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1. Introduction

The notion of fuzzy sets was introduced by Zadeh [16]. After that many
authors have studied and generalized this notion in many ways, due to the
potential of the introduced notion. Also it has wide range of applications in
almost all the branches of studied in particular science, where mathematics
is used. It attracted many workers to introduce different types of fuzzy
sequence spaces.

Bounded and convergent sequences of fuzzy numbers were studied by
Matloka [8]. Later on sequences of fuzzy numbers have been studied by
Kaleva and Seikkala [2], Tripathy and Sarma ([13], [14]) and many others.

I-convergence of real valued sequence was studied at the initial stage by
Kostyrko, Saldt and Wilczytiski [4] which generalizes and unifies different
notions of convergence of sequences. The notion was further studied by
Salat, Tripathy and Ziman [9].

Let X be a non-empty set, then a non-void class C 2% (power set of X)
is called an ideal if I is additive (i.e. A, B € [ = AU Binl) and hereditary
(i.e. A€l and BUA = Binl). An ideal I C 2% is said to be non-trivial
if I # 2%, A non-trivial ideal I is said to be admissible if I contains every
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finite subset of N. A non-trivial ideal I is said to be maximal if there does
not exist any non-trivial ideal J # I containing I as a subset.

Let X be a non-empty set, then a non-void class F' C 2% is said to be a
filterin X if¢¢ F,AABeF=ANBeFand Ac FACB= BeF.
For any ideal I, there is a filter ¥(I) corresponding to I, given by

U(I)={K CN:N\K € I}.

A modulus function f is a function from [0, c0) to [0, c0) such that:
(1) flx)=0iff z =0
(id) f(z+y) < f(x) + f(y) for all 2,y > 0,
(7i7) f is increasing,
(iv) f is continuous from the right at 0.
It follows that f must be continous everywhere on [0, 00) and a modulus
function may be bounded or not bounded.

Let X be a linear metric space. A function is called paranorm if:

(1) p(x) >0 forallz € X

(2) p(—x) = p(x) for all z € X

(3) p(z+y) <p(x) +p(y) forall z,y € X,

(4) If (A,) be a sequence of scalars such that as A, — 0 and (z,) be a
sequence of vectors with p(z, —x) — 0 as n — oo, then p(A,zp,—Az) — 0
as n — oo.

A paranorm p for which p(z) =0 = z = 0 is called total paranorm and the

pair (X, p) is called a total paranormed space.

1

2. Definitions and background

Let D denote the set of all closed and bounded intervals X = [a1,b1] on
the real line R. For X = [a;,b1] € D and Y = [ag, b2] € D, define d(X,Y)
by

d(X, Y) = max(\al — 1)1’, ‘G,Q — bg’)

It is known that (D, d) is a complete metric space.

A fuzzy real number X is a fuzzy set on R i.e. a mapping X : R — L(=
[0, 1]) associating each real number ¢ with its grade of membership X (¢).

The a-level set [X]“ set of a fuzzy real number X for 0 < a < 1, defined
as X*={te R: X(t) > a}.

A fuzzy real number X is called conver, if X(t) > X(s) A X(r) =
min(X(s), X(r)), where s <t <.

If there exists tg € R such that X (t9) = 1, then the fuzzy real number X
is called normal. A fuzzy real number X is said to be upper semi- continuous
if for each e > 0, X~1([0,a +¢)), for all @ € L is open in the usual topology
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of R. The set of all upper semi-continuous, normal, convex fuzzy number is
denoted by L(R).

The absolute value | X| of X € L(R) is defined as (see for instance Kaleva
and Seikkala [2])

|X|(t):{:)nax{X(t),X(—t)}, if iig

Let d: L(R) x L(R) — R be defined by

d(X,Y)= sup d(X* Y.
0<a<l
Then d defines a metric on L(R).

A sequence X = (X}) of fuzzy numbers is a function X from the set N
of all positive integers into L(R). The fuzzy number X} denotes the value
of the function at k € N and is called the k-th term or general term of the
sequence. The set of all sequences of fuzzy numbers is denoted by .

