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Abstract. S.D. Parashar and B. Choudhary defined in 1994 cer-
tain paranorms for some Orlicz sequence spaces. Their ideas are
applied later for topologization of various generalized Orlicz se-
quence spaces. The author determines in 2011 some alternative
F-seminorms (which are also paranorms) for such spaces. In this
paper these results are extended to generalized Orlicz sequence
spaces defined via double sequences..
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1. Introduction

Let N = {1, 2, . . . } and let K be the field of real numbers R or complex
numbers C. We specify the domains of indices only if they are different
from N. By the symbol ı we denote the identity mapping ı(z) = z. The
superposition of two mappings f and g is denoted by fg, i.e., (fg)(z) =

f(g(z)). For an arbitrary sequence z = (zk), by z(2) = (z
(2)
ki ) we denote the

corresponding double sequence with the elements z
(2)
ki = zk. If w = (wk) is

an another sequence, then by zw we denote the sequence (zkwk) provided
that zkwk is determined for all k ∈ N.

Let X be a vector (or linear) space over K. A functional g : X → R is
called an F -norm, if (see, for example, [11])
(N1) g(0) = 0;
(N2) g(x+ y) ≤ g(x) + g(y) (x, y ∈ X);
(N3) |α| ≤ 1 (α ∈ K), x ∈ X =⇒ g(αx) ≤ g(x);
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(N4) limn αn = 0 (αn ∈ K), x ∈ X =⇒ limn g(αnx) = 0;
(N5) g(x) = 0 =⇒ x = 0.
A functional g with axioms (N1)–(N4) is called an F-seminorm. A paranorm
g on X is defined by axioms (N1), (N2) and
(N6) g(−x) = g(x) (x ∈ X);
(N7) limn αn = α (αn, α ∈ K), limn g(xn − x) = 0 (xn, x ∈ X)

=⇒ limn g(αnxn − αx) = 0.
A seminorm g on X is determined by axioms (N1), (N2) and
(N8) g(αx) = |α|g(x) (α ∈ K, x ∈ X).
An F -seminorm (paranorm, seminorm) g is called total if (N5) holds. So,
an F-norm (norm) is a total F-seminorm (seminorm).

In the following, unlike the module |·|, the seminorm of an element x ∈ X
is often denoted by |̇x|̇.

Let X be a sequence of seminormed linear spaces
(
Xk, |̇ · |̇k

)
over K.

Thereby, the set s(X) of all sequences x = (xk), xk ∈ Xk, and the set s2(X)
of all double sequences x2 = (xki), xki ∈ Xk, together with coordinatewise
addition and scalar multiplication are linear spaces (over K). Any linear
subspace of s2(X) is called a generalized double sequence space (GDS space)
and any linear subspace of s(X) is called a generalized sequence space (GS

space). If
(
Xk, |̇ · |̇k

)
=
(
X, |̇ · |̇

)
, then we write X instead of X. In the

case X = K we omit the symbol X in notation. So, for example, s2 and
s denote the linear spaces of all K-valued double sequences u2 = (uki) and
single sequences u = (uk), respectively. As usual, linear subspaces of s2

are called double sequence spaces (DS spaces) and linear subspaces of s are
called sequence spaces. Well-known sequence spaces are the sets `∞, c, c0 ,
`p, (0 < p < ∞) and w0 of all bounded, convergent, convergent to zero,
absolutely p-summable and strongly summable to zero number sequences,
respectively. Examples of DS spaces are

uc0 =

{
u2 ∈ s2 : lim

k
uki = 0 uniformly in i

}
,

uw0 =

u2 ∈ s2 :

1/k

k∑
j=1

uji

 ∈ uc0


and

Uλ =
{
u2 ∈ s2 : ũ = (ũk) ∈ λ

}
with ũk = supi |uki| and λ ∈ {s, `∞, c0 , `p, w0}.
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Let R+ = [0,∞). By a ϕ-function we mean a continuous and non-decrea-
sing function φ : R+ → R+ such that φ(t) = 0 if and only if t = 0 (cf. [16],
p. 4). A ϕ-function φ is called a modulus function (or, briefly, a modulus) if

(1) φ(t+ u) ≤ φ(t) + φ(u), t, u ∈ R+,

and an Orlicz function if (1) is replaced by the condition of convexity

φ(αt+ (1− α)u) ≤ αφ(t) + (1− α)φ(u) t, u ∈ R+, 0 ≤ α ≤ 1.

It is not difficult to see that every ϕ-function φ satisfies the condition

(2) φ(αt+ (1− α)u) ≤ φ(t) + φ(u), t, u ∈ R+, 0 ≤ α ≤ 1.

