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SOLVABILITY OF SEQUENCE SPACES EQUATIONS

OF THE FORM (Ea)∆ + Fx = Fb

Abstract. Given any sequence a = (an)n≥1 of positive real num-
bers and any set E of complex sequences, we write Ea for the set
of all sequences y = (yn)n≥1 such that y/a = (yn/an)n≥1 ∈ E;

in particular, s
(c)
a denotes the set of all sequences y such that y/a

converges. For any linear space F of sequences, we have Fx = Fb

if and only if x/b and b/x ∈ M (F, F ). The question is: what
happens when we consider the perturbed equation E + Fx = Fb

where E is a special linear space of sequences? In this paper we
deal with the perturbed sequence spaces equations (SSE), defined

by (Ea)∆ + s
(c)
x = s

(c)
b where E = c0, or `p, (p > 1) and ∆ is the

operator of the first difference defined by ∆ny = yn − yn−1 for
all n ≥ 1 with the convention y0 = 0. For E = c0 the previous
perturbed equation consists in determining the set of all positive
sequences x = (xn)n that satisfy the next statement. The condi-
tion yn/bn → L1 holds if and only if there are two sequences u, v
with y = u+ v such that ∆nu/an → 0 and vn/xn → L2 (n→∞)
for all y and for some scalars L1 and L2. Then we deal with the
resolution of the equation (Ea)∆ + s0

x = s0
b for E = c, or s1, and

give applications to particular classes of (SSE).
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1. Introduction

We write ω for the set of all complex sequences y = (yn)n≥1, `∞, c and c0

for the sets of all bounded, convergent and null sequences, respectively, also
`p = {y ∈ ω :

∑∞
k=1 |yk|

p <∞} for 1 ≤ p < ∞. If y, z ∈ ω, then we write
yz = (ynzn)n≥1. Let U = {y ∈ ω : yn 6= 0} and U+ = {y ∈ ω : yn > 0}.
We write z/u = (zn/un)n≥1 for all z ∈ ω and all u ∈ U , in particular
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1/u = e/u, where e = 1 is the sequence with en = 1 for all n. Finally,
if a ∈ U+ and E is any subset of ω, then we put Ea = (1/a)−1 ∗ E =
{y ∈ ω : y/a ∈ E}. Let E and F be subsets of ω. Then the set M (E,F ) =
{y ∈ ω : yz ∈ F for all z ∈ E} is called the multiplier space of E and F .

In [1], the sets sa, s
0
a and s

(c)
a were defined for positive sequences a by

(1/a)−1 ∗ E and E = `∞, c0, c, respectively. In [3] the sum Ea + Fb and the
product Ea ∗ Fb were defined where E, F are any of the symbols s, s0, or
s(c). Then in [6] the solvability was determined of sequences spaces inclusion
equations Gb ⊂ Ea+Fb where E, F , G ∈

{
s0, s(c), s

}
and some applications

were given to sequence spaces inclusions with operators.
In this paper we deal with the solvability of perturbed equations defined

as follows. Let F be any linear space of sequences, and b be a positive
sequence. It is known that the solutions of the equation Fx = Fb where x
is the unknown, are determined by x ∈ clM(F,F ) (b). Then we consider the
perturbed equation E + Fx = Fb, where E is a particular linear space of
sequences. For example, the solutions of the equation cx = c are determined
by limn→∞ xn = L > 0. Then the perturbed equation defined by ca+cx = c,
has the same solutions if and only if an → 0 as n tends to infinity; then if
an → l > 0 as n tends to infinity the set of all its solutions is equal to c;
finally, if a /∈ c the perturbed equation has no solutions, (cf. [7]). Here we
extend some results given in [12], [6], [4], [5], [11], [7], [9], [10]. In [11] for
given sequences a and b was determined the set of all positive sequences x for
which yn/bn → l if and only if there are sequences u and v for which y = u+v
and un/an → 0, vn/xn → l′ (n→∞) for all y and for some scalars l and l′.

This statement is equivalent to the sequence spaces equation s0
a+s

(c)
x = s

(c)
b .

In [7] we determined the set of all x ∈ U+ such that for every sequence y,
we have yn/bn → l if and only if there are sequences u and v with y = u+ v

and |un/an|1/n → 0 and vn/xn → l′ (n→∞) for some scalars l and l′. This

statement means Γa + s
(c)
x = s

(c)
b , where Γ is the set of all entire sequences.