A sequence (X}) of fuzzy real numbers is said to be convergent to the
fuzzy real number, if for every € > 0, there exists kg € N such that
d(Xg, Xo) < ¢ for all k > k.

A sequence X = (Xj) of fuzzy numbers is said to be I-convergent if
there exists a fuzzy number Xy such that for all ¢ > 0, the set {k € N :
d(Xg, Xo) > e} € I. We write I — lim X, = X.

A sequence (X}) of fuzzy numbers is said to be I-bounded if there exists

a real number p such that the set {k € N : d(Xy,0) > pu} € I.

If I = Iy, then I; convergence coincides with the usual convergence
of fuzzy sequences. If I = I;(I5), then I;(I5) convergence coincides with
statistical convergence (logarithmic convergence) of fuzzy sequences. If I =
I, I, convergence is said to be uniform convergence of fuzzy sequences.

A double sequence of fuzzy real numbers is a double infinite array of
fuzzy real numbers. We denote a double sequence of fuzzy real numbers by
(X)), where (Xk,!'s are fuzzy real numbers for each k,! € N. Throughout
the article sw!” denote the set of all double sequences of fuzzy real numbers.

A double sequence (Xj;) of fuzzy numbers is said to be convergent in
Pringsheim sence or P-convergent to a fuzzy real number Xg if for each
€ > 0 there exist kg, ly € N such that

d(Xk,l,X()) >ceforall k > kg, | > 1ly. We write P — limxk,l = Xp.

A double sequence (X}, ;) of fuzzy numbers is said to be null in Pringsheim
sence or P-null if P — lim X ; = 0.
A double sequence (X ;) of fuzzy numbers is said to be bounded in

Pringsheim sence or P-bounded if supy, ; d( X}, Xo) < oo.
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Let I be an ideal of 2y« . A double sequence (Xj ;) of fuzzy numbers
is said to be I-convergent in Pringsheim sense if for each € > 0 such that

{(k,l) €N x N : d(ka,Xo) > E} el

We write I — lim X}, ; = Xo. For Xy = 0, it is called I-null in Pringsheim
sence.

Let I» be an ideal of 2yxn and I be an ideal of 2V. A double se-
quence (Xj;) of fuzzy numbers is said to be regularly I-convergent to a
fuzzy number if it is I-convergent in Pringsheim sense and for each ¢ > 0
the followings hold: For each [ € N there exists L; € L(R) such that
{k € N :d(Xyy,L;) > e} € I, and for each k € N there exists € L(R)
such that {l € N : d(Xy;, Mg) > e} € I. If L; = My =0 for all [ € N, the
sequence (X ) is said to be regularly I-null.

A double sequence (Xj;) of fuzzy numbers is said to be I-Cauchy if for
each € > 0 there exists s = s(¢), t = t(¢) € N such that {(k,l) € N x N :
d(Xk,les,t) > E} € I.

A double sequence (X} ;) of fuzzy numbers is said to be I-bounded if there

exists a real number M > 0 such that {(k,1) € NxN : d(X,;,0) > M} € L.
Throughout, qw! (F ), gwé(F) and ngéF) denote the spaces of fuzzy real-
valued I-convergent, I-null and I-bounded sequences respectively.
It is clear from the definitions that sw{(F) Co w!(F) wCngF) and the
inclusions are proper.
I(F)

It can be easily shown that swss ’ is complete with respect to the metric

f defined by f(X,Y) = supy; d(Xg, Y1), where X = (Xp;), Y = (Yiy) €
I(F)

Lemma 1. Let (ax) and (Bx) be sequences of real or complex numbers
and (pg) be a bounded sequence of positive real numbers, then

| + Bi”* < D(|ow|"* + |Be ")
and
APE < max(1, A7)
where D = max(1, |\ ~1, H = suppy, A is any real or complex number.

Lemma 2. If d is translation invariant then

(@) d(Xpg + Vi, 0) < d(Xpy,0) + d(Yiy,0)

(b) d(aXy;,0) < |o|d(Xky,0), |of > 1.