Let λ be a sequence space and let Λ be a double sequence space. Assume
that T : sT (X) → s2(X) is a linear operator with Tx = (Tki(x)), where
sT (X) is a linear subspace of s(X). For a sequence Φ = (φk) of ϕ-functions,
and for the sequences z = (zk) ∈ s(X) and z2 = (zki) ∈ s2(X), we write

Φ(z) =
(
φk

(
|̇zk |̇k

))
, Φ(z2) =

(
φk

(
|̇zki |̇k

))
and define the sets of sequences

λ∃(Φ,X) =
{
x ∈ s(X) : (∃ρ > 0)Φ(ρ−1x) ∈ λ

}
,

Λ(Φ, T,X) = {x ∈ sT (X) : Φ(Tx) ∈ Λ} ,
Λ∃(Φ, T,X) =

{
x ∈ sT (X) : (∃ρ > 0)Φ(ρ−1Tx) ∈ Λ

}
.

If Φ is a constant sequence with φk = φ, then we write φ instead of Φ.
Let ψ be an Orlicz function. As usual, by an Orlicz sequence space we

mean the Banach sequence space `∃(ψ) with the norm (see [15] or [16])

‖u‖ψ = inf

{
ρ > 0 :

∑
k

ψ(|ρ−1uk|) ≤ 1

}
.

Woo [23] showed that if Ψ = (ψk) is a sequence of Orlicz functions, then the
set `∃(Ψ) is also a Banach sequence space with the norm

‖u‖Ψ = inf

{
ρ > 0 :

∑
k

ψk(|ρ−1uk|) ≤ 1

}
.

In the mathematical literature we may find a series of papers which deal
with various generalizations and modifications of `∃(φ) and `∃(Φ), where
the space ` is replaced by different sequence spaces including the spaces
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of Maddox type, domains of various summability methods and also some
sequence spaces defined via double sequences. For example, Nuray and
Gülcü [17] considered generalized Orlicz sequence spaces

uw0
∃(ıpψ, Iσ) =

{
u ∈ s : (∃ρ > 0)ıp

(
ψ
(
ρ−1Iσu

))
∈ uw0

}
,

Uw∞
∃(ıpψ, Iσ) =

{
u ∈ s : (∃ρ > 0)ıp

(
ψ
(
ρ−1Iσu

))
∈ U`∞

}
,

where ψ is an Orlicz function, p = (pk) is a bounded sequence of pos-
itive numbers, Iσu = (uσk(i)), σ is a one-to-one mapping of N into it-
self and ıp denotes the sequence of ϕ-functions ıpk(t) = tpk . Denoting
M = max{1, supk pk} and using the ideas of Parashar and Choudhary [18],
on uw0

∃(ıpψ, Iσ) the paranorm

h0(u) = inf
ρ>0,n∈N

ρpn/M : sup
m,i∈N

(
m−1

m∑
k=1

(
ψ
(
|ρ−1uσk(i)|

))pk)1/M

≤1

 .

We note that h0 is also an F-seminorm in view of [12, Remark 1]. Moreover,
it seems that by the definition of h0 the authors implicitly assume the validity
of the inclusion uw0

∃(ıpψ, Iσ) ⊂ Uw∞∃(ıpψ, Iσ) or, equivalently, the equality
uw0

∃(ıpψ, Iσ) = Uw0
∃(ıpψ, Iσ).

The idea to topologize different generalized Orlicz sequence spaces by the
paranorms of type h0 is used later by many authors (see, for example, [1], [3]
- [10], [17], [19], [20], [22]). We determine alternative F-seminorms (which
are also paranorms) on similar generalized Orlicz sequence spaces defined by
means of a DS space Λ and a linear operator T which maps single sequences
to double sequences. Applications of main theorems are considered in the
case if Λ is the strong summability domain of a non-negative matrix method
and T is determined by a sequence of summability matrices.

2. Main theorems

Let λ ⊂ s be a sequence space, Λ ⊂ s2 be a DS space, and let ek = (ekj )j∈N
be the sequences, where ekj = 1 if j = k and ekj = 0 otherwise. Then, by

our notation, e
(2)
k denotes, for any k ∈ N, the double sequence of elements

ekji = ekj .
Recall that a GS space λ(X) ⊂ s(X) is called solid if (yk) ∈ λ(X) when-

ever (xk) ∈ λ(X) and |̇yk |̇k ≤ |̇xk |̇k for any k ∈ N. Similarly is defined the
solidity of a GDS space Λ(X) ⊂ s2(X). For example, it is not difficult to
see that λ∃(Φ,X) is solid whenever λ is solid.

