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1. Introduction

We recall here some concepts of convexity that are well known in the
literature.
Let I be an interval in R.

Definition 1 ([38]). We say that f : I — R is a Godunova-Levin function
or that f belongs to the class Q (I) if f is non-negative and for all x,y € 1
and t € (0,1) we have

1 1
(1) f(tl“i‘(l—t)@/)ﬁEf@)*‘li_tf(y)-
Some further properties of this class of functions can be found in [29], [30],
[32], [44], [47] and [48]. Among others, its has been noted that non-negative

monotone and non-negative convex functions belong to this class of func-
tions.

Definition 2 ([32]). We say that a function f : I — R belongs to the
class P (I) if it is nonnegative and for all z,y € I and t € [0,1] we have
(2) flz+Q—-t)y) < f()+f ().

Obviously @ (I) contains P (I) and for applications it is important to
note that also P (I) contain all nonnegative monotone, convex and quasi
convex functions, i. e. nonnegative functions satisfying

3) [z + (1 —1t)y) <max{f(z),f(y)}
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for all z,y € I and t € [0, 1].
For some results on P-functions see [32] and [45] while for quasi convex
functions, the reader can consult [31].

Definition 3 ([7]). Let s be a real number, s € (0,1]. A function f :
[0,00) — [0,00) is said to be s-convex (in the second sense) or Breckner
s-convex if

flr+(1—=t)y) <t°f(x)+(1—1)"f(y)
for all z,y € [0,00) and t € [0, 1].
For some properties of this class of functions see [1], [2], [7], [8], [27], [28],
[39], [41] and [50].
In order to unify the above concepts for functions of real variable, S. VaroSanec
introduced the concept of h-convex functions as follows.

Assume that I and J are intervals in R, (0,1) C J and functions h and
f are real non-negative functions defined in J and I, respectively.

Definition 4 ([53]). Let h : J — [0,00) with h not identical to 0. We
say that f : I — [0,00) is an h-convex function if for all z,y € I we have

(4) fltz+ 1 —=t)y) <h(t)f(x)+h(1—-1)f(y)
for allt € (0,1).

For some results concerning this class of functions see [53], [6], [42], [51],
[49] and [52].
We can introduce now another class of functions.

Definition 5. We say that the function f : I — [0,00) is of s-Godunova-Levin
type, with s € [0,1], if

5) Fltr+ (= Hy) < o f @)+ e ),

(1—t)
forallt € (0,1) and x,y € I.

We observe that for s = 0 we obtain the class of P-functions while for
s = 1 we obtain the class of Godunova-Levin. If we denote by Qs (I) the
class of s-Godunova-Levin functions defined on I, then we obviously have

P(I) = Qo (I) QQ& (I) C Qsz (I) C (I) :Q(I)

for 0 < s1 < s9 <1.
The following inequality holds for any convex function f defined on R

6)  (b—a) (“H’) /f yiz < (b— )LD FSO) R

2 )
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It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see
[43]). But this result was nowhere mentioned in the mathematical literature
and was not widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of
convex functions, wrote that this inequality was proven by J. Hadamard
in 1893 [5]. In 1974, D. S. Mitrinovi¢ found Hermite’s note in Mathesis
[43]. Since (6) was known as Hadamard’s inequality, the inequality is now
commonly referred as the Hermite-Hadamard inequality. For related results,
see [10]-[19], [22]-[26], [33]-[36] and [46].

The following inequality of Hermite-Hadamard type for h-convex function
holds [49].

Theorem 1. Assume that the function f : I — [0,00) is an h-convex
function with h € L|[0,1]. Let y,x € I with y # x and assume that the
mapping [0,1] 5t — f[(1 —t)x + ty| is Lebesgue integrable on [0,1]. Then

(7) 2h1(%)f<x+y> _x/f )du < | ()+f(y)]/01h(t)dt.