Let f be a double sequence of modulus functions, p = (pr;) be a bounded
double sequence of strictly positive real numbers. We define the following
new sequence Spaces as:

2! (f,p) = {X = (Xiy) €2 wh o T —lim f([d( X5z, X0)]P) =0,
for Xo € L(R)} € I,
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qwp P (f,p) = {X = (Xp)) €2 w : T —lim f([d(Xp1,0)P) = 0} € I,

2wl (f,p) = {X = (Xig) €2w" : 1 - S;?})f([ A, OF) < OO} =

Some special cases:
a. If F(z) = z, then the above spaces becomes,

2w F(p) = {X = (Xp) €2 w : T — lim[d(Xp 1, Xo)]P = 0,
for Xog € L(R)} € I,
2wé(F)(p) = {X = (Xiy) €2 wh : I = lim[d(Xy;,0)]P =0} € I,

2wl (p) = {X = (Xp1) €2 w" i I = supld(Xy,0)]") < OO} € .
Kl

b. If (pg;) =1 for all k,l € N, we have,
2w!(f) = {X = (Xp1) €2 0+ 1 =lim f([d(X1, Xo)]) =0,
for Xo € L(R)} € -727
2wo " (f) = {X = (Xpy) €2 0"+ I —lim f([d(X},0)]) = 0} € I,
nggp)(f) — {X = (Xk,l) S U)F 1 — Supf([ (Xkl,O)]) < OO} € I.

k.l
c. If f(x) =x and (pg;) =1 for all k,l € N, then
2w ) = IX = (Xp)) € w1 I —lim[d(X},, Xo)] = 0,
for Xo € L(R)} € I,
qup ) = {X = (Xiy) €2 w" : I —lim[d(X;y,0)] = 0} € I,

qwilf) = {X = (Xp1) €2 " : I — supld(Xy,,0)] < 00} € .
¥

3. Main results

Theorem 1. Let f be a modulus function, then ow!F)(f,p), 2’LUO (f, D)

and swl{F (f, p) are linear spaces.

Proof. We will prove the result for gwo ( f,p), others are same. Let,

X =(Xpy)and Y = (Yy) € gfwo (f7 p). For scalars o, § € C, there exist
integers a, and bg such that |a| < a, and |3] < bg. Since f be a modulus
function, we have

F([((aXy + BY),0)7) < D(aq)™ f([d(Xy., 00]7)
+ D(bg)" f([d(Yi1,0)]P) — 0 as k,1 — oco.
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Therefore, a X, + 8Y;, € gwo( )(F p). This completes the proof. |
Theorem 2. Let f be a modulus function, then Jwld?) (p) C JwilE (f, D).
I(F)

Proof. Let X = (Xj;) € 2wse ' (p), then we have I—supy,; f([d(Xy,0)]P)
< 00. Let6>Oandchoosea(5>0w1th0<5<1suchthatf()<5for
0<§<1. Thus

I —sup f([d(Xks,0)P) = T—  sup  f([d(Xpy,0)]")
kL kel d(Xp ,0<6
+1—  sup  f([d(Xrg,0)P)
k,l,d(Xk7l,0>5

M _ _
< e+ — sup|(d(zx,0)7]
0 &y

< o0 by properties of modulus function.
Hence X = (Xy,) € Jwllf (f, p). This completes the proof. [

Theorem 3. Let f be a modulus function and o = limy_, o HGEN 0, then

t
wi(Fp) P (p).

Proof. Let X = (Xj;) € JwilE (f p). By definition of «, we have
f(t) > at for all t > 0. Since, a > 0, we have t < % Thus,

I = sup([d(Xe, 0)]7) < I — ~sup F([d(X1, D)) < oo.
k.l ok

This follows that X = (Xj,;) € zwgéF) (p)- u

Theorem 4. Let f be a modulus function then gwgéF) C gwé(F)(f, D),
if limy oo f(t) =0 fort > 0.