An F-seminormed space (λ, g) is called an AK-space, if λ contains the
sequences ek and for any u = (uk) ∈ λ we have limn u[n] = u, where
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u[n] =
∑n

k=1 ukek. An F-seminormed DS space (Λ, g) is called a double

AK-space (see, for example, [13]), if Λ contains the sequences e
(2)
k and for

any u2 = (uki) ∈ Λ we have limn u2[n] = u2, where u2[n] =
∑n

k=1 uke
(2)
k with

uk = (uki)i∈N and uke
(2)
k = (ukie

k
ji)j,i∈N.

An F-seminorm g on a GS space λ(X) ⊂ s(X) is said to be absolutely
monotone if for all x = (xk) and y = (yk) from λ(X) with |̇yk |̇k ≤ |̇xk |̇k
(k ∈ N) we have g(y) ≤ g(x). Analogously, an F-seminorm g on a GDS space
Λ(X) ⊂ s2(X) is said to be absolutely monotone if for all x2 = (xki) and
y2 = (yki) from Λ(X) with |̇yki |̇k ≤ |̇xki |̇k (k, i ∈ N) we have g(y2) ≤ g(x2).

Our first theorem deals with the linearity of the set Λ∃(Φ, T,X).

Theorem 1. Let Λ be a solid DS space and let T : sT (X)→ s2(X) be a
linear operator with Tx = (Tki(x)). If Φ = (φk) is a sequence of ϕ-functions,
then Λ∃(Φ, T,X) is a GS space. At that, it is solid if

(3) |̇xk |̇k ≤ |̇yk |̇k (k ∈ N) =⇒ |̇Tki(x)|̇k ≤ |̇Tki(y)|̇k (k, i ∈ N).

Proof. Let x ∈ Λ∃(Φ, T,X) with Φ(ρ−1Tx) ∈ Λ, ρ > 0. It is clear that
0x ∈ Λ∃(Φ, T,X). If 0 6= α ∈ K, then by (ρ|α|)−1T (αx) = ρ−1Tx we see
that αx also belongs to λ∃(Φ, T,X).

Now, if x,y ∈ Λ∃(Φ, T,X), then there exist positive numbers ρ, σ such
that Φ(ρ−1Tx) and Φ(σ−1Ty) are in Λ. Because any φk satisfies (2), for
θ = max{2ρ, 2σ} and all k, i ∈ N we have that

φk

(
|̇θ−1Tki(x + y)|̇k

)
≤ φk

(
|̇(2ρ)−1Tki(x)|̇k + |̇(2σ)−1Tk(y|̇k

)
≤ φk

(
|̇ρ−1Tki(x)|̇k

)
+ φk

(
|̇σ−1Tki(y)|̇k

)
.

Since Λ is solid, Φ(θ−1T (x + y)) must be in Λ and, consequently, x + y ∈
Λ∃(Φ, T,X).

Finally, if (3) holds, then |̇yk |̇k ≤ |̇xk |̇k (k ∈ N) implies

(4) φk

(
|̇ρ−1Tki(y)|̇k

)
≤ φk

(
|̇ρ−1Tki(x)|̇k

)
, k, i ∈ N

and the solidity of Λ∃(Φ, T,X) follows from the solidity of Λ. �

The following two theorems about the topologization of GS spaces
Λ∃(Φ, T,X) are proved similarly to [12, Theorem 2], by using some standard
arguments of the theory of modular spaces (see [16, proof of Theorem 1.5]).

Theorem 2. Let Φ be a sequence of Orlicz functions and let T : sT (X)→
s2(X) be a linear operator. If the solid DS space Λ is topologized by an
absolutely monotone F-seminorm g, then

ĥ(x) = inf
{
ρ > 0 : g

(
Φ
(
ρ−1Tx

))
≤ ρ
}
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is an F-seminorm on Λ∃(Φ, T,X). Moreover, ĥ is absolutely monotone if
(3) holds.

Proof. For any x from Λ∃(Φ, T,X) there exists a number σ > 0 such
that g(Φ(σTx)) < ∞. Defining ρ = max{σ−1, g(Φ(σTx))}, by ρ−1 ≤ σ we
get

g(Φ(ρ−1Tx)) ≤ g(Φ(σTx)) ≤ ρ.

Thus, the functional ĥ is determined on Λ∃(Φ, T,X).
It is clear that ĥ satisfies (N1). Futher, let |α| ≤ 1 and x ∈ Λ∃(Φ, T,X)

with Φ(ρ−1Tx) in Λ. Then Φ(ρ−1T (αx)) ∈ Λ and

(5) g(Φ(ρ−1T (αx))) ≤ g(|α|Φ(ρ−1Tx)) ≤ g(Φ(ρ−1Tx))

which implies

{ρ > 0 : g(Φ(ρ−1Tx)) ≤ ρ} ⊂ {ρ > 0 : g(Φ(ρ−1T (αx))) ≤ ρ}.

