G

DE DE GRUYTER
OPEN

FASCICULI MATHEMATICI

Nr 55

2015

DOI:10.1515/fascmath-2015-0018

BRUNO DE MALAFOSSE

SOLVABILITY OF SEQUENCE SPACES EQUATIONS

OF THE FORM (E,), + F, = F,

ABSTRACT. Given any sequence ¢ = (ay)n>1 of positive real num-
bers and any set E of complex sequences, we write F, for the set
of all sequences y = (yn)n>1 such that y/a = (yn/an)n>1 € E;
in particular, s((f) denotes the set of all sequences y such that y/a
converges. For any linear space F' of sequences, we have F,, = F}
if and only if /b and b/x € M (F,F). The question is: what
happens when we consider the perturbed equation £ + F,, = F},
where £ is a special linear space of sequences? In this paper we
deal with the perturbed sequence spaces equations (SSE), defined
by (Eq)x + sg(f) = sl()c) where E = cg, or £, (p > 1) and A is the
operator of the first difference defined by A,y = vy, — yn—1 for
all n > 1 with the convention yy = 0. For E = ¢y the previous
perturbed equation consists in determining the set of all positive
sequences « = (z,),, that satisfy the next statement. The condi-
tion y,, /by, — L1 holds if and only if there are two sequences u, v
with y = u + v such that A,u/a, — 0 and v, /z, — Lo (n — 00)
for all y and for some scalars L1 and L. Then we deal with the
resolution of the equation (E,), + s = s} for E = ¢, or s1, and
give applications to particular classes of (SSE).

KEY woRrDS: BK space, spaces of strongly bounded sequences,
sequence spaces equations, sequence spaces equations with oper-
ator.
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1. Introduction

We write w for the set of all complex sequences ¥y = (Yn)n>1, oo, ¢ and ¢
for the sets of all bounded, convergent and null sequences, respectively, also
P={yecw:> 2 |y’ <oo}forl<p<oo Ify, z€ w, then we write
Yz = (YnZn)ps- Let U = {y€w:y, #0} and UT = {y €w:y, > 0}.
We write z/u = (2p/un),~; for all z € w and all v € U, in particular
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1/u = e/u, where e = 1 is the sequence with e, = 1 for all n. Finally,
if a € UT and E is any subset of w, then we put B, = (1/a) ' x E =
{y €ew:y/a € E}. Let E and F' be subsets of w. Then the set M (E, F) =
{y ew:yz € F for all z € E} is called the multiplier space of E and F.
In [1], the sets s,, s and ' were defined for positive sequences a by
(1/a)_1 x E and E = l, co, ¢, respectively. In [3] the sum E, + F}, and the
product E, * F}, were defined where E, F are any of the symbols s, s°, or
5(¢). Then in [6] the solvability was determined of sequences spaces inclusion
equations Gy, C E, + F, where E, F, G € { 9, 5@, s} and some applications
were given to sequence spaces inclusions with operators.

In this paper we deal with the solvability of perturbed equations defined
as follows. Let F' be any linear space of sequences, and b be a positive
sequence. It is known that the solutions of the equation F, = Fj, where x
is the unknown, are determined by = € cI™(F) (b). Then we consider the
perturbed equation & + F, = Fj, where £ is a particular linear space of
sequences. For example, the solutions of the equation ¢, = c are determined
by limy, o0 £ = L > 0. Then the perturbed equation defined by ¢, +c¢; = ¢,
has the same solutions if and only if a, — 0 as n tends to infinity; then if
an, — | > 0 as n tends to infinity the set of all its solutions is equal to c;
finally, if a ¢ ¢ the perturbed equation has no solutions, (cf. [7]). Here we
extend some results given in [12], [6], [4], [5], [11], [7], [9], [10]. In [11] for
given sequences a and b was determined the set of all positive sequences x for
which y,, /b, — [ if and only if there are sequences u and v for which y = u+wv
and uy, /a, — 0, v, /z, = I' (n — 00) for all y and for some scalars [ and I
This statement is equivalent to the sequence spaces equation s + sz(,;c) = 51()8)'
In [7] we determined the set of all z € U™ such that for every sequence y,
we have vy, /b, — [ if and only if there are sequences u and v with y = u+wv
Un 5 0 and v, /2, — I (n — 00) for some scalars [ and . This
statement means I', + sg(cc) = sl()c), where T is the set of all entire sequences.
So we are led to deal with specialsequence spaces equations (SSE), (resp.
sequence spaces inclusion equations (SSIE)), which are determined by an
identity, (resp. inclusion), for which each term is a sum ora sum of products
of sets of the form (E,)pand (Ef(x))T where f maps U™ to itself, E is
a linear space of sequences, x is the unknown and T is a triangle. It can

be found in [5] a solvability of the (SSE) E, + (sgf)) = 5{9 where

(r,s)

and |uy,/ay,|

E =5, 5% or 5(9 and z is the unknown. In [11] we determined the sets of
all positive sequences x that satisfy each of the systems s + (s,) A = Sb,
Sz D sp and Sq + (€z) o = Cp, €z D ¢ Then a resolution can be found of the
(SSE) with operators defined by (Eqa)c(xp, + (C2)c(u)p, = ¢ With E = co,
or /. Recently in [8] a study can be found on the (SSE) with operator
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(Ea)C(/\)C(u) + (Ex)C(Aa)O(u) = E,, where b € C; and E is any of the sets
loo, Or ¢o. For B = ¢y the resolution of this equation consists in determining
the set of all z € U™ such that for every sequence y the condition ¥, /b, — 0
(n — o0) holds if and only if there are u, v € w such that y = v + v and

1 K1
— u; | — 0 and
n

1 1<
Nz Z <sz> —0 (n— ).