If we write (7) for h (t) = t, then we get the classical Hermite-Hadamard
inequality for convex functions

« ) < [ a0

If we write (7) for the case of P-type functions f : I — [0,00), i.e.,
h(t) =1, t €[0,1], then we get the inequality

0 () < [ rwas o,

that has been obtained for functions of real variable in [32].
If f is Breckner s-convex on I, for s € (0,1), then by taking h (t) = ¢° in
(7) we get

e (H) < e L0

that was obtained for functions of a real variable in [27].
If f:1—]0,00) is of s-Godunova-Levin type, with s € [0,1), then

) 281+1f<x+y> —:c/f ) du < ()+f()

We notice that for s = 1 the first inequality in (11) still holds, i.e.

(12) if(“y) /f (1= t) z + ty] dt.
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The case for functions of real variables was obtained for the first time in
[32].

2. p-convex functions

We introduce the following class of h-convex functions.

Definition 6. Let ¢ : (0,1) — (0,00) a measurable function. We say
that the function f : I — [0,00) is a p-convex function on the interval I if
for all x,y € I we have

(13) fle+ @ =t)y) <te@)f(@)+ A -1)pd—1)f(y)
for allt € (0,1).

If we denote £ (t) = t, the identity function, then it is obvious that f is
h-convex with h = fp. Also, all the examples from the introduction can be
seen as p-convex functions with appropriate choices of ¢.

If we take @ (t) = ts% with s € [0, 1], then we get the class of s-Godunova-
Levin functions. Also, if we put ¢ (t) = t*~! with s € (0,1), then we get the
concept of Breckner s-convexity. We notice that for all these examples we
have

p+(0) = lim ¢ (t) = oo.

The case of convex functions, i.e. when ¢ (t) is the only example from

above for which ¢4 (0) is finite, namely ¢4 (0 )
Consider the family of functions, for p > 1 and k >0

(14) 3 (p, k) = [0,

1]
We observe that 64 (p, k) (0) =6 (p, k) (0) = k+1, § (p, k) is strictly decreas-
ing on [0,1] and § (p, k) (t) > § (p, k) (1) = 1.

Definition 7. We say that the function f : I — [0,00) is a d (p, k)-convex
function on the interval I if for all x,y € I we have

(15)  ftz+ (1 —t)y) <tk =" +1]f(z) + (1 =) (k" +1) f ()
for allt € (0,1).

=Ry, d(pk)t)=k(1—-t)P+1.

It is obvious that any nonnegative convex function is a d®*)-convex func-
tion for any p > 1 and k£ > 0.
For m > 0 we consider the family of functions

n(m) :[0,1] = Ry, n(m) (1) := exp[m (1 -1)].

We observe that 14 (m) (0) = n(m) (0) = exp (m), n (m) is strictly decreas-
ing on [0,1] and n (m) (t) > n(m) (1) = 1.
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Definition 8. We say that the function f : I — [0,00) is a n(m)-convez
function on the interval I if for all x,y € I we have

(16)  f(z+ (1 —t)y) <texp[m(1—1)]f(x)+ (1 —1)exp(mi) [ (y)
for allt € (0,1).

It is obvious that any nonnegative convex function is a 7 (m)-convex
function for any m > 0.

There are many other examples one can consider. In fact any continuos

function ¢ : [0,1] — [1,00) can generate a class of ¢-convex function that
contains the class of nonnegative convex functions.

Utilising Theorem 1 we can state the following result.

Theorem 2. Assume that the function f : I — [0,00) is a p-convex
function with Lo € L[0,1]. Let y,xz € I with y # x and assume that the
mapping [0,1] 5 ¢t — f[(1 —t)x + ty| is Lebesgue integrable on [0,1]. Then

1 T4y 1 Y 1
00 i (5Y) <55 [ wansrw o [ o

The proof follows from (7) by taking h (t) =ty (t), t € (0,1).

Remark 1. We notice that, since fol te (t) dt can be seen as the expecta-
tion of a random variable X with the density function ¢, the inequality (17)
provides a connection to Probability Theory and motivates the introduction
of p-convex function as a natural concept, having available many examples
of density functions ¢ that arise in applications.

For different inequalities related to these classes of functions, see [1]-[4],
6], [9]-[37], [40]-[42] and [45]-[52].
A function h : J — R is said to be supermultiplicative if

(18) h(ts) > h(t)h(s) for any t,s e J.

If the inequality (18) is reversed, then h is said to be submultiplicative. If
the equality holds in (18) then A is said to be a multiplicative function on .J.

