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1. Introduction

We recall here some concepts of convexity that are well known in the
literature.

Let I be an interval in R.

Definition 1 ([38]). We say that f : I → R is a Godunova-Levin function
or that f belongs to the class Q (I) if f is non-negative and for all x, y ∈ I
and t ∈ (0, 1) we have

(1) f (tx+ (1− t) y) ≤ 1

t
f (x) +

1

1− t
f (y) .

Some further properties of this class of functions can be found in [29], [30],
[32], [44], [47] and [48]. Among others, its has been noted that non-negative
monotone and non-negative convex functions belong to this class of func-
tions.

Definition 2 ([32]). We say that a function f : I → R belongs to the
class P (I) if it is nonnegative and for all x, y ∈ I and t ∈ [0, 1] we have

(2) f (tx+ (1− t) y) ≤ f (x) + f (y) .

Obviously Q (I) contains P (I) and for applications it is important to
note that also P (I) contain all nonnegative monotone, convex and quasi
convex functions, i. e. nonnegative functions satisfying

(3) f (tx+ (1− t) y) ≤ max {f (x) , f (y)}
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for all x, y ∈ I and t ∈ [0, 1].
For some results on P -functions see [32] and [45] while for quasi convex

functions, the reader can consult [31].

Definition 3 ([7]). Let s be a real number, s ∈ (0, 1]. A function f :
[0,∞) → [0,∞) is said to be s-convex (in the second sense) or Breckner
s-convex if

f (tx+ (1− t) y) ≤ tsf (x) + (1− t)s f (y)

for all x, y ∈ [0,∞) and t ∈ [0, 1].

For some properties of this class of functions see [1], [2], [7], [8], [27], [28],
[39], [41] and [50].

In order to unify the above concepts for functions of real variable, S. Varošanec
introduced the concept of h-convex functions as follows.

Assume that I and J are intervals in R, (0, 1) ⊆ J and functions h and
f are real non-negative functions defined in J and I, respectively.

Definition 4 ([53]). Let h : J → [0,∞) with h not identical to 0. We
say that f : I → [0,∞) is an h-convex function if for all x, y ∈ I we have

(4) f (tx+ (1− t) y) ≤ h (t) f (x) + h (1− t) f (y)

for all t ∈ (0, 1) .

For some results concerning this class of functions see [53], [6], [42], [51],
[49] and [52].

We can introduce now another class of functions.

Definition 5. We say that the function f : I → [0,∞) is of s-Godunova-Levin
type, with s ∈ [0, 1], if

(5) f (tx+ (1− t) y) ≤ 1

ts
f (x) +

1

(1− t)s
f (y) ,

for all t ∈ (0, 1) and x, y ∈ I.

We observe that for s = 0 we obtain the class of P -functions while for
s = 1 we obtain the class of Godunova-Levin. If we denote by Qs (I) the
class of s-Godunova-Levin functions defined on I, then we obviously have

P (I) = Q0 (I) ⊆ Qs1 (I) ⊆ Qs2 (I) ⊆ Q1 (I) = Q (I)

for 0 ≤ s1 ≤ s2 ≤ 1.
The following inequality holds for any convex function f defined on R

(6) (b− a)f

(
a+ b

2

)
<

∫ b

a
f(x)dx < (b− a)

f(a) + f(b)

2
, a, b ∈ R.
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It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see
[43]). But this result was nowhere mentioned in the mathematical literature
and was not widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of
convex functions, wrote that this inequality was proven by J. Hadamard
in 1893 [5]. In 1974, D. S. Mitrinović found Hermite’s note in Mathesis
[43]. Since (6) was known as Hadamard’s inequality, the inequality is now
commonly referred as the Hermite-Hadamard inequality. For related results,
see [10]-[19], [22]-[26], [33]-[36] and [46].

The following inequality of Hermite-Hadamard type for h-convex function
holds [49].