Consequently, (N3) holds for ĥ.
To prove (N2), we arbitrarily fix x, y ∈ Λ∃(Φ, T,X) and ε > 0. If

s = ĥ(x) + ε, t = ĥ(y) + ε, then

g(Φ(s−1Tx)) ≤ s, g(Φ(t−1Ty)) ≤ t,

and so,

g

(
Φ

(
T (x + y)

s+ t

))
≤ g

(
Φ

(
s

s+ t

Tx

s
+

t

s+ t

Ty

t

))
≤ g(Φ(s−1Tx)) + g(Φ(t−1Ty)) ≤ s+ t.

Hence ĥ(x + y) ≤ ĥ(x) + ĥ(y) + 2ε, and we obtain

ĥ(x + y) ≤ ĥ(x) + ĥ(y).

Now we prove that ĥ satisfies (N4). Let limn αn = 0 and x ∈ Λ∃(Φ, T,X)
with Φ(ρ−1Tx) ∈ Λ. Fix ε > 0, we can choose an index n0 such that
ε−1|αn| ≤ min{1, δ−1} for n ≥ n0. Then, for all n ≥ n0,

g(Φ(ε−1T (αnx))) ≤ g(Φ(ε−1|αn|Tx)) ≤ g(Φ(δ−1Tx)) <∞

and, in view of

g(Φ(ε−1T (αnx))) ≤ g(ε−1|αn|Φ(Tx)),

we get
lim
n
g(Φ(ε−1T (αnx))) = 0.



On generalized Orlicz sequence spaces . . . 71

Thus
g(Φ(ε−1T (αnx))) ≤ ε

for sufficiently large n. Hence limn ĥ(αnx) = 0.
Finally, suppose that (3) holds and |̇yk |̇k ≤ |̇xk |̇k (k ∈ N). Then (4) is

true and, because g is absolutely monotone, we get

g(Φ(ρ−1Ty)) ≤ g(Φ(ρ−1Tx)).

Consequently,

{ρ > 0 : g(Φ(ρ−1Tx)) ≤ 1} ⊂ {ρ > 0 : g(Φ(ρ−1Ty)) ≤ 1}

which shows that ĥ(y) ≤ ĥ(x). �

For fixed m,n ∈ N let emn = (eki) be the double sequence, where eki = 1
if k = m, i = n, and eki = 0 otherwise.

Theorem 3. Let T and Φ be the same as in Theorem 2. If the solid DS
space Λ is topologized by an absolutely monotone seminorm g, then

h(x) = inf
{
ρ > 0 : g

(
Φ
(
ρ−1Tx

))
≤ 1
}

is a seminorm on Λ∃(Φ, T,X). The seminorm h is absolutely monotone if
(3) holds. In particuler, if

(6) Tx = 0 =⇒ x = 0,

then h is a norm on Λ∃(Φ, T,X).

Proof. For any x from Λ∃(Φ, T,X) there exists a number σ > 0 such
that g(Φ(σ−1Tx)) < ∞. Defining d = max{1, g(Φ(σ−1Tx))} and ρ = σd,
by 0 < 1/d ≤ 1 we have

g(Φ(ρ−1Tx)) ≤ 1

d
g(Φ(σ−1Tx)) ≤ 1.

This shows that the functional h is determined on Λ∃(Φ, T,X). It is obvious
that h satisfies (N1).

To prove (N2), we fix x, y ∈ Λ∃(Φ, T,X) and ε > 0. Then, as in the
proof of Theorem 2, denoting s = h(x) + ε, t = h(y) + ε, by

g(Φ(s−1Tx)) ≤ 1, g(Φ(t−1Ty)) ≤ 1

we get

g

(
Φ

(
T (x + y)

s+ t

))
≤ s

s+ t
g

(
Φ

(
Tx

s

))
+

t

s+ t
g

(
Φ

(
Ty

t

))
≤ 1
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which gives
h(x + y) ≤ h(x) + h(y).

Now, if we take α 6= 0, then

h(αx) = inf

{
ρ > 0 : g

(
Φ

(
T (αx)

ρ

))
≤ 1

}
= |α| inf

{
ρ

|α|
> 0 : g

(
Φ

(
Tx

ρ/|α|

))
≤ 1

}
= |α|h(x).