In [53] it has been noted that if h : [0,00) — [0,00) with h(t) =
(x+ c)p_l, then for ¢ = 0 the function h is multiplicative. If ¢ > 1, then for
p € (0,1) the function h is supermultiplicative and for p > 1 the function is
submultiplicative.

We observe that, if h, g are nonnegative and supermultiplicative, the
same is their product. In particular, if h is supermultiplicative then its
product with a power function ¢, (t) = t" is also supermultiplicative.

The case of h-convex function with A supermultiplicative is of interest
due to several Jensen type inequalities one can derive.

The following results were obtained in [53] for functions of a real variable.
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Theorem 3. Let h: J — [0,00) be a supermultiplicative function on J.

If the function f : I — [0,00) is h-convex on the interval I, then for any
w; >0,z €1, ie{l,....,n}, n>2 with W, := 31" w; >0 we have

(19) / (I/Il/n ZZZ;&&) < lz:h <VU[;;> I (zi).

In particular, we have the unweighted inequality

(20) ( le><h< >fol.

Let h(z) = Y..° ,a,z" be a power series with complex coefficients and
convergent on the open disk D (0,R) C C, R > 0. We have the following
examples

1
(21) h(z)= Ezn:hll—z’ ze€ D(0,1);
n=1
h _ - 1 2n __ h .
(z)—Z@n)!z =coshz, ze€C;
n=0
oo 1 . )
h(z)_z;)(Qn_H)!ZQ *l —sinhz, 2€C;

= 1
:Zznzli, z€ D(0,1).
n=0 -z

Other important examples of functions as power series representations with
nonnegative coefficients are:

(22) h(z) = Z ;lz” =exp(z), z€C,

1 1 142
hiz) =) mel = o € D(0,1);
(2) 12n_1z 2n<1_2>, z€D(0,1);

Z\f 2n—|—1 z2n+1:sin_1(z), 2€ D(0,1);
and
S|
(23) h(z)= Z . 122"_1 =tanh™' (2), z€ D(0,1)
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> F'n+a)T'(n+38)T(y)

h(Z) — 2F1 (0667772) = Z
2l (@) T (B)T (n+ )

2" a,B,7v>0, z€ D(0,1);

where I' is Gamma function.

The following result may provide many examples of supemultiplicative
functions.

Lemma 1. Let h(z) = Y 7 janz" be a power series with complex co-
efficients and convergent on the open disk D (0,R) C C, R > 0. Assume

that 0 < r < R and define h, : [0,1] — [0,00), hy (t) := ];L((:,t)). Then h, is

supemultiplicative on [0, 1].

Proof. We use the Cebysev inequality for synchronous (the same mono-
tonicity) sequences (¢;);cy s (0i);ey and nonnegative weights (p;);cy :

n n n n
(24) sz‘ Zpicibi > Zpici sz'bz‘,
i=0 =0 i=0 =0

for any n € N.

Let t,s € (0,1) and define the sequences ¢; := t, b; := s'.. These
sequences are decreasing and if we apply Cebysev’s inequality for these se-
quences and the weights p; := a;7" > 0 we get

n

(25) Z a;rt Z a; (rts)i > Z a; (rt)i Z a; (rs)i
i=0 =0 0

1=0 = 1=

for any n € N.
Since the series

Z a;rt, Z a; (rts)", Z a; (rt)" and Z ai (rs)"
1=0 =0 =0 1=0
are convergent, then by letting n — oo in (25) we get
h(r)h(rts) > h(rt) h(rs)

B he (ts) > hy (£) By ().

This inequality is also obviously satisfied at the end points of the interval
[0,1] and the proof is completed. |
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Remark 2. Utilising the above theorem, we then conclude that the
functions )
he t[0,1] = [0,00), By (t) == ——, 7€ (0,1)
1—1rt
and
hy :[0,1] = [0,00), h, (t) :=exp[-r(1—1¢)], r>0

are supermultiplicative.
We say that the function f : I — [0, 00) is r-resolvent convex with r fixed

n (0,1), if f is h-convex with h (t) = == i.e.