Proof. It is easy to prove, so omitted. |

Theorem 5 Let f be a modulus function and if lim;_,~ f(t) = oo for
t > 0 then gwoo (f p) C 2w, L(F)

Proof. Let limy ,o f(t) = 0o for t > 0. If X = (Xj;) € 2wl (£, p).
Then,

F([d( Xk ())])<M<oof0rallkl

If possible let X = (Xj) ¢ gwo () then for some ¢ > 0 there exists a
positive integer kg such that d(Xj,,0) < e for k > ko, I > lyp. Therefore,

F(e) = f(ld(zry, 0)F) < M for k > ko, 1> lo.
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This contradicts to our assumption that limy_,, f(t) = oo for ¢ > 0 and
hence X = (Xy,) € gwé(F) and completes the proof. [ |

Theorem 6. If f be a modulus function, then 2’(1]0 (f, p) and gwoo (f, D)
are paranormed spaces with the paranorm h defined by

h(X _Sup{f (Xk,1,0 )]}131,

where M = max{1supy; p}.

Proof. Obviously h(X) = h(—X) for all z € 2'11)0 (f p). It is trivial
that X;; =0 for X = 0. Since, % < 1, since d is translation invariant and
by using Minkowski’s inequality, we have,

{fld((Xg + Yi,),0) }M<{f (Xk1,0)] }M+{f (Yi, 0))? }%

Hence,
h(X+Y) <h(X)+h(Y).

Finally to check the continuity of scalar multiplication, let be any scalar, by
definition we have

POX) = sup (1K1 0P} < KT (X),

where H = sup,;p < co. Where K, is positive integer such that [A\| < K.
Let A — 0 for any fixed X with h(X) = 0. By definition for [A| < 1, we
have

sup{f (AXyy,0P} <e for N > N(e).

Also for 1 < n < N by taking A small enough, since f is continuous, we get

Sup{f (AXpy, 0P} <e.

Implies that h(AX) — 0 as A — 0. This completes the proof. |

Theorem 7. If I is an admissible ideal then the spaces yw!(F)(f,p),
(f p) and wtlF (f p) are complete metric spaces under the metric

h(X,Y) —sup{f (Xkts Yi )P }1

where M = max{1,supy; p}.
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Proof. It is easy to see that h is a metric on sw!)(f p). To show
completeness. Let (X?) be a Cauchy sequence in yw!(F)(f, p) where (X?) =
(X} ,). Therefore for each € > 0 there exists ig € N such that

h(X', X7) < e for all i,j > g

i.e
sup(FIA(X], Y )IP) ™ < e for all 4,5 > io.
K, '

This means

1
sup {f[J(Xli,uY,gl)]p}M < e forall 7,5 > ip.
k.l ’

Since f is modulus function, so choosing suitable €1 > 0 and we obtain

d_(X]i,l,Y,gl)] < g1 for all and for each &,

ie
(X}{) is a Cauchy sequence in L(R) for each k,I.

Keeping fixed and letting j — oo, one can find that

SuP(f[CEc,lka,l)]p) < ¢ for all i > ip.
k)l

That means, ‘
h(X", X) <e for all i>ig.

Next to show X €5 wI(F)(f, p), for which the proof as follows:
Since for (X,gl) eo w!F)(f,p), so for 4, j, there exist L', L7 € L(R) and
ki, kji € N and [;,[; € N, such that

sup(f[d(X};, L')P) <e forall k> ki, 1>1;
k,l

and

sup(fld(X;,, L)E) < e forall k> kj, 1>1;.
k,l

Now let ko = max(k;, k;) and lop = max(l;,;); for 4,5 > ip, we have
sup(fd((L, 7)) < CS;llp(f[J(LivX/i,z)]p)

+ Csltllp(f[J(XZ,z, X[ P) + CS;l})(f[J(Xi,l, L))

< 3Ce for all 7,7 >ipand k > kg, [ > .
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Hence (L?) is a Cauchy sequence in L(R). So there exists L € L(R) such
that L' — L as i — oo. Now keeping fixed and letting j — oo,once can find
that,

sup(f[d(L*, L)]P) < 3Ce for all i > i.

Therefore,

sup(f[d(Xes, )Y < CSE}o(f[J(Xk,z,Xi?lJp)

+ S;l}?(f[J(Xzi,n L")JP) +sup(f[d(L", L)]?)

< 20e+3C% > ey forall k> ko, 1>l

This implies that X = (X;;) € 2w!F)(f,p). This completes the proof. W
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