=1 \MF i

(1)

There is also a resolution of the (SSE) (sa)c(\)p,) + (sg)wm)DT) = s).

In this paper we deal with some classes of (SSE) with the operators of
the form (E,), + s = séc) where E = ¢y, or /P, (p > 1) and of the form
(Ea)p + 82 = 8.

This paper is organized as follows. In Section 2 we recall some definitions
and results on sequence spaces and matrix transformations. In Section 3 we
recall general results on the multiplier M (E, F') of some sequence spaces. In
Section 4 we recall some results on the solvability of the equation F+F, = Fj,
in the general case. In Section 5 we determine the sets M ((E,) o , F') and we
deal with the (SSIE) F}, C (Eq)A + Fy. In Section 6 we apply the previous
results to solve the (SSE) (E,) A + ¢z = ¢p where E = ¢g, or £, (p > 1). In
Section 7 we apply the results of Section 6 to solve special (SSE) of the form
(Eu) po+¢z = ¢p. Finally in Section 8 we deal with the (SSE) (E,) +52 = s)
for £ = ¢, or s1.

2. Preliminaries and notations

An FK space is a complete metric space, for which convergence implies
coordinatewise convergence. A BK space is a Banach space of sequences
that is an FK space. A BK space F is said to have AK if for every sequence
Y= (Yn)n € E, then y = limy 00 » h_, yre® , where e®) = (0,...,1,..), 1
being in the k — th position.

For any given infinite matrix A = (an;)n; we define the operators A, =
(ank)k>1 for any integer n > 1, by A,y = Y77 ankyk, where y = (yp)r>1,
and the series are assumed convergent for all n. So we are led to the study
of the operator A defined by Ay = (A,y), mapping between sequence
spaces. When A maps E into F, where E and F are subsets of w, we
write A € (E,F), (cf. [13]). It is well known that if E has AK, then
the set B(FE) of all bounded linear operators L mapping in E, with norm
L]l = supy.o (IL ()|l / |yl ) satisfies the identity B(E) = (E, E). We
will use the operator A of the first difference defined by A,y = yn — yn—1
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for n > 1 with the convention yg = 0. It is well known that the oper-
ator ¥ defined by ¥,y = > ,_; yi for all n, is the inverse of A, that is,
A(Zy) = X (Ay) = y for all y. Let UT C w be the set of all sequences
u = (uyp),, with u, > 0 for all n. Then for any given sequence u = (uy,,),, € w
we define the infinite diagonal matrix D, by [D.},,, = u, for all n. It is
interesting to rewrite the set F, using a diagonal matrix. Let E be any
subset of w and u € U we have

E,=DyE ={y= (Yn)n>1 €w :y/u€ E}.
(c)

We will use the sets U, s, s, and 5 defined as follows (cf. [1]). For given
a €Ut andp > 1weput Dycg = 32, D,c= 526)7 Dyl = 54, and D t), = .
Each of the spaces D, F, where E € {cp, ¢, {0, P} with p > 1, is a BK space,

and we have |y, = supy>1 ([yal /an), and [yllg = (7% (wl /ar)?) 7.
Then and s and ¢4 have AK. If a = (r"),, with r > 0, we write s,, s” and

s£c) for the sets s, s0 and sEf) respectively. When r = 1, we obtain s; = o,

sy = ¢y and sgc) = c¢. Recall that S; = (s1,s1) is a Banach algebra and

(co,51) = (¢, €oo) = (51,51) = S1. We have A € S if and only if

(2) sup (Z ank|> < .

" \k=1

We will also use the well-known characterizations of (co, ¢p) and (cop,c). We
have A € (¢, ¢p) if and only if (2) holds and lim,,_o a,, = 0 for all k; and we
have A € (co, ¢) if and only if (2) holds and lim,,_,~ a,x = li for some scalar
I and for all k. For any subset F' of w, we write Fy = {y cw : Ay € F}.
Let cs = ¢y denote the set of all convergent series. For any subset E of w we
write AE = {y € w: y = Ax for some z € w}. We will use the well-known
property, stated as follows. For any given triangles T and T”, we have
T’ € (Er, F) if and only if T'"T~! € (E, F) for any subsets E, F C w. It is
also well known that A € (E, Fr) if and only if TA € (E, F).

3. The multipliers of some sets and matrix
transformations

3.1. The multipliers of classical sets

First we need to recall some well known results. Let y and z be sequences
and let £ and F' be two subsets of w, we then write yz = (yn2,),,~; and

M(E,F)={y€w: yz€ Fforall z€ E},

M (E, F) is called the multiplier space of E and F. In the following we will
use the next elementary results.
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Lemma 1. Let F, E, F and F be arbitrary subsets of w. Then
(i) M (E,F)c M (EF) for allE C B,

(i) M (E,F) c M (Eﬁ) forall F C F.

Lemma 2. Let a, b € UT and let E and F be two subsets of w. Then
D.E C DyF if and only if a/b € M (E, F).

Lemma 3. Leta, be U" and let E, F C w. Then A € (D,E, DyF) if
and only if Dy, AD, € (E, F).

By [14, Lemma 3.1, p. 648] and [16, Example 1.28, p. 157], we obtain
the next result.