1 1
1—rtf(x)+1—r—|—rt

(26)  flz+(1-t)y)<(1-7) f ()

for any z,y € I and t € [0, 1].

In particular, for r = % we have %—resolvent convex functions defined by

the condition

1 1
27 t 1-—t < — —_—
(27) flat A=)y < 5 f @)+ 775/ ®)
for any t € [0,1] and =,y € I.
Since
1 1 1 1
< — < = dl—t<——<—— fort 0,1
<g—;<; am <1+t<1—t or te(0,1)

it follows that any nonnegative convex function is %—resolvent convex which,

in its turn, is of Godunova-Levin type.
We say that the function f : I — [0,00) is r-exponential convex with r
fixed in (0, 00), if f is h-convex with h () = exp [-r (1 — t)], i.e.

(28)  flz+(1—t)y) <exp[—r(1—1)]f(x)+exp(—rt) f(y)
for any ¢ € [0,1] and z,y € C.
Since
t<exp[-r(l—t)] and 1—t <exp(—rt) for t €[0,1]
it follows that any nonnegative convex function is r-exponential convex with
r € (0,00).

Corollary 1. Let h(z) = .2 ja,z" be a power series with complex
coefficients and convergent on the open disk D (0,R) C C, R > 0. Assume
that 0 < r < R and define h, : [0,1] — [0,00), h, (t) := },Lz((:t)). If the function
f:I—1[0,00) is hr-convex on the on the interval I, namely

(29)  flz+(1-t)y) < [h(rt) f(x) +h(r(1=1) f ()]

h(r)
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for any t € [0,1] and x,y € I, then for any z; € I, w; > 0,1 € {1,...,n},
n > 2 with Wy, 1= > ; w; > 0 we have

(30) ( Zwm> < Mih(r&) ().

Remark 3. If the function f : I — [0,00) is 3-resolvent convex on I,

then for any z; € I, w; > 0,4 € {1,...,n}, n > 2 with W, := >, w; >0

we have
1 < = 1
— N wiw | <W Y e F ().
f (Wn ;wzxz> > Wn ZZ; oW, — wzf (xl)
If the function f : I — [0,00) is r-exponential convex with r fixed in

(0,00), then for any z; € I, w; > 0, ¢ € {1,...,n}, n > 2 with W,
S w; > 0 we have

(o) < S [+ (13 o

We have the following Jensen type inequality for p-convex functions.

Corollary 2. Let ¢ : J — [0,00) be a supermultiplicative function on J.
If the function f : I — [0,00) is p-conver on the interval I, then for any
w; >0,z €I, ie{l,....,n}, n>2 with W, :=3 1" | w; >0 we have

1 < 1 & ;
(31) f <m;wl$z> < m;wisﬁ <;IU/7L> f(z).

In particular, we have the unweighted inequality

(32) ( sz><w() foz.

The proof follows by Theorem 3 for the supermultiplicative function
h(t)=te(t),teJ.

The inequality (31) will be used further to obtain an integral Jensen type
inequality.

3. Some results for differentiable functions

If we assume that the function f : I — [0,00) is differentiable on the
interior of I, denoted by I, then we have the following “gradient inequality”
that will play an essential role in the following.
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Lemma 2. Let ¢ : (0,1) — (0,00) be a measurable function and such
that the right limit ¢4 (0) ezists and is finite, the left limit ¢_ (1) = 1 and
the left derivative in 1 denoted ¢’ (1) ewists and is finite. If the function
f:1—0,00) is differentiable on I and @-convez, then

(33) ¢4 (0) f(2) = [¢Z (V) +1] f(y) = f' (y) (x — )
for any x,y € I with © # y.
Proof. Since f is ¢-convex on I, then
to(t) fe)+ A=) —1)f(y) =[x+ (1-1)y)
for any ¢ € (0,1) and for any z,y € I, which is equivalent to
to(t) f(@)+[A—-t)p(—8) =1 f(y) = fltz+ (1 —1)y) - f(y)
and by dividing by # > 0 we get

(L-tp1-t)—1
t

fz+ (1A -t)y)— f(y)
{

(34) @ (t) f(x)+ fy) =

for any ¢ € (0,1).
Now, since f is differentiable on y € I, then we have

fla+ A=y —fly) _ . Flyttl@—y)-fy)