Theorem 1. Assume that the function f : I → [0,∞) is an h-convex
function with h ∈ L [0, 1]. Let y, x ∈ I with y 6= x and assume that the
mapping [0, 1] 3 t 7→ f [(1− t)x+ ty] is Lebesgue integrable on [0, 1]. Then

(7)
1

2h
(

1
2

)f (x+ y

2

)
≤ 1

y − x

∫ y

x
f (u) du ≤ [f (x) + f (y)]

∫ 1

0
h (t) dt.

If we write (7) for h (t) = t, then we get the classical Hermite-Hadamard
inequality for convex functions

(8) f

(
x+ y

2

)
≤ 1

y − x

∫ y

x
f (u) du ≤ f (x) + f (y)

2
.

If we write (7) for the case of P -type functions f : I → [0,∞), i.e.,
h (t) = 1, t ∈ [0, 1], then we get the inequality

(9)
1

2
f

(
x+ y

2

)
≤ 1

y − x

∫ y

x
f (u) du ≤ f (x) + f (y) ,

that has been obtained for functions of real variable in [32].
If f is Breckner s-convex on I, for s ∈ (0, 1), then by taking h (t) = ts in

(7) we get

(10) 2s−1f

(
x+ y

2

)
≤ 1

y − x

∫ y

x
f (u) du ≤ f (x) + f (y)

s+ 1
,

that was obtained for functions of a real variable in [27].
If f : I → [0,∞) is of s-Godunova-Levin type, with s ∈ [0, 1), then

(11)
1

2s+1
f

(
x+ y

2

)
≤ 1

y − x

∫ y

x
f (u) du ≤ f (x) + f (y)

1− s
.

We notice that for s = 1 the first inequality in (11) still holds, i.e.

(12)
1

4
f

(
x+ y

2

)
≤
∫ 1

0
f [(1− t)x+ ty] dt.
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The case for functions of real variables was obtained for the first time in
[32].

2. ϕ-convex functions

We introduce the following class of h-convex functions.

Definition 6. Let ϕ : (0, 1) → (0,∞) a measurable function. We say
that the function f : I → [0,∞) is a ϕ-convex function on the interval I if
for all x, y ∈ I we have

(13) f (tx+ (1− t) y) ≤ tϕ (t) f (x) + (1− t)ϕ (1− t) f (y)

for all t ∈ (0, 1).

If we denote ` (t) = t, the identity function, then it is obvious that f is
h-convex with h = `ϕ. Also, all the examples from the introduction can be
seen as ϕ-convex functions with appropriate choices of ϕ.

If we take ϕ (t) = 1
ts+1 with s ∈ [0, 1] , then we get the class of s-Godunova-

Levin functions. Also, if we put ϕ (t) = ts−1 with s ∈ (0, 1), then we get the
concept of Breckner s-convexity. We notice that for all these examples we
have

ϕ+ (0) := lim
t→0+

ϕ (t) =∞.

The case of convex functions, i.e. when ϕ (t) = 1 is the only example from
above for which ϕ+ (0) is finite, namely ϕ+ (0) = 1.

Consider the family of functions, for p > 1 and k > 0

(14) δ (p, k) : [0, 1]→ R+, δ (p, k) (t) = k (1− t)p + 1.

We observe that δ+ (p, k) (0) = δ (p, k) (0) = k+1, δ (p, k) is strictly decreas-
ing on [0, 1] and δ (p, k) (t) ≥ δ (p, k) (1) = 1.

Definition 7. We say that the function f : I → [0,∞) is a δ (p, k)-convex
function on the interval I if for all x, y ∈ I we have

(15) f (tx+ (1− t) y) ≤ t [k (1− t)p + 1] f (x) + (1− t) (ktp + 1) f (y)

for all t ∈ (0, 1) .

It is obvious that any nonnegative convex function is a δ(p,k)-convex func-
tion for any p > 1 and k > 0.

For m > 0 we consider the family of functions

η (m) : [0, 1]→ R+, η (m) (t) := exp [m (1− t)] .