So we are led to deal with specialsequence spaces equations (SSE), (resp.
sequence spaces inclusion equations (SSIE)), which are determined by an
identity, (resp. inclusion), for which each term is a sum ora sum of products
of sets of the form (Ea)T and

(
Ef(x)

)
T

where f maps U+ to itself, E is
a linear space of sequences, x is the unknown and T is a triangle. It can

be found in [5] a solvability of the (SSE) Ea +
(
s

(c)
x

)
B(r,s)

= s
(c)
x where

E = s, s0, or s(c) and x is the unknown. In [11] we determined the sets of
all positive sequences x that satisfy each of the systems s0

a + (sx)∆ = sb,
sx ⊃ sb and sa + (cx)∆ = cb, cx ⊃ cb. Then a resolution can be found of the
(SSE) with operators defined by (Ea)C(λ)Dτ

+ (cx)C(µ)Dτ
= cb with E = c0,

or `∞. Recently in [8] a study can be found on the (SSE) with operator
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(Ea)C(λ)C(µ) + (Ex)C(λσ)C(µ) = Eb, where b ∈ Ĉ1 and E is any of the sets
`∞, or c0. For E = c0 the resolution of this equation consists in determining
the set of all x ∈ U+ such that for every sequence y the condition yn/bn → 0
(n→∞) holds if and only if there are u, v ∈ ω such that y = u+ v and

1

λnan

n∑
k=1

(
1

µk

k∑
i=1

ui

)
→ 0 and(1)

1

λnσnxn

n∑
k=1

(
1

µk

k∑
i=1

vi

)
→ 0 (n→∞) .

There is also a resolution of the (SSE) (sa)(C(λ)Dτ ) +
(
s0
x

)
(C(µ)Dτ )

= s0
b .

In this paper we deal with some classes of (SSE) with the operators of

the form (Ea)∆ + s
(c)
x = s

(c)
b where E = c0, or `p, (p > 1) and of the form

(Ea)∆ + s0
x = s0

b .
This paper is organized as follows. In Section 2 we recall some definitions

and results on sequence spaces and matrix transformations. In Section 3 we
recall general results on the multiplier M (E,F ) of some sequence spaces. In
Section 4 we recall some results on the solvability of the equation E+Fx = Fb
in the general case. In Section 5 we determine the sets M ((Ea)∆ , F ) and we
deal with the (SSIE) Fb ⊂ (Ea)∆ + Fx. In Section 6 we apply the previous
results to solve the (SSE) (Ea)∆ + cx = cb where E = c0, or `p, (p > 1). In
Section 7 we apply the results of Section 6 to solve special (SSE) of the form
(Ea)∆+cx = cb. Finally in Section 8 we deal with the (SSE) (Ea)∆+s0

x = s0
b

for E = c, or s1.

2. Preliminaries and notations

An FK space is a complete metric space, for which convergence implies
coordinatewise convergence. A BK space is a Banach space of sequences
that is an FK space. A BK space E is said to have AK if for every sequence
y = (yn)n ∈ E, then y = limp→∞

∑p
k=1 yke

(k), where e(k) = (0, ..., 1, ...), 1
being in the k − th position.

For any given infinite matrix A = (ank)n,k we define the operators An =
(ank)k≥1 for any integer n ≥ 1, by Any =

∑∞
k=1 ankyk, where y = (yk)k≥1,

and the series are assumed convergent for all n. So we are led to the study
of the operator A defined by Ay = (Any)n mapping between sequence
spaces. When A maps E into F , where E and F are subsets of ω, we
write A ∈ (E,F ), (cf. [13]). It is well known that if E has AK, then
the set B (E) of all bounded linear operators L mapping in E, with norm
‖L‖ = supy 6=0 (‖L (y)‖E / ‖y‖E) satisfies the identity B (E) = (E,E). We
will use the operator ∆ of the first difference defined by ∆ny = yn − yn−1
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for n ≥ 1 with the convention y0 = 0. It is well known that the oper-
ator Σ defined by Σny =

∑n
k=1 yk for all n, is the inverse of ∆, that is,

∆ (Σy) = Σ (∆y) = y for all y. Let U+ ⊂ ω be the set of all sequences
u = (un)n with un > 0 for all n. Then for any given sequence u = (un)n ∈ ω
we define the infinite diagonal matrix Du by [Du]nn = un for all n. It is
interesting to rewrite the set Eu using a diagonal matrix. Let E be any
subset of ω and u ∈ U+ we have

Eu = DuE = {y = (yn)n≥1 ∈ ω : y/u ∈ E} .