(35) lim
t—0+ t t—0+ t
= (v —y) lim ft tt(?x__y;; 1) oy )

for any x € I with = #£ .
Also since ¢_ (1) = 1 and ¢’ (1) exists and is finite, we have

(36) lim LTDOUTDZL_ o se&) g, se(s) ]
t—0+ t s—»1- 1—s s—1-  s—1
L s(ele) —p() st
s—1— s—1
=—¢" (1)-1
Taking the limit over t — 0+ in (34) and utilizing (35) and (36) we get the
desired result (33). |

Remark 4. If we assume that

(37) 0 (0) > (1)+1,
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then the inequality (33) also holds for x = y.

There are numerous examples of such functions, for instance, if, as above
we take ¢ (t) = k(1 —t)P +1,¢t € [0,1] (p > 1,k > 0) then ¢4 (0) =k + 1,
v_ (1) =1and ¢’ (1) = 0, which satisfy the condition (37).

If we take ¢ (t) = exp [m (1 —t)] (m > 0), then ¢4 (0) = expm, ¢_ (1) =
1 and ¢ (1) = —m. We have

P+ (0)—p- (D)=L (1) =e"~1+m>0
for m > 0.

The following result holds:

Theorem 4. Let ¢ : (0,1) — (0,00) a measurable function and such
that the right limit vy (0) exists and is finite, the left limit o_ (1) =1 and
the left derivative in 1 denoted ¢’ (1) exists and is finite. Assume also that
¢ (1) > —1. If the function f : I — [0,00) is differentiable on I and
(p-convez, then

(38) jagollf(%);f(y) Zyix/myf(U)du
o )+1 , (z+y
SR ) f( 2 )

for any x,y € I.

Remark 5. It has been shown in [25] that the inequalities (17) and (38)
are not comparable, meaning that some time one is better then the other,
depending on the ¢-convex function involved.

The following discrete Jensen type inequality holds:

Theorem 5. Let ¢ : (0,1) — (0,00) be a measurable function and such
that the right limit o4 (0) exists and is finite, the left limit o_ (1) =1 and
the left derivative in 1 denoted ¢’ (1) exists and is finite. Assume also that

(39) 0y (0)>¢" (1)+1>0.

If the function f : I — [0,00) is differentiable on I and p-convezx, then for
any w; >0, x; € I, i€ {1,...,n}, n>2 with W,, := > | w; >0 we have

0) 1 ¢« 1 —
(40) mm;wif(xj) > f (VVn ZZ;&&) .

If ﬁ Yoy wiry # x; for any j € {1,...,n}, then the first condition in
(39) can be dropped.
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Proof. From (33) we have

(41) @i (0) f (x5) — [¢- (D) +1] f <M1/ ZM%)
" i=1

1 o 1 <
> f ( ’wifﬁz‘) (33 - T wﬂi)
W, 2 w2

for any j € {1,...,n}.
If we multiply (41) by w; > 0 and sum over j from 1 to n we get

Zw]f xj) +1 ijf (Ml/szxz)
" i=1
1 n

which proves the desired result (40). [
4. Integral inequalities

We have the following Jensen inequality for the Riemann integral:

Theorem 6. Let u : [a,b] — [m, M] be a Riemann integrable function.
Suppose that ¢ : J — [0,00) is a supermultiplicative function on J and the
function f : [m, M] — [0,00) is p-conver and continuous on the interval
[m, M]. If the right limit ¢ (0) exists and is finite, then

w (i "u () i) <. 0

Proof. Consider the sequence of divisions

dy : xl(n):a+%(b—a), ie€{0,...,n}

and the intermediate points

ffn) :a+%(b—a), ie€{0,...,n}.
We observe that the norm of the division A, := mMax;e(o,....n— 1}( Ei)l —

x(”)) b a

i — 0 as n — oo and since u is Riemann integrable on [a, b], then

/ "t dt = lim. fu (&) |t = ol
a =0

1=

n—1 .

b—a i
= 1‘ *b— .
fim S w4 0-a)

1=0
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Also, since f : [m, M] — [0, 00) is Riemann integrable, then fow is Riemann
integrable and

[ 1= i " Zf[( Lo-a)).