We observe that η+ (m) (0) = η (m) (0) = exp (m), η (m) is strictly decreas-
ing on [0, 1] and η (m) (t) ≥ η (m) (1) = 1.
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Definition 8. We say that the function f : I → [0,∞) is a η (m)-convex
function on the interval I if for all x, y ∈ I we have

(16) f (tx+ (1− t) y) ≤ t exp [m (1− t)] f (x) + (1− t) exp (mt) f (y)

for all t ∈ (0, 1).

It is obvious that any nonnegative convex function is a η (m)-convex
function for any m > 0.

There are many other examples one can consider. In fact any continuos
function ϕ : [0, 1] → [1,∞) can generate a class of ϕ-convex function that
contains the class of nonnegative convex functions.

Utilising Theorem 1 we can state the following result.

Theorem 2. Assume that the function f : I → [0,∞) is a ϕ-convex
function with `ϕ ∈ L [0, 1]. Let y, x ∈ I with y 6= x and assume that the
mapping [0, 1] 3 t 7→ f [(1− t)x+ ty] is Lebesgue integrable on [0, 1]. Then

(17)
1

ϕ
(

1
2

)f (x+ y

2

)
≤ 1

y − x

∫ y

x
f (u) du ≤ [f (x) + f (y)]

∫ 1

0
tϕ (t) dt.

The proof follows from (7) by taking h (t) = tϕ (t) , t ∈ (0, 1).

Remark 1. We notice that, since
∫ 1

0 tϕ (t) dt can be seen as the expecta-
tion of a random variable X with the density function ϕ, the inequality (17)
provides a connection to Probability Theory and motivates the introduction
of ϕ-convex function as a natural concept, having available many examples
of density functions ϕ that arise in applications.

For different inequalities related to these classes of functions, see [1]-[4],
[6], [9]-[37], [40]-[42] and [45]-[52].

A function h : J → R is said to be supermultiplicative if

(18) h (ts) ≥ h (t)h (s) for any t, s ∈ J.

If the inequality (18) is reversed, then h is said to be submultiplicative. If
the equality holds in (18) then h is said to be a multiplicative function on J .

In [53] it has been noted that if h : [0,∞) → [0,∞) with h (t) =
(x+ c)p−1, then for c = 0 the function h is multiplicative. If c ≥ 1, then for
p ∈ (0, 1) the function h is supermultiplicative and for p > 1 the function is
submultiplicative.

We observe that, if h, g are nonnegative and supermultiplicative, the
same is their product. In particular, if h is supermultiplicative then its
product with a power function `r (t) = tr is also supermultiplicative.

The case of h-convex function with h supermultiplicative is of interest
due to several Jensen type inequalities one can derive.

The following results were obtained in [53] for functions of a real variable.
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Theorem 3. Let h : J → [0,∞) be a supermultiplicative function on J.
If the function f : I → [0,∞) is h-convex on the interval I, then for any
wi ≥ 0, xi ∈ I, i ∈ {1, . . . , n}, n ≥ 2 with Wn :=

∑n
i=1wi > 0 we have

(19) f

(
1

Wn

n∑
i=1

wixi

)
≤

n∑
i=1

h

(
wi

Wn

)
f (xi) .

In particular, we have the unweighted inequality

(20) f

(
1

n

n∑
i=1

xi

)
≤ h

(
1

n

) n∑
i=1

f (xi) .

Let h (z) =
∑∞

n=0 anz
n be a power series with complex coefficients and

convergent on the open disk D (0, R) ⊂ C, R > 0. We have the following
examples

h (z) =
∞∑
n=1

1

n
zn = ln

1

1− z
, z ∈ D (0, 1) ;(21)

h (z) =
∞∑
n=0

1

(2n)!
z2n = cosh z, z ∈ C;

h (z) =
∞∑
n=0

1

(2n+ 1)!
z2n+1 = sinh z, z ∈ C;

h (z) =
∞∑
n=0

zn =
1

1− z
, z ∈ D (0, 1) .