Lemma 4. We have
(i) M (¢c,co) = M (boo,¢) = M (Lo, co) = co and M (c,c) = ¢;
(1) M (X, loo) = M (co, X') = loo for X, X' = co, ¢, 07 s .

4. On the (SSE) E+ F, = F,

In this section we apply the previous results to the solvability of the (SSE)
E+ F,=F, with1eF.

4.1. Regular sequence spaces equations

For b € U* and for any subset F of w, we denote by ¢l (b) the equivalent
class for the equivalence relation Ry defined by

xRy if D,F = D,F for x, y € U™T.

It can easily be seen that ¢l (b) is the set of all x € U* such that 2/b €
M (F,F)andb/z € M (F, F), (cf. [11]). We then have I’ (b) = /™ FF) (b).
For instance cl€ (b) is the set of all z € UT such that D,c = Dyc, that is,
sg(f) = sl(f). This is the set of all sequences x € U" such that x, ~ Cb,
(n — 00) for some C' > 0. In [11] we denote by ¢l (b) the class cl®* (b).
Recall that cI® (b) is the set of all x € U such that K; < z,,/b, < K for
all n and for some Ky, Ko > 0.

Let X and Y be two linear spaces of sequences. Then the sum of X and
Y defined by Z=X+Y ={x+y:2z€ X and y € Y}, is a linear space of
sequences. Let b be a positive sequence and F' be a linear subspace of w.
As we have seen above the solutions of the equation F, = Fj are defined by
x € clf (b). Then the question is: what are the solutions of the perturbed
equation F + F, = Fj, where F is a linear space of sequences? In this way
we are led to consider the set S(E,F) = {x e U" : E+ F, = F}}, where
be U™, and E is a linear subspace of w.
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Definition 1. We say that S (E, F), (or the equation E + F, = Fy), is
reqular if
AMEE) (b), if 1/be M (E,F),

S(E,F):{ .
2, if 1/b¢ M (E,F).

Note that E + F, = Fj is not regular in general. Indeed for £ = F =
ls we have M ({,loo) = loo and if 1/b € foo\co and s, = s1 we have
S (loo,loo) = sy NUT #£ I (b), (cf. [12, Theorem 11, pp. 916-917]).
In particular the solutions of the (SSE) fo + s, = fo are determined by
0 < zp < M for all n and for some M > 0. It is interesting to notice that
by [7, Theorem 5.2, p. 108|, the (SSE) ¢ + ¢, = ¢ is not regular, since
1/b € e\ ¢p implies S (¢, ¢) = cp.

In the following we will use the condition

(3) X C x(D,) forall a€c(l),

where y C w is any linear space, and ¢ (1) is the set of all sequences that
tend to 1. It can easily seen that this condition is true for any of the spaces
F = ¢, s1. To state the next results we also need the next conditions:

(4) 1€ F,

(5) FC M(F,F).

We then recall the next result which is a direct consequence of [7, Theo-
rem 5.1, pp. 106-107].

Lemma 5. Let b € UV and let E, F be two linear subspaces of w. We
assume F' satisfies the conditions in (3), (4), (5), and that M (E,F) C
M (E,cy). Then the set S (E, F) is regular.

5. Some results on the mutiplier M ((E,), ,F') and
on the (SSIE) F, C (E,)\ + F;

In this section we explicitly calculate the multiplier M ((Eq), , F') where
E = ¢p, or £, and F = ¢y, ¢, or s1. Then we deal with the (SSIE) defined by
Fy, C (Eq) o + Fy where E and F' are linear spaces of sequences, and E C s;
and c¢g C F C s3.

In the following we will use the factorable matrix D,¥Dg, with o and
B € w defined by (DaXDg),, = anf for k < n for all n, the other entries
being equal to zero.
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5.1. The mutipliers M ((E,), , F) where E = ¢y, or /,
and F = ¢y, ¢, Or S7
Lemma 6. Let a € UT and let p > 1. Then

(i) the condition a & cs implies

() M () 0) =5

for F = cq, ¢, or sy.
2=1 “k)n

(i) The condition a? ¢ cs where ¢ = p/ (p — 1) implies

0 MBS F)= 5y gy ey Jor F=co.coran
Proof. (i) We have a € M ((s3) , o) if and only if Do¥D, € (co, co).
By the characterization of (cg,co) we have

n
(8) | Zak < K for all n and for some K >0
k=1
and
(9) a € Cp.

But since a ¢ c¢s the condition in (8) implies (9) and we have ov € M ((s) 5 , o)
if and only if (8) holds. This shows the identity in (6) for F' = ¢p. In a similar
way the identity (6) for F' = s; can easily be shown. From the inclusions
M ((sg)A ,co) cM ((sg)A ,c) cCM ((sg)A , 31), we conclude that the iden-
tity in (6) holds for F' = c.

(i) We have a € M ((£5) A ,co) if and only if D,XD, € (f,¢p). By
the characterization of (¢7,cp), (see for instance [16, Theorem 1.37, pp.
160-161]), we have

n
(10) \an]anZ < K for all n and for some K >0
k=1

and (9) holds. But since a? ¢ cs the condition in (10) implies (9) and we
have v € M ((5) 5 , co) if and only if (10) holds. So we have shown that the
identity in (7) holds for F' = ¢p. In a similar way the identity in (7) with
F = 51 can easily be shown. We conclude the proof using the inclusions
M () 0) © M ()5 0) © M (), 51). .