We will use the sets s0
a, s

(c)
a , sa and `pa defined as follows (cf. [1]). For given

a ∈ U+ and p ≥ 1 we put Dac0 = s0
a, Dac = s

(c)
a , Da`∞ = sa, and Da`p = `pa.

Each of the spaces DaE, where E ∈ {c0, c, `∞, `
p} with p > 1, is a BK space,

and we have ‖y‖sa = supn≥1 (|yn| /an), and ‖y‖`pa = (
∑∞

k=1 (|yk| /ak)p)1/p.

Then and s0
a and `pa have AK. If a = (rn)n with r > 0, we write sr, s

0
r and

s
(c)
r for the sets sa, s

0
a and s

(c)
a respectively. When r = 1, we obtain s1 = `∞,

s0
1 = c0 and s

(c)
1 = c. Recall that S1 = (s1, s1) is a Banach algebra and

(c0, s1) = (c, `∞) = (s1, s1) = S1. We have A ∈ S1 if and only if

(2) sup
n

( ∞∑
k=1

|ank|

)
<∞.

We will also use the well-known characterizations of (c0, c0) and (c0, c). We
have A ∈ (c0, c0) if and only if (2) holds and limn→∞ ank = 0 for all k; and we
have A ∈ (c0, c) if and only if (2) holds and limn→∞ ank = lk for some scalar
lk and for all k. For any subset F of ω, we write FA = {y ∈ ω : Ay ∈ F}.
Let cs = cΣ denote the set of all convergent series. For any subset E of ω we
write AE = {y ∈ ω : y = Ax for some x ∈ ω}. We will use the well-known
property, stated as follows. For any given triangles T and T ′, we have
T ′ ∈ (ET , F ) if and only if T ′T−1 ∈ (E,F ) for any subsets E, F ⊂ ω. It is
also well known that A ∈ (E,FT ) if and only if TA ∈ (E,F ).

3. The multipliers of some sets and matrix
transformations

3.1. The multipliers of classical sets

First we need to recall some well known results. Let y and z be sequences
and let E and F be two subsets of ω, we then write yz = (ynzn)n≥1 and

M (E,F ) = {y ∈ ω : yz ∈ F for all z ∈ E} ,

M (E,F ) is called the multiplier space of E and F . In the following we will
use the next elementary results.
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Lemma 1. Let E, Ẽ, F and F̃ be arbitrary subsets of ω. Then

(i) M (E,F ) ⊂M
(
Ẽ, F

)
for all Ẽ ⊂ E,

(ii) M (E,F ) ⊂M
(
E, F̃

)
for all F ⊂ F̃ .

Lemma 2. Let a, b ∈ U+ and let E and F be two subsets of ω. Then
DaE ⊂ DbF if and only if a/b ∈M (E,F ).

Lemma 3. Let a, b ∈ U+ and let E, F ⊂ ω. Then A ∈ (DaE,DbF ) if
and only if D1/bADa ∈ (E,F ).

By [14, Lemma 3.1, p. 648] and [16, Example 1.28, p. 157], we obtain
the next result.

Lemma 4. We have
(i) M (c, c0) = M (`∞, c) = M (`∞, c0) = c0 and M (c, c) = c;
(ii) M (χ, `∞) = M (c0, χ

′) = `∞ for χ, χ′ = c0, c, or `∞ .

4. On the (SSE) E + Fx = Fb

In this section we apply the previous results to the solvability of the (SSE)
E + Fx = Fb with 1 ∈ F.

4.1. Regular sequence spaces equations

For b ∈ U+ and for any subset F of ω, we denote by clF (b) the equivalent
class for the equivalence relation RF defined by

xRF y if DxF = DyF for x, y ∈ U+.

It can easily be seen that clF (b) is the set of all x ∈ U+ such that x/b ∈
M (F, F ) and b/x ∈M (F, F ), (cf. [11]). We then have clF (b) = clM(F,F ) (b).
For instance clc (b) is the set of all x ∈ U+ such that Dxc = Dbc, that is,

s
(c)
x = s

(c)
b . This is the set of all sequences x ∈ U+ such that xn ∼ Cbn

(n→∞) for some C > 0. In [11] we denote by cl∞ (b) the class cl`∞ (b).
Recall that cl∞ (b) is the set of all x ∈ U+ such that K1 ≤ xn/bn ≤ K2 for
all n and for some K1, K2 > 0.