Hence h satisfies also (N8), i.e., h is a seminorm on Λ∃(Φ, T,X).
It remains to prove that h is a norm on Λ∃(Φ, T,X) if (6) holds. To prove

the axiom (N5) for h, let h(x) = 0. Then

(7) g
(
Φ
(
ρ−1Tx

))
≤ 1 (ρ > 0).

If we suppose x 6= 0, then also Tx 6= 0 by (6), and there exist indices m,n

with Tmn(x) 6= 0. But then also cρ = φm

(
ρ−1 |̇Tmn(x)|̇m

)
6= 0. Since the

elements of double sequences u = Φ
(
ρ−1Tx

)
and v = cρemn are connected

with |vki| ≤ |uki|, the sequence cρemn is in Λ by the solidity of Λ. Moreover,
since g is absolutely monotone, we have g(u) ≥ g(v) which gives

g
(
Φ
(
ρ−1Tx

))
≥ φm

(
ρ−1 |̇Tmn(x)|̇m

)
g(emn).

Therefore, using also the fact that the Orlicz function φm is unbounded, for
sufficiently small ρ we get

g(Φ(ρ−1Tx)) > 1

contrary to (7). Consequently, it must be x = 0. �

3. Applications related to summability

In the following we apply Theorems 1 – 3 in the special case, where Λ is
the strong summability domain of a non-negative infinity matrix, and the
operator T is determined by means of a sequence of summability matrices.

The most common summability method is the matrix method defined by
an infinite scalar matrix A = (ank). If for a sequence x ∈ s(X) the series
Anx =

∑
k ankxk converge and the limit limnAnx = l exists in X, then

we say that x is A-summable to l and write A-limxk = l. A summability
method (or a matrix) A is called regular in X if for all convergent in X
sequences x = (xk) we have

lim
k
xk = l =⇒ lim

n
Anx = l.
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A well-known example of a regular matrix method is the Cesàro method C1

defined by the matrix C1 = (cnk), where, for any n ∈ N, cnk = n−1 if k ≤ n
and cnk = 0 otherwise. A (trivial) regular method is defined by the unit
matrix I = (ink), where inn = 1 and ink = 0 for n 6= k. Recall also that a
matrix A = (ank) is called normal if, for any n ∈ N, ann 6= 0 and ank = 0
if k > n. For example, Cesàro matrix C1 is normal. Every scalar sequence
(ck) defines a diagonal matrix D(ck) = (dni) by the equalities dnn = cn and
dni = 0 if n 6= i. Clearly, a diagonal matrix D(ck) is regular if and only if
limk ck = 1, and it is normal if ck 6= 0 for all k ∈ N. More information about
the matrix summability may be found, for example, in [2].

An another class of summability methods is determined by sequences
B = (Bi) of infinite scalar matrices Bi = (bink). Recall that a sequence
x = (xk) ∈ s(X) is called B-summable to the point l ∈ X if Bi-limxk = l
uniformly in i, i.e., the series Bi

nx =
∑

k b
i
nkxk converge in X and

lim
n
|̇Bi

nx− l|̇ = 0 uniformly in i.

The summability method B is also known as the sequential matrix method
(SM method) of summability (see [2], p. 19). In the special case

bink =

{
1
n , if i ≤ k ≤ n+ i− 1,

0, otherwise

the B-summability reduces to so-called almost convergence. Almost conver-
gence is a non-matrix method of summability. Any matrix method B we
can consider as the SM method B with Bi = B. By the unit SM method I
we mean the SM method B with Bi = I.

Now, let A = (ank) be a non-negative matrix, i.e., ank ≥ 0. We say that
A is column-positive if for any k ∈ N there exists an index nk such that
ank,k > 0. A sequence u = (uk) ∈ s is called strongly A-summable to l if
limn

∑
k ank|uk − l| = 0, and strongly A-bounded if supn

∑
k ank|uk| < ∞.

It is clear that the set c0 [A] of all strongly A-summable to zero sequences
and the set `∞[A] of all strongly A-bounded sequences are linear spaces.
Moreover, the functional

gA(u) = sup
n

∑
k

ank|uk|

is a seminorm on `∞[A] and c0 [A], it is a norm if A is column-positive.
More generally, if M is a solid DS space, then the set

M[A] =
{
u2 = (uki) ∈ s2 : A|u2| ∈ M

}
,
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where

A|u2| =
(
An|u2|

)
=

(∑
k

ank|uki|

)
,

is also a solid DS space. Moreover, if M is topologized by an absolutely
monotone F-seminorm (seminorm) gM , then on M[A] we may define
an absolutely monotone F-seminorm (seminorm) by the equality (cf. [13,
pp. 188–189])

gM,A(u2) = gM
(
A|u2|

)
.