5.2. Some properties of the (SSIE) F, C (Eq)\ + F;

Let E and F be two linear subspaces of w. We define by Z ((E,)  , F') the
set of all x € U such that F, C (E,) + Fy. It can easily be seen that the
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sets (Eq) o and F, are linear spaces of sequences, and we have z € (E,) A +Fy
if and only if there are { € E and f € F such that z, = > ;_; axék + [nZn.
To simplify we will denote by ZE the set Z ((Ey) , F).

In the following we will use the sequence o = (o,,),,, defined for a, b € U™

by
: Zn:
oy = ar.
n bn k
k=1

For any given b € UT we write s} for the set of all sequences z such that
xn > Kby, for all n and for some K > 0. Notice that we have s;Nsp = cl* (b).
First we state the next lemma.

Lemma 7. Leta, b€ UT, and let E and F be two linear subspaces of
s, that satisfy E, F C s; and F D ¢g. Then we have

(i) Assume o € co. Then
a) IE C I3, b) IE C s.

517
(ii) Assume a € co. Then we have 5 C s} for b= e.

Proof. (i) a) Let € ZL. Then we have F}, C (E,)5 + F and since E,
F C s1 we obtain

(B)A + Fr =SDoE + D, F C (XD, + D) s1,
where XD, + D, is a triangle, and

(11) Fy C (s1)p,

with 7' = (2D, + D) ~*. Now the condition in (11) implies T' € (Fj, s1),
but we have, since F' D ¢y

(Fp,81) C (52,31) = (sp,51)

and then T € (sp,s1). Finally we obtain s, C (sq)5 + sz. This shows the
inclusion ZE C UAER

(i) b) As we have just seen x € ZE implies s, C (sq)o + S5 and there
are u € (sq), and v € s, such that b = w+v. Since (sq) = (XDg) s1 and
b € sp, there are two sequences h, k € s such that b, = >"}_; arhi + zpky

and
b—n l—i;ah =k, for all n
T, bn £ kltk | — hn .

Then we have

n

Zakhk

k=1

1
o < Koy, for all n and for some K > 0,
n
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and since o € ¢y, we conclude b/x € s, that is, z € s}.

(i) Let x € ZE. Then from (i) we obtain s; C (s4)A + Sz. So the
sequence & = ((—1)"),, € s can be written as £ = u+v, where u € (s4) 5 and
v € 8z. There are K; and Ko > 0 such that |Ayu| = |uy — up—1] < Kiap,
|Apv| = vy — vp—1| < Ko (2, + 2—1) and

I(A),| =2 = |Apu+ Apv| < Kian + Ko (25, + ©p—1) forall n > 2.

Then we have

1
Tn + Tn—1 2 E (2 - Klan> )

and since a € ¢, there is K3 > 0 such that z,,+x,_1 > K3 for all sufficiently
large n, and it can easily be shown x € s}. We conclude 75 C s}. This
completes the proof. [ |

6. Solvability of sequence spaces equations of the form
(Bu)s + 50 = 5

In this section we solve the (SSE) (E,)5 + s = séc) where E = ¢g, or

P with p > 1. For instance, the (SSE) defined by (sg)A 159 = sl(f) is
equivalent to the statement: y,/b, — 1 (n — o0) if and only if there are
two sequences u, v with y = u+ v such that (Ayu) /a, — 0 and v, /z, — Iy
(n — o0) for all y and for some scalars [; and [s.
6.1. Solvability of the (SSE) (s2), + s\ = s\ and
(o) A + Sg(f) = 51(76) in the general case
For any given a, b € UT we denote by S ((E,), , F) the set of all the

solutions of the (SSE) defined by (E,) A + F» = F}, where E and F are linear
spaces.

Theorem 1. Let a, b€ UT. Then we have:
(i) The set S§ = S ((s9)5,¢) of all the solutions of the (SSE) (s)) \ +
s§f) = séc) is determined in the following way.

a) If a ¢ cs, (that is, >, a = 00), then we have
e o), if o€ sy,
0 g, if o §é S1.
b) If a € cs, then we have
cl® (b) ) /l'f % € Co,
(12) S5 =1qcl(e), if §€c\co,
a, if % ¢ c.
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(1) The set S5 = S ((£a)a ) withp > 1, of all the solutions of the (SSE)
(o)A + sff) = sl()c) 1s determined in the following way.
a) If a? ¢ cs, then

acw), if () e,
SC — aq n aq n
Pole o () ¢m
b) If a? € cs, then Sy = S§ defined by (12).

Proof. (i) a) First consider the case a ¢ c¢s. By Lemma 6 we have
M ((sg)A ,c) =M ((sg)A ,co) and we can apply Lemma 5 where 1/b €
M ((50)A ,c) if and only if o € s7.

(1) b) Case a € cs. We deal with the 3 cases a) 1/b ¢ ¢, ) 1/b € ¢o and
v) 1/b € e\ co.

Case ). We have S§ = @. Indeed, assume there is € S§, then we have
(sg)A C sl(f) and Dy XD, € (co, ¢). From the characterization of (co,c) we
deduce 1/b € ¢, which is a contradiction. We conclude S§ = @.

Case ). Let 1/b € ¢p. Then z € S§ implies

(13) x € sl()c)
and S(C) C (SO) + s(c) Using simil t th in L 7
b a) A . g similar arguments as those in Lemma 7, we

easily see that since b € 5,()6) there are € € ¢y and ¢ € ¢ such that

bn 1 «
a (1 0 Zak5k> = ¢, for all n.