Utilising the inequality (31) for w; := b;—a and z; == u(a+ L (b—a)) we

have

(43) f(biab;a§§u<a+;(h—®>>
R ouac
St () (oo
for any n > 1.

Since f is continuous, then

, 1 b—as= i 1
nlg]gof<b_a - ':Ou<a+n(b—a))>:f<b_a/au(t)dt).

)
=)

3| >

3| .

(2

Also
1
lim <p< > =1 (0) < 0.

n— oo
Therefore, taking the limit over n — oo in the inequality (43) we deduce the
desired result (42). [ |

We have the following Hermite-Hadamard type inequality:

Corollary 3. Suppose that ¢ : J — [0,00) is a supermultiplicative func-
tion on J and the function f : I — [0,00) is @-convex and continuous on
the interval I. If the right limit @ (0) exists and is finite with ¢4 (0) > 0,
then for any x,y € I with x # y we have

o a5 <y [ e

Remark 6. If the function f : [m,M] — [0,00) is a 4 (p, k)-convex
and continuous function on the interval [m,M] (p > 1 and k£ > 0, see
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Definition 7) then for any u : [a, b] — [m, M| a Riemann integrable function
on [a,b] we have

et (= /bu@)dt)sbia/:f(u(t))dt

If the function f : [m,M] — [0,00) is a 7 (s)-convex and continuous
function on the interval [m, M| (s > 0, see Definition 8) then for any wu :
[a,b] — [m, M] a Riemann integrable function on [a, b] we have

(16) L (5 [ewa) < [rwa

Let (€2, A, 1) be a measurable space consisting of a set €, a o — algebra
A of parts of Q and a countably additive and positive measure p on A with
values in RU{oo} . For a py—measurable function w : @ — R, with w (z) > 0
for p — a.e.(almost every) x € Q, consider the Lebesgue space

Ly () :={f:Q—R, fis p-measurable and / w (z) | f (x)| du (z) < oo}
Q

For simplicity of notation we write everywhere in the sequel fQ wdy instead
of fQ dp (z).

Theorem 7. Let ¢ : (0,1) — (0,00) be a measurable function and such
that the right limit ¢4 (0) exists and is finite, the left limit ¢_ (1) =1 and
the left derivative in 1 denoted ¢’ (1) exists and is finite. Assume also that

(47) 0 (0)=>¢" (1) +1>0.

If the function f : I — [0,00) is differentiable on I and p-convex, then for
any u: Q — [m,M] C I so that fou, uw € Ly, (Q,u), where w > 0 p-a.e.
(almost everywhere) on Q with [, wdp =1 we have

(48) S0,_“71;0411/Q’LU(J°<>U)du2f</ﬂ?~vudu>-

If fQ wudp # u(x) for p-a.e. x € Q, then we can drop the first condition
in (47).
Proof. From (33) and since [, wudu € [m, M] C I we have

(19) o (0)f(u(@) — [ (1)+1]/ ( / wudﬂ)

> f (/Q wud,u) <u (x) — /Q'LUUd/L) ,for any z € Q.
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If we multiply (49) by w > 0 p-a.e. on 2 and integrate over the positive
measure (4 we get

e ) [ wie) f @) duo) - [ (1) + 1] f( / wudu) [ w@dut)

> ([ woan) [ wo) (wto) = [ wea) duta) =0,

which produces the desired result (48). [

Remark 7. If the function f : [m, M| — [0,00) is a 0 (p, k)-convex and
continuous function on the interval [m, M], then for any u : Q — [m, M] C
I so that fou, u € Ly (Q, 1), where w > 0 pra.e. on Q with Jowdp =1
we have

(50) [wtowdnz s </Qwudu>-

If the function f : [m, M] — [0,00) is a n(s)-convex and continuous
function on the interval [m, M] then for any u : Q@ — [m, M] C I so that
fou,u€ Ly (R, 1), where w > 0 p-a.e. on 2 with fQ wdp = 1 we have

(51) [wewan= 1 </Qwudu>-

These results generalize the inequalities (45) and (46).
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