Other important examples of functions as power series representations with
nonnegative coefficients are:

h (z) =

∞∑
n=0

1

n!
zn = exp (z) , z ∈ C,(22)

h (z) =
∞∑
n=1

1

2n− 1
z2n−1 =

1

2
ln

(
1 + z

1− z

)
, z ∈ D (0, 1) ;

h (z) =

∞∑
n=0

Γ
(
n+ 1

2

)
√
π (2n+ 1)n!

z2n+1 = sin−1 (z) , z ∈ D (0, 1) ;

and

h (z) =

∞∑
n=1

1

2n− 1
z2n−1 = tanh−1 (z) , z ∈ D (0, 1)(23)
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h (z) = 2F1 (α, β, γ, z) =
∞∑
n=0

Γ (n+ α) Γ (n+ β) Γ (γ)

n!Γ (α) Γ (β) Γ (n+ γ)

zn, α, β, γ > 0, z ∈ D (0, 1) ;

where Γ is Gamma function.

The following result may provide many examples of supemultiplicative
functions.

Lemma 1. Let h (z) =
∑∞

n=0 anz
n be a power series with complex co-

efficients and convergent on the open disk D (0, R) ⊂ C, R > 0. Assume

that 0 < r < R and define hr : [0, 1] → [0,∞), hr (t) := h(rt)
h(r) . Then hr is

supemultiplicative on [0, 1].

Proof. We use the Čebyšev inequality for synchronous (the same mono-
tonicity) sequences (ci)i∈N , (bi)i∈N and nonnegative weights (pi)i∈N :

(24)

n∑
i=0

pi

n∑
i=0

picibi ≥
n∑

i=0

pici

n∑
i=0

pibi,

for any n ∈ N.
Let t, s ∈ (0, 1) and define the sequences ci := ti, bi := si.. These

sequences are decreasing and if we apply Čebyšev’s inequality for these se-
quences and the weights pi := air

i ≥ 0 we get

(25)

n∑
i=0

air
i

n∑
i=0

ai (rts)i ≥
n∑

i=0

ai (rt)i
n∑

i=0

ai (rs)i

for any n ∈ N.
Since the series

∞∑
i=0

air
i,

∞∑
i=0

ai (rts)i ,

∞∑
i=0

ai (rt)i and

∞∑
i=0

ai (rs)i

are convergent, then by letting n→∞ in (25) we get

h (r)h (rts) ≥ h (rt)h (rs)

i.e.

hr (ts) ≥ hr (t)hr (s) .

This inequality is also obviously satisfied at the end points of the interval
[0, 1] and the proof is completed. �
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Remark 2. Utilising the above theorem, we then conclude that the
functions

hr : [0, 1]→ [0,∞), hr (t) :=
1− r
1− rt

, r ∈ (0, 1)

and
hr : [0, 1]→ [0,∞), hr (t) := exp [−r (1− t)] , r > 0

are supermultiplicative.
We say that the function f : I → [0,∞) is r-resolvent convex with r fixed

in (0, 1), if f is h-convex with h (t) = 1−r
1−rt , i.e.

(26) f (tx+ (1− t) y) ≤ (1− r)
[

1

1− rt
f (x) +

1

1− r + rt
f (y)

]
for any x, y ∈ I and t ∈ [0, 1].

In particular, for r = 1
2 we have 1

2 -resolvent convex functions defined by
the condition

(27) f (tx+ (1− t) y) ≤ 1

2− t
f (x) +

1

1 + t
f (y)

for any t ∈ [0, 1] and x, y ∈ I.
Since

t <
1

2− t
<

1

t
and 1− t < 1

1 + t
<

1

1− t
for t ∈ (0, 1)

it follows that any nonnegative convex function is 1
2 -resolvent convex which,

in its turn, is of Godunova-Levin type.
We say that the function f : I → [0,∞) is r-exponential convex with r

fixed in (0,∞), if f is h-convex with h (t) = exp [−r (1− t)], i.e.

(28) f (tx+ (1− t) y) ≤ exp [−r (1− t)] f (x) + exp (−rt) f (y)

for any t ∈ [0, 1] and x, y ∈ C.
Since

t ≤ exp [−r (1− t)] and 1− t ≤ exp (−rt) for t ∈ [0, 1]

it follows that any nonnegative convex function is r-exponential convex with
r ∈ (0,∞).