At it, gM,A is an F-norm (norm) onM[A] if gM is an F-norm (norm) onM
and A is column-positive.

In the following let Ψ = (ψk) be a sequence of modulus functions and
Φ = (φk) be a sequence of Orlicz functions. As a GS space of Orlicz type,
connected with summability, we consider the set

M∃[A,ΨΦ,B, X] = {x ∈ s(X) : (∃ρ > 0) A|ΨΦ(ρ−1Bx)| ∈ M},

where Bx = (Bi
nx). Let us denote by

sB(X) =

{
x ∈ s(X) :

∑
k

binkxk (n, i ∈ N) converge in X

}

the application domain of the SM method B. Then the operator B : sB (X)
→ s2(X), Bx = (Bi

nx), is linear. Consequently, since

(8) M∃[A,ΨΦ,B, X] =M[A]∃ (ΨΦ,B, X) ,

and ΨΦ = (ψkφk) is a sequence of ϕ-functions, from Theorem 1 (with Λ =
M(A) and T = B) we immediately get the following proposition.

Proposition 1. If M ⊂ s2 is a solid DS space, A is a non-negative
matrix, and B is a SM method of summability, then M∃[A,ΨΦ,B, X] is a
GS space.

For the topologization of GS spacesM∃[A,ΨΦ,B, X] we replace (8) with
the representation

(9) M∃[A,ΨΦ,B, X] =M[A,Ψ]∃ (Φ,B, X) ,

where
M[A,Ψ] =

{
u2 = (uki) ∈ s2 : A|Ψ

(
u2
)
| ∈ M

}
.

Proposition 2. Let M be a solid DS space which is topologized by an
absolutely monotone F-seminorm gM.

(i) If the sequence of moduli Ψ = (ψk) satisfies one of (equivalent)
conditions
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(M1) There exist a function ν and a number δ > 0 such that ψk(ut) ≤
ν(u)ψk(t) (0 ≤ u < δ, t ≥ 0) and limu→0+ ν(u) = 0,

(M2) lim
u→0+

sup
t>0

sup
k

ψk(ut)

ψk(t)
= 0,

then the GS space M∃[A,ΨΦ,B, X] may be topologized by the F-seminorm

ĥM,A,B(x) = inf
{
ρ > 0 : gM

(
A
∣∣ΨΦ

(
ρ−1Bx

)∣∣) ≤ ρ} .
The F-seminorm ĥM,A,B is absolutely monotone if the operator B satis-
fies (3).

(ii) If (M[A], gM,A) is double AK-space, then ĥM,A,B is a F-seminorm

on GS space M∃[A,ΨΦ,B, X] ∩ Us(Φ,B, X) for an arbitrary sequence of
moduli Ψ.

(iii) If gM is a seminorm on M, then the GS space M∃[A,Φ,B, X] may
be topologized by the seminorm

hM,A,B(x) = inf
{
ρ > 0 : gM

(
A
∣∣Φ (ρ−1Bx

)∣∣) ≤ 1
}
.

The seminorm hM,A,B is total (i.e., a norm) if B satisfies (6).

Proof. (i) The DS space M[A,Ψ] from (9) may be written in the form

M[A](Ψ) = {u2 ∈ s2 : Ψ(u2) ∈M[A]}.

Applying [14, Theorem 1 and Remark 1] with Λ =M[A], Φ = Ψ(2), T = ı
and X2 = Y2 = K2, we get that M[A,Ψ] is topologized by the absolutely
monotone F-seminorm

gM,A,Ψ(u2) = gM,A(Ψ(u2)) = gM(A|Ψ(u2)|)

whenever Ψ satisfies one of conditions (M1) and (M2). Therefore, (i) follows
by Theorem 2 because of the representation (9).

(ii) If x ∈M∃[A,ΨΦ,B, X]∩Us(Φ,B, X), then by the solidity ofM and
Us there exists a number ρ ≥ 1 such that Φ(ρ−1Bx) ∈ M[A,Ψ] ∩ Us. This
shows that

M∃[A,ΨΦ,B, X] ∩ Us(Φ,B, X) ⊂ (M[A,Ψ] ∩ Us)∃ (Φ,B, X)

and since M[A,Ψ] ∩ Us may be topologized by the absolutely monotone
F-seminorm gM,A,Ψ in view of [14, Theorem 2], our statement follows again
by Theorem 2.

(iii) We know that if gM is a seminorm onM, thenM[A] is topologized
by the absolutely monotone seminorm gM,A . Therefore, using (9) (with
ψk = ı), the required statements follow immediately from Theorem 3. �

Recall that an infinite matrix A = (ank) is said to be row-finite if for any
n ∈ N there exists an index kn with ank = 0 for all k > kn. The following
modification of Proposition 2 is related to the case M = Uλ.
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Proposition 3. Let λ be a solid sequence space which is topologized by
an absolutely monotone F-seminorm g

λ
.