Let X and Y be two linear spaces of sequences. Then the sum of X and
Y defined by Z = X + Y = {x+ y : x ∈ X and y ∈ Y }, is a linear space of
sequences. Let b be a positive sequence and F be a linear subspace of ω.
As we have seen above the solutions of the equation Fx = Fb are defined by
x ∈ clF (b). Then the question is: what are the solutions of the perturbed
equation E + Fx = Fb, where E is a linear space of sequences? In this way
we are led to consider the set S (E,F ) = {x ∈ U+ : E + Fx = Fb}, where
b ∈ U+, and E is a linear subspace of ω.
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Definition 1. We say that S (E,F ), (or the equation E + Fx = Fb), is
regular if

S (E,F ) =

{
clM(F,F ) (b) , if 1/b ∈M (E,F ) ,

∅, if 1/b /∈M (E,F ) .

Note that E + Fx = Fb is not regular in general. Indeed for E = F =
`∞ we have M (`∞, `∞) = `∞ and if 1/b ∈ `∞�c0 and sa = s1 we have
S (`∞, `∞) = sb ∩ U+ 6= cl∞ (b), (cf. [12, Theorem 11, pp. 916-917]).
In particular the solutions of the (SSE) `∞ + sx = `∞ are determined by
0 < xn ≤ M for all n and for some M > 0. It is interesting to notice that
by [7, Theorem 5.2, p. 108], the (SSE) c + cx = cb is not regular, since
1/b ∈ c�c0 implies S (c, c) = cb.

In the following we will use the condition

(3) χ ⊂ χ (Dα) for all α ∈ c (1) ,

where χ ⊂ ω is any linear space, and c (1) is the set of all sequences that
tend to 1. It can easily seen that this condition is true for any of the spaces
F = c, s1. To state the next results we also need the next conditions:

(4) 1 ∈ F,

(5) F ⊂M (F, F ) .

We then recall the next result which is a direct consequence of [7, Theo-
rem 5.1, pp. 106-107].

Lemma 5. Let b ∈ U+ and let E, F be two linear subspaces of ω. We
assume F satisfies the conditions in (3), (4), (5), and that M (E,F ) ⊂
M (E, c0). Then the set S (E,F ) is regular.

5. Some results on the mutiplier M ((Ea)∆ , F ) and
on the (SSIE) Fb ⊂ (Ea)∆ + Fx

In this section we explicitly calculate the multiplier M ((Ea)∆ , F ) where
E = c0, or `p and F = c0, c, or s1. Then we deal with the (SSIE) defined by
Fb ⊂ (Ea)∆ +Fx where E and F are linear spaces of sequences, and E ⊂ s1

and c0 ⊂ F ⊂ s1.
In the following we will use the factorable matrix DαΣDβ, with α and

β ∈ ω defined by (DαΣDβ)nk = αnβk for k ≤ n for all n, the other entries
being equal to zero.



Solvability of sequence spaces equations . . . 115

5.1. The mutipliers M ((Ea)∆ , F ) where E = c0, or `p
and F = c0, c, or s1

Lemma 6. Let a ∈ U+ and let p > 1. Then
(i) the condition a /∈ cs implies

(6) M
((
s0
a

)
∆
, F
)

= s(
1∑n

k=1
ak

)
n

for F = c0, c, or s1.

(ii) The condition aq /∈ cs where q = p/ (p− 1) implies

(7) M ((`pa)∆ , F ) = s(
(
∑n
k=1 a

q
k)
−1/q

)
n

for F = c0, c, or s1.

Proof. (i) We have α ∈ M
((
s0
a

)
∆
, c0

)
if and only if DαΣDa ∈ (c0, c0).

By the characterization of (c0, c0) we have

(8) |αn|
n∑
k=1

ak ≤ K for all n and for some K > 0

and

(9) α ∈ c0.

But since a /∈ cs the condition in (8) implies (9) and we have α ∈M
((
s0
a

)
∆
, c0

)
if and only if (8) holds. This shows the identity in (6) for F = c0. In a similar
way the identity (6) for F = s1 can easily be shown. From the inclusions
M
((
s0
a

)
∆
, c0

)
⊂M

((
s0
a

)
∆
, c
)
⊂M

((
s0
a

)
∆
, s1

)
, we conclude that the iden-

tity in (6) holds for F = c.
(ii) We have α ∈ M ((`pa)∆ , c0) if and only if DαΣDa ∈ (`p, c0). By

the characterization of (`p, c0), (see for instance [16, Theorem 1.37, pp.
160-161]), we have