" k=1

We deduce b/x € ¢ since o € ¢p. Using the condition in (13) we conclude
that x € S§ implies sgf) = sl()c). Conversely, assume s;(f) = s,(f). Then we
have

(SS)A + S(mc) = (sg)A + 51(76) = 31()6)

since we have o € s1 and 1/b € ¢. We conclude S§ = ¢l (b).
Case 7). Here we have lim,_, b, = L > 0 and sgc) = ¢ and we are led

to study the (SSE)
(1) (19 + 5 =c.

We have x € S§ implies s ¢ ¢, that is, z,, = [ (n — 00). Then by Lemma 7
(#7) with E = s; and F' = ¢, the condition x € S§ implies « € s{. This means

[ >0 and S§ = cl®(e). This completes the proof.
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(ii) a) Case a? ¢ cs. By Lemma 6 we have M ((¢5) 5 ,c) = M ((¢4 )A ,C0)-
Let a € M ((5) A ,¢). Then we can apply Lemma 5 where 1/b € M ((¢5) A , ¢)
if and only if ((Zk:l ai) /bh )n € 1.

(7i) b) Case a? € cs. As above we deal with the 3 cases o) 1/b ¢ ¢, ()
1/b € ¢ and v) 1/b € c\co. Case a). We have x € S5 implies (£5)5 C sl()c)
and Dy XD, € (¢, c). From the characterization of (¢7, c) we deduce 1/b €
c. We conclude that if 1/b ¢ ¢, then S§ = @. Case ). We have z € S
implies

(15) x € sl()c)
and
(16) s () + 5.

Again using similar arguments that as those in Lemma 7, we easily see that
since b € sl()c) there are A\ € /P and ¢ € ¢ such that

by,
1——2 Ak | = ¢p for all
."L‘n< ag k) 2 or all n.

" k=1
From the characterization of (¢, cg), (cf. [16, Theorem 1.37, pp. 160-161])
we have Dy ;,XD, € ({P,co) since 1/b € ¢p and a? € cs together imply
(b;q (a] +...+ a%)) € s1. We deduce
n

(D1p2Da),, Zak)\k =0 (n—o00),

and b/z € c. Using the condition in (15) we conclude z € Sj implies
s = sl()c). Conversely, assume s = séc). Since 1/b € ¢p and a? € cs
together imply D;,,X>D, € (f*,c), (cf. [16 Theorem 1.37]), we successively
obtain (¢h), C sl()c), () A + s = AN () = sl()c) and z € S;. We
conclude Sp = ¢l (b).

(c)

Case ). Here we have s’ = c and we are led to study the (SSE)
(17) (th)a +58) =c.
We have z € Sy implies s§f) C ¢, that is, x,, = [ (n — 00). Then by Lemma 7
(i1) with E'= (P and F' = ¢, the condition z € S implies x € Z, and = € s7.
This means [ > 0 and Sj = cl®(e). This completes the proof. [ |

From Theorem 1 we immediately obtain the following.
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Corollary 1. Let b € Ut and let S be the set of all positive sequences
x that satify the (SSE) (co)a + s = sl()c). Then the next statements are
equivalent, where,

(i) S# @,
(17) S = el (b),
(ZZZ) 1/b S S(1/n),, -
We also obtain the following corollary, where bv, = ¢ is the set of all
sequences of p-bounded variation.

Corollary 2. Let b € UT and p > 1, and denote by S, the set of all
positive sequences x that satify the (SSE) buv, + S&C) = sl()c). Then the next
statements are equivalent, where,

(1) Sp# 2,

(i) Sp = cl® (b),

(i4i) 1/b € $(1/na), with q=p/(p—1).

6.2. The equation s;‘” = sl(f) and the perturbed equation

(s0)a + st = SZ(JC)

In view of perturbed equations we can state the following. Let b be a
positive sequence. The equation

(18) st = sy
is equivalent to x, /b, — [ (n — oo) for some [ > 0. Then the (SSE)
(19) (sa) A + slo) = sl(f)

can be considered as a perturbed equation of (18), and the question is:
what are the conditions on a for which the perturbed equation and the
(SSE) defined by (18) have the same solutions. As a direct consequence of
Theorem 1 we obtain the next corollary, where ¢s is the complement of cs.

Corollary 3. Let a, b€ UT. Then we have

(7) if 1/b € ¢, then the equations in (18) and (19) are equivalent if and
only if a € es U (€5 N (sp)yy)-

(13) If 1/b ¢ c, the perturbed equation in (19) has no solutions.

Proof. (i) is an immediate consequence of Theorem 1. (ii) Let a ¢ cs.
The condition o € s; should imply 1/b, < K (37_, ax)”" for all n and
for some K > 0 and 1/b € ¢y, which is contradictory. So the perturbed
equation in (19) has no solutions. The case a € cs is a direct consequence
of Theorem 1 (i) b). [
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Remark 1. We may state a similar result for the perturbed equation
/P (c) _ (o
(la)p + 52" =55 -

6.3. Cases when b, or V7 is in 6'\1

Now we state the next elementary results, where 6'\1 is the set of all
positive sequences x that satisfy (z,' Y 1_; o), € Loo, (cf. [1]).

