.

That means,

h(Xi, X) < ε for all i ≥ i0.

Next to show X ∈2 w
I(F )(f, p), for which the proof as follows:

Since for (Xi
k,l) ∈2 w

I(F )(f, p), so for i, j, there exist Li, Lj ∈ L(R) and
ki, kji ∈ N and li, lj ∈ N , such that

sup
k,l

(f [d̄(Xi
k,l, L

i)]p) < ε for all k ≥ ki, l ≥ li.

and

sup
k,l

(f [d̄(Xi
k,l, L

i)]pk) < ε for all k ≥ kj , l ≥ lj .

Now let k0 = max(ki, kj) and l0 = max(li, lj); for i, j ≥ i0, we have

sup(f [d̄((Li, Lj)]p) ≤ C sup
k,l

(f [d̄(Li, Xi
k,l)]

p)

+C sup
k,l

(f [d̄(Xi
k,l, X

j
k,l)]

p) + C sup
k,l

(f [d̄(Xj
k,l, L

j)]p)

< 3Cε for all i, j ≥ i0 and k ≥ k0, l ≥ l0.
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Hence (Li) is a Cauchy sequence in L(R). So there exists L ∈ L(R) such
that Li → L as i→∞. Now keeping fixed and letting j →∞,once can find
that,

sup(f [d̄(Li, L)]p) < 3Cε for all i ≥ i0.

Therefore,

sup
k,l

(f [d̄(Xk,l, L)]p) ≤ C sup
k,l

(f [d̄(Xk,l, X
i0
k,l]

p)

+ sup
k,l

(f [d̄(Xi
k,l, L

i)]p) + sup(f [d̄(Li0 , L)]p)

< 2Cε+ 3C2ε ∼= ε1 for all k ≥ k0, l ≥ l0.

This implies that X = (Xk,l) ∈ 2w
I(F )(f, p). This completes the proof. �
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