(10) |αn|q
n∑
k=1

aqk ≤ K for all n and for some K > 0

and (9) holds. But since aq /∈ cs the condition in (10) implies (9) and we
have α ∈M ((`pa)∆ , c0) if and only if (10) holds. So we have shown that the
identity in (7) holds for F = c0. In a similar way the identity in (7) with
F = s1 can easily be shown. We conclude the proof using the inclusions
M ((`pa)∆ , c0) ⊂M ((`pa)∆ , c) ⊂M ((`pa)∆ , s1). �

5.2. Some properties of the (SSIE) Fb ⊂ (Ea)∆ + Fx

Let E and F be two linear subspaces of ω. We define by I ((Ea)∆ , F ) the
set of all x ∈ U+ such that Fb ⊂ (Ea)∆ + Fx. It can easily be seen that the



116 Bruno de Malafosse

sets (Ea)∆ and Fx are linear spaces of sequences, and we have z ∈ (Ea)∆+Fx
if and only if there are ξ ∈ E and f ∈ F such that zn =

∑n
k=1 akξk + fnxn.

To simplify we will denote by IFE the set I ((Ea)∆ , F ).
In the following we will use the sequence σ = (σn)n, defined for a, b ∈ U+

by

σn =
1

bn

n∑
k=1

ak.

For any given b ∈ U+ we write s•b for the set of all sequences x such that
xn ≥ Kbn for all n and for someK > 0. Notice that we have sb∩s•b = cl∞ (b).
First we state the next lemma.

Lemma 7. Let a, b ∈ U+, and let E and F be two linear subspaces of
s, that satisfy E, F ⊂ s1 and F ⊃ c0. Then we have

(i) Assume σ ∈ c0. Then
a) IFE ⊂ Is1s1 , b) IFE ⊂ s•b .

(ii) Assume a ∈ c0. Then we have IFE ⊂ s•1 for b = e.

Proof. (i) a) Let x ∈ IFE . Then we have Fb ⊂ (Ea)∆ + Fx and since E,
F ⊂ s1 we obtain

(Ea)∆ + Fx = ΣDaE +DxF ⊂ (ΣDa +Dx) s1,

where ΣDa +Dx is a triangle, and

(11) Fb ⊂ (s1)T ,

with T = (ΣDa +Dx)−1. Now the condition in (11) implies T ∈ (Fb, s1),
but we have, since F ⊃ c0

(Fb, s1) ⊂
(
s0
b , s1

)
= (sb, s1)

and then T ∈ (sb, s1). Finally we obtain sb ⊂ (sa)∆ + sx. This shows the
inclusion IFE ⊂ Is1s1 .

(i) b) As we have just seen x ∈ IFE implies sb ⊂ (sa)∆ + sx and there
are u ∈ (sa)∆ and v ∈ sx such that b = u+ v. Since (sa)∆ = (ΣDa) s1 and
b ∈ sb, there are two sequences h, k ∈ s1 such that bn =

∑n
k=1 akhk + xnkn

and
bn
xn

(
1− 1

bn

n∑
k=1

akhk

)
= kn for all n.

Then we have

1

bn

∣∣∣∣∣
n∑
k=1

akhk

∣∣∣∣∣ ≤ Kσn for all n and for some K > 0,
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and since σ ∈ c0, we conclude b/x ∈ s1, that is, x ∈ s•b .
(ii) Let x ∈ IFE . Then from (i) we obtain s1 ⊂ (sa)∆ + sx. So the

sequence ξ = ((−1)n)n ∈ s1 can be written as ξ = u+v, where u ∈ (sa)∆ and
v ∈ sx. There are K1 and K2 > 0 such that |∆nu| = |un − un−1| ≤ K1an,
|∆nv| = |vn − vn−1| ≤ K2 (xn + xn−1) and

|(∆ξ)n| = 2 = |∆nu+ ∆nv| ≤ K1an +K2 (xn + xn−1) for all n ≥ 2.

Then we have

xn + xn−1 ≥
1

K2
(2−K1an) ,

and since a ∈ c0, there is K3 > 0 such that xn+xn−1 ≥ K3 for all sufficiently
large n, and it can easily be shown x ∈ s•1. We conclude IFE ⊂ s•1. This
completes the proof. �

6. Solvability of sequence spaces equations of the form

(Ea)∆ + s
(c)
x = s

(c)
b

In this section we solve the (SSE) (Ea)∆ + s
(c)
x = s

(c)
b where E = c0, or

`p with p > 1. For instance, the (SSE) defined by
(
s0
a

)
∆

+ s
(c)
x = s

(c)
b is

equivalent to the statement: yn/bn → l1 (n→∞) if and only if there are
two sequences u, v with y = u+ v such that (∆nu) /an → 0 and vn/xn → l2
(n→∞) for all y and for some scalars l1 and l2.