Corollary 1. Let h (z) =
∑∞

n=0 anz
n be a power series with complex

coefficients and convergent on the open disk D (0, R) ⊂ C, R > 0. Assume

that 0 < r < R and define hr : [0, 1]→ [0,∞), hr (t) := h(rt)
h(r) . If the function

f : I → [0,∞) is hr-convex on the on the interval I, namely

(29) f (tx+ (1− t) y) ≤ 1

h (r)
[h (rt) f (x) + h (r (1− t)) f (y)]
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for any t ∈ [0, 1] and x, y ∈ I, then for any xi ∈ I, wi ≥ 0, i ∈ {1, . . . , n},
n ≥ 2 with Wn :=

∑n
i=1wi > 0 we have

(30) f

(
1

Wn

n∑
i=1

wixi

)
≤ 1

h (r)

n∑
i=1

h

(
r
wi

Wn

)
f (xi) .

Remark 3. If the function f : I → [0,∞) is 1
2 -resolvent convex on I,

then for any xi ∈ I, wi ≥ 0, i ∈ {1, . . . , n}, n ≥ 2 with Wn :=
∑n

i=1wi > 0
we have

f

(
1

Wn

n∑
i=1

wixi

)
≤Wn

n∑
i=1

1

2Wn − wi
f (xi) .

If the function f : I → [0,∞) is r-exponential convex with r fixed in
(0,∞), then for any xi ∈ I, wi ≥ 0, i ∈ {1, . . . , n}, n ≥ 2 with Wn :=∑n

i=1wi > 0 we have

f

(
1

Wn

n∑
i=1

wixi

)
≤

n∑
i=1

exp

[
−r
(

1− wi

Wn

)]
f (xi) .

We have the following Jensen type inequality for ϕ-convex functions.

Corollary 2. Let ϕ : J → [0,∞) be a supermultiplicative function on J.
If the function f : I → [0,∞) is ϕ-convex on the interval I, then for any
wi ≥ 0, xi ∈ I, i ∈ {1, . . . , n}, n ≥ 2 with Wn :=

∑n
i=1wi > 0 we have

(31) f

(
1

Wn

n∑
i=1

wixi

)
≤ 1

Wn

n∑
i=1

wiϕ

(
wi

Wn

)
f (xi) .

In particular, we have the unweighted inequality

(32) f

(
1

n

n∑
i=1

xi

)
≤ ϕ

(
1

n

)
1

n

n∑
i=1

f (xi) .

The proof follows by Theorem 3 for the supermultiplicative function
h (t) = tϕ (t), t ∈ J .

The inequality (31) will be used further to obtain an integral Jensen type
inequality.

3. Some results for differentiable functions

If we assume that the function f : I → [0,∞) is differentiable on the
interior of I, denoted by I̊, then we have the following ”gradient inequality”
that will play an essential role in the following.
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Lemma 2. Let ϕ : (0, 1) → (0,∞) be a measurable function and such
that the right limit ϕ+ (0) exists and is finite, the left limit ϕ− (1) = 1 and
the left derivative in 1 denoted ϕ′− (1) exists and is finite. If the function

f : I → [0,∞) is differentiable on I̊ and ϕ-convex, then

(33) ϕ+ (0) f (x)−
[
ϕ′− (1) + 1

]
f (y) ≥ f ′ (y) (x− y)

for any x, y ∈ I̊ with x 6= y.

Proof. Since f is ϕ-convex on I, then

tϕ (t) f (x) + (1− t)ϕ (1− t) f (y) ≥ f (tx+ (1− t) y)

for any t ∈ (0, 1) and for any x, y ∈ I̊ , which is equivalent to

tϕ (t) f (x) + [(1− t)ϕ (1− t)− 1] f (y) ≥ f (tx+ (1− t) y)− f (y)

and by dividing by t > 0 we get

(34) ϕ (t) f (x) +

[
(1− t)ϕ (1− t)− 1

t

]
f (y) ≥ f (tx+ (1− t) y)− f (y)

t

for any t ∈ (0, 1).
Now, since f is differentiable on y ∈ I̊ , then we have

lim
t→0+

f (tx+ (1− t) y)− f (y)

t
= lim

t→0+

f (y + t (x− y))− f (y)

t
(35)