(i) Suppose that the matrix A is row-finite and column-positive, and the
moduli ψk are unbounded. If (λ, g

λ
) is AK-space and

(10) (ank)n∈N ∈ λ (k ∈ N),

then the GS space Uλ∃[A,ΨΦ,B, X] may be topologized by the F-seminorm

ĥ
λ,Ã,B

(x) = inf
{
ρ > 0 : g

λ

(
Ã
∣∣ΨΦ

(
ρ−1Bx

)∣∣) ≤ ρ} ,
where

Ã
∣∣u2
∣∣ =

(
sup
i

∑
k

ank|uki|

)
.

The F-seminorm ĥ
λ,Ã,B

is absolutely monotone if the operator B satisfies (3).

(ii) If g
λ

is a seminorm on λ, then the GS space Uλ∃[A,Φ,B, X] may be
topologized by the seminorm

h
λ,Ã,B

(x) = inf
{
ρ > 0 : g

λ

(
Ã
∣∣Φ (ρ−1Bx

)∣∣) ≤ 1
}
.

The seminorm h
λ,Ã,B

is total (i.e., a norm) if B satisfies (6).

Proof. (i) It follows from [13, Proposition 2 b)] that, by our supposi-
tions, the DS space Uλ[A,Ψ] may be topologized by the absolutely monotone
F-seminorm

g
λ,Ã,Ψ

(u2) = g
λ

(
Ã
∣∣Ψ (u2

)∣∣) .
In view of (9) (with M = Uλ) it remains to apply Theorem 2.

(ii) is a special case of Proposition 2 (iii), because the equality

g
Uλ

(u2) = g
λ
(ũ)

defines an absolutely monotone seminorm on Uλ. �

4. Some special cases

Let Φ = (φk) be a sequence of Orlicz functions, p = (pk) be a sequence
of positive numbers, and let ıp be the sequence of ϕ-functions ıpk(t) = tpk .
The authors of [1, 5, 6, 7, 8, 9, 17, 19, 22] consider, for various concrete
non-negative summability methods A and SM methods B, the GS spaces

Λ∃ [A, ıpΦ,B, X] =
{
x ∈ s(X) : (∃ρ > 0)A|ıpΦ(ρ−1Bx)| ∈ Λ

}
,



On generalized Orlicz sequence spaces . . . 77

where Λ ∈ {uc0 , U`∞} and A|ıpΦ(Bx)| =
(
Ain|ıpΦ(Bx)|

)
with

Ain|ıpΦ(Bx)| =
∑
k

ank

φk
|̇∑

j

bikjxk |̇

pk

.

For bounded sequences p, they determine on these spaces the paranorms of
type

(11) h0(x) = inf
ρ>0,m∈N

{
ρpm/r : sup

n, i

(
Ain|ıpΦ(ρ−1Bx)|

)1/r ≤ 1

}
,

where r = max{1, supk pk}.
Since t1/r ≤ 1 if and only if t ≤ 1, the functional h0 my be replaced with

(12) h∗0(x) = inf
ρ>0,m∈N

{
ρpm/r : sup

n, i
Ain|ıpΦ(ρ−1Bx)| ≤ 1

}
.

We remark that the paranorm of type h∗
0

is used in [10].
It is clear, by (11) and (12), that the functionals h0 and h∗

0
are determined

on uc0
∃(A, ıpΦ,B, X) only if

(13) uc0
∃ [A, ıpΦ,B, X] ⊂ U`∞∃ [A, ıpΦ,B, X]

or, equivalently,

(14) uc0
∃ [A, ıpΦ,B, X] = Uc0

∃ [A, ıpΦ,B, X] .

The following example shows that (13) is not automatically fulfilled.

Example 1. Let A = I, φk = ı, pk = 1, and let B be the sequence of
matrices Bi = (bink) with the elements

bink =


i, if n = 1, k = i,

1/n, if n ≥ 2, k = i,

0, otherwise.

Since

Bi
nu =

∑
k

binkuk =

{
iui, if n = 1,

n−1ui, if n ≥ 2,

for any ρ > 0 and every sequence u ∈ s with 0 < infk |uk| ≤ supk |uk| <
∞ we have that limn |ρ−1Bi

nu| = 0 uniformly in i, but supi |ρ−1Bi
nu| =

supi ρ
−1i|ui| =∞. Thus, the inclusion (13) and also the equality (14) hold

not in our case.
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It should be remarked that the validity of (13) is unnoticed in [1, 6, 7,
8, 9, 17, 22] by the definition of paranorms h0 and h∗

0
on some spaces of

type uc0
∃ [A, ıpΦ,B, X]. Moreover, the proofs of (13) presented in [3, 5,

10, 19, 20, 21] for various special cases are, unfortunately, in like manner
inconclusive (limk uki = 0 uniformly in i implies not supk,i |uki| < ∞ in
general). This leads us to the following question.