Corollary 4. Let a, b€ UT. Then we have
(i) Let b € C1. Then the set S§ of all positive x € UT such that (52)A +
() _ (o)

sz =8, is determined in the following way.
a) Let a ¢ cs. Then we have

(20) o feew) it apes,
’ 9, Zf a/bg_fSl.

b) Let a € cs. Then we have 55 = cl® ().
(i) Let p > 1 and let b7 € Cy with ¢ =p/(p —1). Then the set Sy, of all
z € UT such that (€5) 5 + sﬁf) = sl()c) is determined in the following way.
a) Let a® ¢ cs. Then Sy = S§ defined by (20).
b) Let a? € cs. Then S; = S§ = cl®(b).

Proof. (i) a) We have o € s; if and only if a € s, (X). But by [1,
Theorem 2.6, p. 1789] we have b € C; if and only if s, (A) = s. This
implies that A € (sp,sp) is bijective and so is for ¥ = A~!. So we have
sp(X) = sp. We have o € sp if and only if a/b € s1, and we conclude by
Theorem 1. This completes the proof of (i) a).

(7) b) comes from that fact that b € C; implies 1/b € ¢, (see [1, Propo-
sition 2.1, p. 1786)).

(74) a) Here we have

q q
(W) € s if and only if a? € sy (),
by, n

and as we have just seen we have sy (X) = spe since b7 € C1. So we obtain
(ii) a). (i) b) we have b? € 6'\1 implies that there are C' > 0 and v > 1 such
that b}, > C~™, for all n, (cf. [1, Proposition 2.1, p. 1786]). So we have
by, > CYa~y"/49 for all n, and 1 /b € ¢p. We conclude by Theorem 1. This
completes the proof. |

Remark 2. Notice that for b € 6'\1 we have S5 # @ if and only if
a€ (csU(esnNsy))NUT.
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Example 1. Consider the (SSE) with operator defined by
¢) _ (o
(21) (s(()n,a))A + s = s,

with 0 < o < 1 and b € C;. We have a/b = (n"%/by),. By [1, Propo-
sition 2.1, p 1786], b € 6’\1 implies that there are K > 0 and v > 1 such
that b, > K~" for all n. This implies a/b € ¢g. We may apply Corollary
4 and conclude that the solutions of the (SSE) in (21) satisfy the condition
Ty ~ Cby, (n — 00) for some C' > 0.

Example 2. Let 07 € a . It can easily be shown that the solutions of

the (SSE) (E?na»A + s;c) = 31()0) are defined by z,, ~ Cb,, (n — o0) for some

C > 0 and for all reals a.

Remark 3. Notice that if a € Cy, the set S5 =5 (s9,¢) is determined
by Corollary 4 (7). Indeed, a € C; implies (SS)A = 5% (cf. [1, Theorem 2.6,
p. 1789]) and we conclude from the solvability of the (SSE) s0 + s = sl(f),
(cf. [11, Theorem 4.4, p. 7]).

Remark 4. If limy, o0 (an—1/a,) < 1, then (¢5) , = ¢4, (cf. [2, Theorem
6.5 p. 3200]). So we have S; = cl®(b) if a/b € s1, and S; = @ if a/b ¢ s1.

7. Applications to particular (SSE) where a and b
are classical sequences

(e) _ (o)

7.1. On the (SSE) (s%)A + 55 = Sif

We obtain the next corollary whose the proof is elementary and is left to
the reader.

Corollary 5. Let R, R > 0, and denote by Sp R the set of all positive

sequences x that satify the (SSE) (s%)A + sﬁf) = s%). Then we obtain
(1) Case R < 1. We have

I°(R), i
SR,R:{C ® Z

9,

= =
NIV

(17) Case R =1. We have
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(7i1) Case R > 1. We have

« _[a®. ¥ m<R,
RBR = g, if R>R.

As a direct consequence of the preceding we can state the next remark.

Remark 5. Let R, R > 0. We have Spr#9ifandonlyif R=1< R,
orl < R<R,or R<1<R. For instance the set of all positive sequences
that satisfy the (SSE) (s%)A + sé") = sgc) is non empty if and only if R < 2.

0 () _ (0

7.2. On the (SSE) (81/r>A + 510 = 5(1 /o)

0 () _ (0

(S(n*a)n)A + 1z = Sl/r

() _ (o
7.2.1. The (SSE) (S?/T)A + 815 = S(1/ney,

Now we consider the next statement: the condition n®y,, — l; (n — 00)
holds if and only if there are two sequences u, v, with y = u + v such that

and

" (up — up—1) = 0 and zpv, — Iy (N — 00)

for some scalars l1, ls and for all y € w. The set of all = that satisfy the
previous statement is equivalent to the (SSE)

0 () _ (o
(22) (Sl/r>A 51/ = S(1/ney,-
We obtain the following.

Corollary 6. Let r > 0 and « be a real and let gna be the set of all
positive sequences x that satisfy the (SSE) defined by (22). Then we obtain

(4) if r < 1, then Sy o = 9.

(i) If r =1, then we have

5. {czc«na)n), if a<-1,

a, if a>—1.

(¢97) If r > 1, then we have

g _1di(n®)y), i a<O,
" g, if a>0.
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Proof. Notice that » < 1 implies a = (r7"),, ¢ cs. So the statement in
(i) comes from the equivalence oy, ~ (1 —7) ' n® " (n — o0) and o ¢ s1,
for r < 1. Let » = 1. Then we have 0, ~ n®T! (n — 00) and o € s; if and
only if & < —1, and we conclude by conclude by Theorem 1. This shows ii).
Finally for » > 1, we have a € cs and 1/b = (n®),, € ¢ if and only if a <0,
and we conclude by Theorem 1. This completes the proof. |

We immediately deduce the next remark.