= (x− y) lim
t→0+

f (y + t (x− y))− f (y)

t (x− y)
= (x− y) f ′ (y)

for any x ∈ I̊ with x 6= y.
Also since ϕ− (1) = 1 and ϕ′− (1) exists and is finite, we have

lim
t→0+

(1− t)ϕ (1− t)− 1

t
= lim

s→1−

sϕ (s)− 1

1− s
= − lim

s→1−

sϕ (s)− 1

s− 1
(36)

= − lim
s→1−

s (ϕ (s)− ϕ (1)) + s− 1

s− 1

= −ϕ′− (1)− 1.

Taking the limit over t→ 0+ in (34) and utilizing (35) and (36) we get the
desired result (33). �

Remark 4. If we assume that

(37) ϕ+ (0) ≥ ϕ′− (1) + 1,
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then the inequality (33) also holds for x = y.
There are numerous examples of such functions, for instance, if, as above

we take ϕ (t) = k (1− t)p + 1, t ∈ [0, 1] (p > 1, k > 0) then ϕ+ (0) = k + 1,
ϕ− (1) = 1 and ϕ′− (1) = 0, which satisfy the condition (37).

If we take ϕ (t) = exp [m (1− t)] (m > 0), then ϕ+ (0) = expm, ϕ− (1) =
1 and ϕ′− (1) = −m. We have

ϕ+ (0)− ϕ− (1)− ϕ′− (1) = em − 1 +m > 0

for m > 0.

The following result holds:

Theorem 4. Let ϕ : (0, 1) → (0,∞) a measurable function and such
that the right limit ϕ+ (0) exists and is finite, the left limit ϕ− (1) = 1 and
the left derivative in 1 denoted ϕ′− (1) exists and is finite. Assume also that

ϕ′− (1) > −1. If the function f : I → [0,∞) is differentiable on I̊ and
ϕ-convex, then

ϕ+ (0)

ϕ′− (1) + 1

f (x) + f (y)

2
≥ 1

y − x

∫ y

x
f (u) du(38)

≥
ϕ′− (1) + 1

ϕ+ (0)
f

(
x+ y

2

)
for any x, y ∈ I.

Remark 5. It has been shown in [25] that the inequalities (17) and (38)
are not comparable, meaning that some time one is better then the other,
depending on the ϕ-convex function involved.

The following discrete Jensen type inequality holds:

Theorem 5. Let ϕ : (0, 1)→ (0,∞) be a measurable function and such
that the right limit ϕ+ (0) exists and is finite, the left limit ϕ− (1) = 1 and
the left derivative in 1 denoted ϕ′− (1) exists and is finite. Assume also that

(39) ϕ+ (0) ≥ ϕ′− (1) + 1 > 0.

If the function f : I → [0,∞) is differentiable on I̊ and ϕ-convex, then for
any wi ≥ 0, xi ∈ I̊, i ∈ {1, . . . , n}, n ≥ 2 with Wn :=

∑n
i=1wi > 0 we have

(40)
ϕ+ (0)

ϕ′− (1) + 1

1

Wn

n∑
i=1

wif (xj) ≥ f

(
1

Wn

n∑
i=1

wixi

)
.

If 1
Wn

∑n
i=1wixi 6= xj for any j ∈ {1, . . . , n}, then the first condition in

(39) can be dropped.
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Proof. From (33) we have

ϕ+ (0) f (xj)−
[
ϕ′− (1) + 1

]
f

(
1

Wn

n∑
i=1

wixi

)
(41)

≥ f ′
(

1

Wn

n∑
i=1

wixi

)(
xj −

1

Wn

n∑
i=1

wixi

)
for any j ∈ {1, . . . , n} .