Problem 1. On what conditions the inclusion (13) or, equivalently, the
equality (14) hold?

Our Propositions 2 and 3 allow to determine F-seminorm topologies for
the GS spaces Λ∃ [A, ıpΦ,B, X] and Uλ∃ [A, ıpΦ,B, X]. Supposing that the
sequence p = (pk) is bounded and r = max{1, supk pk}, we may write,
similarly to (9),

Λ∃ [A, ıpΦ,B, X] = Λ
[
A, ıp/r

]∃
(Φr,B, X) ,

where ıp/r is the sequence of moduli ıpk/r(t) = tpk/r and Φr is the sequence
of Orlicz functions φrk(t) = (φk(t))

r. Since ıp/r satisfies (M2) if and only if
infk pk > 0, and U`∞ may be topologized by the absolutely monotone norm
‖u2‖2∞ = supki |uki|, from Proposition 2 we immediately get the following
corollary.

Corollary 1. Let Λ be a solid DS space which is topologized by an abso-
lutely monotone F-seminorm gΛ and let p = (pk) be a bounded sequence of
positive numbers.

(a) If infk pk > 0, then the GS space Λ∃ [A, ıpΦ,B, X] may be topologized
by the F-seminorm

ĥp
Λ,A,B(x) = inf

{
ρ > 0 : gΛ

(
A
∣∣ıpΦ

(
ρ−1Bx

)∣∣) ≤ ρ} .
In particular, on the GS space U`∞

∃ [A, ıpΦ,B, X] we may define the F-seminorm

ĥp∞,A,B(x) = inf
{
ρ > 0 :

∥∥A ∣∣ıpΦ
(
ρ−1Bx

)∣∣∥∥2

∞ ≤ ρ
}

= inf

ρ > 0 : sup
n,i

∑
k

ank

φk
|̇ρ−1

∑
j

bikjxk |̇

pk

≤ ρ

 .

(b) If
(
Λ[A], gΛ,A

)
is a double AK-space, then ĥp

Λ,A,B is a F-seminorm on

the GS space Λ∃ [A, ıpΦ,B, X] ∩ Us(Φ,B, X).

It is known that (c0 , ‖ · ‖∞) and (`q, ‖ · ‖q) (1 ≤ q < ∞) are normed

AK-spaces with the norms ‖u‖∞ = supk |uk| and ‖u‖q = (
∑

k |uk|q)
1/q, re-

spectively. Therefore, by Proposition 3 we can formulate our next corollary.
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Corollary 2. Let λ be a solid sequence space which is topologized by an
absolutely monotone F-seminorm g

λ
. Suppose that the matrix A is row-finite

and column-positive. If (λ, g
λ
) is the AK-space and (11) holds, then on the

GS space Uλ∃ [A, ıpΦ,B, X] we may define the F-seminorm

ĥp
λ,Ã,B

(x) = inf
{
ρ > 0 : g

λ

(
Ã
∣∣ıpΦ

(
ρ−1Bx

)∣∣) ≤ ρ} .
In particular, Uc0

∃ [A, ıpΦ,B, X] may be topologized by the F-seminorm ĥp∞,A,B
whenever limn ank = 0 (k ∈ N), and on U`q

∃ [A, ıpΦ,B, X] (1 ≤ q <∞) we
may determine the F-seminorm

ĥp
q,Ã,B

(x) = inf

{
ρ > 0 :

∥∥∥Ã ∣∣ıpΦ
(
ρ−1Bx

)∣∣∥∥∥
q
≤ ρ
}

=inf

ρ > 0 :

∑
n

∣∣∣∣∣∣sup
i

∑
k

ank

φk
|̇ρ−1

∑
j

bikjxk |̇

pk
∣∣∣∣∣∣
q1/q

≤ρ


provided that (

∑
n |ank|q)

1/q <∞ for any k ∈ N.

Remark 1. Since any F-seminorm is a paranorm (see [12, Remark 1]),
all F-seminorms defined above are also paranorms satisfying the axiom (N3).
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[9] Güngör M., Et M., ∆r-strongly summable sequences defined by Orlicz

functions, Indian J. Pure Appl. Math., 34(2003), 1141-1151.



80 Enno Kolk
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