Remark 6. We have ?T’a # @ ifand only if r =1 < a, or r > 1 and
a < 0. We also have S, # @ if and only if r > 1.

Example 3. Consider the statement: y,/n — l; (n — o) holds if and
only if there are two sequences u, v, with y = u+ v such that u, —u,—1 — 0
and x,v, — lo (n — oo) for some scalars [1, [ and for all y € w. This
statement holds if and only if z € Sy _1, that is, #,,/n — L (n — o) with
L > 0.

@ _ 4@
7.2.2. On the (SSE) (s{y/,q))  +51/, = 51,

As an application of Theorem 1 the following can easily be shown.

Corollary 7. Let r > 0, « be a real and ?aﬂ« be the set of all x € U™
such that (s?l/na))A + Sgc/)x = sg(;)r. The next statements are equivalent.

(Z) gfa,r 75 gf

(i) Sa,r =l ((r™),,),
(i) r<1l<a, ora<landr<]l1.

Proof. This result is a direct consequence of the equivalences

-«

fn:Zk‘_aNn (n — o0) if a # 1; and
k=1

l-«
fn~Ilnn (n —o00) ifa=1.
Then if o # 1, we have (r"nl_"‘)n €l ifand only if r < 1 < a, or «

and r < 1; and if & = 1 we have (r"Inn), € ls if and only if » < 1. This
concludes the proof. |

Example 4. For r = 1/2 we have §a71/2 =cl((27"),,) for all reals o.
0 (0 _ (o
7.3. On the (SSE) <8(1/na)n>A 51/ = S(l/nﬁ)n

Now let S, for all reals o and 3, be the set of all positive sequences
x = (zp),, that satisfy the following statement. For every y the condition
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1Py, — 11 (n — 00) holds if and only if there are two sequences u, v, with
y = u + v such that n® (u, — up—1) — 0 and z,v, — lz (n — o0) for some

scalars {1, lo. This statement leads to the solvability of the (SSE) defined
by (8(()1/n“)n>A + sgc/)x = Séi)/nﬁ)n' We obtain the next result which can be
obtained by similar arguments as those used above.

Corollary 8. Let o, B be reals. Then
(1) if « < 1, then we have

s - Jac(®”),), if B<a-1,
77 g, if B>a—1.

(i) If a =1, then we have

s . d(@”),), i B<o,
R V3 if B>0.

(7i7) If a > 1, then we have

s . Jas((),), i B=o,
A ) if 8>0.

Corollary 9. Sy 3 # @ if and only if B < a—1 <0, or o =1 and
B8<0,ora>1and 5 <0.

Example 5. As a direct consequence of the preceding, notice that the

(SSE) <S(()n_(’) )A + sgc/)x = ¢ is equivalent to x, — L (n — oo) with L > 0,

for all o > 1.

7.4. On the (SSE) (%_a) )A 159, = 58*5)

In the next corollary we deal with the statement for reals o and 8 and
p > 1: the condition n?y, — {1 holds if and only if there are u, v € w with
y = u+ v such that Y 7, (k% Jup, — up—1])’ < oo and zpv, — I (R — 00)
for all y € w, and for some scalars [y, l2. This is equivalent to the (SSE)

© _ .©
(23) (@ e),)  +o3% = Sy

We obtain the next result.

Corollary 10. Let o and B be reals and let Sy be the set of all the
solutions of the (SSE) determined by (23). Then we have
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(1) if ag > 1, then we have

go_ s ((w?),), if B<0,
P e, if B>0.

(i7) If ag < 1, then we have

Sc: {Clc((nﬂ)n)’ Zf Oé—ﬁ Z %’

P z, if a—p< %.
Proof. The proof comes from the fact that

n(ﬁ_a)q+1

if ag # 1; and 0, ~ nP?Inn (n — o0) if g = 1. Then it can easily be seen
that o €  if and only if « — 8> 1/q for ag < 1, or B < 0 for ag > 1. We
conclude by Theorem 1. |

We deal for reals 3 with the statement: n®y, — I; if and only if y = u+wv
with

o 2
3 (W) <oo and znu, =1l (n—o0) forall y
k=1

and for some scalars l1, l2. This statement is equivalent to the (SSE) defined
by (2, )+, = s ) and this (SSE) has solutions if and only if
B < —3/2.

Example 6. Notice that the set of all the solutions of the (SSE) defined
2 (© _ (o - -
by (ﬁ(l/\/ﬁ))A + 52 = S, are determined by lim,, . (,/Inn) > 0.

nn),

2
This result comes from the equivalence > ;_; (1/\/E> ~1Inn (n — o).

8. Solvability of the (SSE) of the form (E,), + s) = s}

In this section we solve the (SSE) (Eq)x + s% = s) where E = ¢, or
l~. For E = ¢, the solvability of the previous (SSE) consists in determining
the set of all positive sequences = (z,,),, that satisfy the next statement.
For every y the condition y,/b, — 0 (n — 00) holds if and only if there
are two sequences u, v, with y = u + v such that (u, — un—1) /a, — [ and
Un /%y — 0 (n — o0) for some scalar [. Here also we may consider the (SSE)
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(sﬁf))A + 80 = 32 as a perturbed equation of the equation s = 52, which

is equivalent to Ky < x,,/b, < Ky for all n and for some Kj, Ko > 0. We
obtain the equivalence of these two equations under some conditions on a

and b.
8.1. Solvability of the (SSE) (E,) + s = s) where E = c,
or /. in the general case
To prove the next result we need a lemma.