If we multiply (41) by wi ≥ 0 and sum over j from 1 to n we get

ϕ+ (0)

n∑
j=1

wjf (xj)−
[
ϕ′− (1) + 1

] n∑
j=1

wjf

(
1

Wn

n∑
i=1

wixi

)

≥ f ′
(

1

Wn

n∑
i=1

wixi

)
n∑

j=1

wj

(
xj −

1

Wn

n∑
i=1

wixi

)
= 0,

which proves the desired result (40). �

4. Integral inequalities

We have the following Jensen inequality for the Riemann integral:

Theorem 6. Let u : [a, b] → [m,M ] be a Riemann integrable function.
Suppose that ϕ : J → [0,∞) is a supermultiplicative function on J and the
function f : [m,M ] → [0,∞) is ϕ-convex and continuous on the interval
[m,M ] . If the right limit ϕ+ (0) exists and is finite, then

(42) f

(
1

b− a

∫ b

a
u (t) dt

)
≤ ϕ+ (0)

1

b− a

∫ b

a
f (u (t)) dt.

Proof. Consider the sequence of divisions

dn : x
(n)
i = a+

i

n
(b− a) , i ∈ {0, . . . , n}

and the intermediate points

ξ
(n)
i = a+

i

n
(b− a) , i ∈ {0, . . . , n} .

We observe that the norm of the division ∆n := maxi∈{0,...,n−1}(x
(n)
i+1 −

x
(n)
i ) = b−a

n → 0 as n→∞ and since u is Riemann integrable on [a, b], then∫ b

a
u (t) dt = lim

n→∞

n−1∑
i=0

u
(
ξ

(n)
i

) [
x

(n)
i+1 − x

(n)
i

]
= lim

n→∞

b− a
n

n−1∑
i=0

u

(
a+

i

n
(b− a)

)
.
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Also, since f : [m,M ]→ [0,∞) is Riemann integrable, then f ◦u is Riemann
integrable and

∫ b

a
f (u (t)) dt = lim

n→∞

b− a
n

n−1∑
i=0

f

[
u

(
a+

i

n
(b− a)

)]
.

Utilising the inequality (31) for wi := b−a
n and xi := u

(
a+ i

n (b− a)
)

we
have

f

(
1

b− a
b− a
n

n−1∑
i=0

u

(
a+

i

n
(b− a)

))
(43)

≤ 1

b− a
b− a
n

n−1∑
i=0

ϕ

(
1

n

)
f

(
u

(
a+

i

n
(b− a)

))

=
1

b− a
ϕ

(
1

n

)
b− a
n

n−1∑
i=0

f

(
u

(
a+

i

n
(b− a)

))

for any n ≥ 1.
Since f is continuous, then

lim
n→∞

f

(
1

b− a
b− a
n

n−1∑
i=0

u

(
a+

i

n
(b− a)

))
= f

(
1

b− a

∫ b

a
u (t) dt

)
.

Also

lim
n→∞

ϕ

(
1

n

)
= ϕ+ (0) <∞.

Therefore, taking the limit over n→∞ in the inequality (43) we deduce the
desired result (42). �

We have the following Hermite-Hadamard type inequality:

Corollary 3. Suppose that ϕ : J → [0,∞) is a supermultiplicative func-
tion on J and the function f : I → [0,∞) is ϕ-convex and continuous on
the interval I. If the right limit ϕ+ (0) exists and is finite with ϕ+ (0) > 0,
then for any x, y ∈ I with x 6= y we have

(44)
1

ϕ+ (0)
f

(
x+ y

2

)
≤ 1

y − x

∫ y

x
f (u (t)) dt.

Remark 6. If the function f : [m,M ] → [0,∞) is a δ (p, k)-convex
and continuous function on the interval [m,M ] (p > 1 and k > 0, see
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Definition 7) then for any u : [a, b]→ [m,M ] a Riemann integrable function
on [a, b] we have

(45)
1

k + 1
f

(
1

b− a

∫ b

a
u (t) dt

)
≤ 1

b− a

∫ b

a
f (u (t)) dt.

If the function f : [m,M ] → [0,∞) is a η (s)-convex and continuous
function on the interval [m,M ] (s > 0, see Definition 8) then for any u :
[a, b]→ [m,M ] a Riemann integrable function on [a, b] we have

(46)
1

es
f

(
1

b− a

∫ b

a
u (t) dt

)
≤ 1

b− a

∫ b

a
f (u (t)) dt.

Let (Ω,A, µ) be a measurable space consisting of a set Ω, a σ – algebra
A of parts of Ω and a countably additive and positive measure µ on A with
values in R∪{∞} . For a µ−measurable function w : Ω→ R, with w (x) ≥ 0
for µ – a.e.(almost every) x ∈ Ω, consider the Lebesgue space

Lw (Ω, µ) := {f : Ω→ R, f is µ-measurable and

∫
Ω
w (x) |f (x)| dµ (x) <∞}.

For simplicity of notation we write everywhere in the sequel
∫

Ωwdµ instead
of
∫

Ωw (x) dµ (x).

Theorem 7. Let ϕ : (0, 1)→ (0,∞) be a measurable function and such
that the right limit ϕ+ (0) exists and is finite, the left limit ϕ− (1) = 1 and
the left derivative in 1 denoted ϕ′− (1) exists and is finite. Assume also that

(47) ϕ+ (0) ≥ ϕ′− (1) + 1 > 0.

If the function f : I → [0,∞) is differentiable on I̊ and ϕ-convex, then for
any u : Ω → [m,M ] ⊂ I̊ so that f ◦ u, u ∈ Lw (Ω, µ) , where w ≥ 0 µ-a.e.
(almost everywhere) on Ω with

∫
Ωwdµ = 1 we have

(48)
ϕ+ (0)

ϕ′− (1) + 1

∫
Ω
w (f ◦ u) dµ ≥ f

(∫
Ω
wudµ

)
.

If
∫

Ωwudµ 6= u (x) for µ-a.e. x ∈ Ω, then we can drop the first condition
in (47).

Proof. From (33) and since
∫

Ωwudµ ∈ [m,M ] ⊂ I̊ we have

ϕ+ (0) f (u (x))−
[
ϕ′− (1) + 1

]
f

(∫
Ω
wudµ

)
(49)

≥ f ′
(∫

Ω
wudµ

)(
u (x)−

∫
Ω
wudµ

)
, for any x ∈ Ω.
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If we multiply (49) by w ≥ 0 µ-a.e. on Ω and integrate over the positive
measure µ we get

ϕ+ (0)

∫
Ω
w (x) f (u (x)) dµ (x)−

[
ϕ′− (1) + 1

]
f

(∫
Ω
wudµ

)∫
Ω
w (x) dµ (x)

≥ f ′
(∫

Ω
wudµ

)∫
Ω
w (x)

(
u (x)−

∫
Ω
wudµ

)
dµ (x) = 0,

which produces the desired result (48). �

Remark 7. If the function f : [m,M ]→ [0,∞) is a δ (p, k)-convex and
continuous function on the interval [m,M ], then for any u : Ω → [m,M ] ⊂
I̊ so that f ◦ u, u ∈ Lw (Ω, µ) , where w ≥ 0 µ-a.e. on Ω with

∫
Ωwdµ = 1

we have

(50)

∫
Ω
w (f ◦ u) dµ ≥ 1

k + 1
f

(∫
Ω
wudµ

)
.

If the function f : [m,M ] → [0,∞) is a η (s)-convex and continuous
function on the interval [m,M ] then for any u : Ω → [m,M ] ⊂ I̊ so that
f ◦ u, u ∈ Lw (Ω, µ), where w ≥ 0 µ-a.e. on Ω with

∫
Ωwdµ = 1 we have

(51)

∫
Ω
w (f ◦ u) dµ ≥ 1

es
f

(∫
Ω
wudµ

)
.

These results generalize the inequalities (45) and (46).
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[51] Sarikaya M.Z., E. Set E., Özdemir M.E., , On some new inequalities of
Hadamard type involving h-convex functions, Acta Math. Univ. Comenian.,
(N.S.), 79(2)(2010), 265-272.
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