Lemma 8. Let b€ UT and let T be a triangle. Then we have
82 C Ts1 if and only if s, C T'sq.
Proof. We have sg C T'sy if and only if
(24) T_lDb € (co, 51) -

Since (¢, s1) = (81, s1) the condition in (24) is equivalent to s, C T's;. This
concludes the proof. |

Theorem 2. The set S% of all the solutions of the (SSE) (Ey) A +82 = )
where E = ¢, or L is determined by

0 {Cloo (b), if o€ co,
Sk = .
oz, if o¢co.

Proof. Let z € S%. Then we have the inclusion (E;), + s2 C s). This
implies (Eq) C sy and Dy ,XD, € (E, o). This implies

Dy XD, € (¢, co)
since £ D ¢ and
(25) on—0 (n— 00).
Now we have s C s and
(26) T € Sp.
Then we consider the (SSIE) defined by

(27) sg C (Eq)p + sg.
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The (SSIE) in (27) with E C s; implies s) C T's; with T' = ¥D, + D,. So
the inclusion in (27) implies
sp C (Sa)a + Sz
by Lemma 8. Since (s,) = Xs, there are h, k € s1 such that

bn, 1 &
- (1 - Zakhk> =k, for all n.

We have

%Zakhk

" k=1

< Ko, for all n and for some K > 0,

and from the condition in (25) we deduce b/z € s;. Using the condition in
(26) we conclude x € S% implies z € cI> (b). Conversely, assume x € cl* (b)
and (25) holds. Since 1/b € ¢o, we have (E,), C s for E = ¢, or sy, we
obtain

(Ea)a + 50 = (Ba)a + 55 = 835
and z € S%. We conclude S% = cl* (b). [

For a = e we easily obtain the next result.

Corollary 11. (i) The set S (Ea,co) of all the solutions of the (SSE)
EA + sg = sg where B = ¢, or £y is determined by

A=) i (/b €
S(Ea,co) = {@ if  (n/bn),, ¢ co.

Example 7. The equation Ean + s0 = S?na)

has solutions if and only if & > 1. So the equation Ea + s = co has no

solution, and the solutions of the equation Ea + s = s?nQ) are determined

by Kin? < x, < Kon? for all n and for some K;, Ky > 0.

where F = ¢, or f,

n

8.2. Applications to the solvability of (SSE) of the form
(Ea)p + 89 = s) for particular sequences a and b

Consider the (SSE) determined by

<zs> (),
(29) (%), +2 = s
(30) <SE:L)*“)7L)A +8Y, = YR



SOLVABILITY OF SEQUENCE SPACES EQUATIONS . .. 129

with reals a and 8 and R, R > 0. We obtain the following.

Proposition 1. (i) The (SSE) defined in (28) has solutions if and only
ifB<a—1<0,ora>1andp <0.

(ii) The (SSE) defined in (29) has solutions if and only if R <1 < R,
orl<R<R.

(7i1) The (SSE) defined in (30) has solutions if and only if R < 1 < a,
orR<a=1,oraand R<1.

(iv) The (SSE) defined in (31) has solutions if and only if R = 1 and
B8<—1,orR>1and 3 <0.

Proof. (i) It can easily be seen that o, ~ n®~*t1/(1 —a) (n — o) for
a<1;0, ~n’Inn (n — o) for a = 1; and o, ~ Kn® (n — o0) for a > 1.
We conclude the (SSE) defined by (28) has solutions if and only if ¢;, = 0(1)
(n — 00), that is, for S <a—1<0,or «>1and 8 <0.

(7) We have

1 n+1
UHNR_lRRn (n = o0) for R > 1,
1

and n
On ~ =7 (n— 00) for R=1;
R

and we conclude as above.

(747) This result is a direct consequence of the following. We have o,, ~
KR" (n — o0) for @« > 1 and for some K > 0; g, ~ R"lnn (n — oo) for
a = 1; and 0, ~ n'7*R"/ (1 —a) (n — o) for a < 1. We conclude by
Theorem 2.

(iv) Here we have o, ~ n%/(R—1) (n — o0) for R > 1; 0, ~ nft!
(n — o0) for R =1; and 0, ~n’R™/(1 — R) (n — o0) for R < 1 and we
conclude by Theorem 2. |

Example 8. The (SSE) (856/)2)A + 5% = 5% has solutions if and only if
R>1.
Example 9. Let 7, 7/ be reals. Then the system of (SSE) defined by

0 _ 0
cA + S, = S(pry o

(sg%)A + 80 = s(()m,)n,

where z is the unknown, has solutions if and only if 7 = 7/ > 1. Then x is
a solution of the system if and only if z, ~ Cn” (n — o) for some C' > 0.
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This is a direct consequence of Proposition 1 (iv) and of the elementary fact
that s(,ry = S(n™") if and only if T = 7/.

Example 10. Let SY be the set of all positive sequences that satisfy

the following statement. For every y the condition y,/n — 0 (n — c0)
holds if and only if there are two sequences u, v, with ¥y = u + v such
that /n (up — tup—1) — L and z,v, — 0 (n — oo0) for some scalar L. By
Proposition 1 (i), we have x € S? if and only if Ki/n < x, < Ky/n for all
n and for some K7, K9 > 0.
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