6.1. Solvability of the (SSE)
(
s0
a

)
∆

+ s
(c)
x = s

(c)
b and

(`pa)∆ + s
(c)
x = s

(c)
b in the general case

For any given a, b ∈ U+ we denote by S ((Ea)∆ , F ) the set of all the
solutions of the (SSE) defined by (Ea)∆ +Fx = Fb where E and F are linear
spaces.

Theorem 1. Let a, b ∈ U+. Then we have:
(i) The set Sc0 = S

((
s0
a

)
∆
, c
)

of all the solutions of the (SSE)
(
s0
a

)
∆

+

s
(c)
x = s

(c)
b is determined in the following way.

a) If a /∈ cs, (that is,
∑

k ak =∞), then we have

Sc0 =

{
clc (b) , if σ ∈ s1,

∅, if σ /∈ s1.

b) If a ∈ cs, then we have

(12) Sc0 =


clc (b) , if 1

b ∈ c0,

clc (e) , if 1
b ∈ c�c0,

∅, if 1
b /∈ c.
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(ii) The set Scp = S ((`pa)∆ , c) with p > 1, of all the solutions of the (SSE)

(`pa)∆ + s
(c)
x = s

(c)
b is determined in the following way.

a) If aq /∈ cs, then

Scp =

cl
c (b) , if

(
aq1+...+aqn

bqn

)
n
∈ s1,

∅, if
(
aq1+...+aqn

bqn

)
n
/∈ s1.

b) If aq ∈ cs, then Scp = Sc0 defined by (12).

Proof. (i) a) First consider the case a /∈ cs. By Lemma 6 we have
M
((
s0
a

)
∆
, c
)

= M
((
s0
a

)
∆
, c0

)
and we can apply Lemma 5 where 1/b ∈

M
((
s0
a

)
∆
, c
)

if and only if σ ∈ s1.

(i) b) Case a ∈ cs. We deal with the 3 cases α) 1/b /∈ c, β) 1/b ∈ c0 and
γ) 1/b ∈ c�c0.

Case α). We have Sc0 = ∅. Indeed, assume there is x ∈ Sc0, then we have(
s0
a

)
∆
⊂ s(c)

b and D1/bΣDa ∈ (c0, c). From the characterization of (c0, c) we
deduce 1/b ∈ c, which is a contradiction. We conclude Sc0 = ∅.

Case β). Let 1/b ∈ c0. Then x ∈ Sc0 implies

(13) x ∈ s(c)
b

and s
(c)
b ⊂

(
s0
a

)
∆

+ s
(c)
x . Using similar arguments as those in Lemma 7, we

easily see that since b ∈ s(c)
b there are ε ∈ c0 and ϕ ∈ c such that

bn
xn

(
1− 1

bn

n∑
k=1

akεk

)
= ϕn for all n.

We deduce b/x ∈ c since σ ∈ c0. Using the condition in (13) we conclude

that x ∈ Sc0 implies s
(c)
x = s

(c)
b . Conversely, assume s

(c)
x = s

(c)
b . Then we

have (
s0
a

)
∆

+ s(c)
x =

(
s0
a

)
∆

+ s
(c)
b = s

(c)
b

since we have σ ∈ s1 and 1/b ∈ c. We conclude Sc0 = clc (b).

Case γ). Here we have limn→∞ bn = L > 0 and s
(c)
b = c and we are led

to study the (SSE)

(14)
(
s0
a

)
∆

+ s(c)
x = c.

We have x ∈ Sc0 implies s
(c)
x ⊂ c, that is, xn → l (n→∞). Then by Lemma 7

(ii) with E = s1 and F = c, the condition x ∈ Sc0 implies x ∈ s•1. This means
l > 0 and Sc0 = clc (e). This completes the proof.
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(ii) a) Case aq /∈ cs. By Lemma 6 we have M ((`pa)∆ , c) = M ((`pa)∆ , c0).
Let α ∈M ((`pa)∆ , c). Then we can apply Lemma 5 where 1/b ∈M ((`pa)∆ , c)
if and only if

((∑n
k=1 a

q
k

)
/bqn
)
n
∈ s1.

(ii) b) Case aq ∈ cs. As above we deal with the 3 cases α) 1/b /∈ c, β)

1/b ∈ c0 and γ) 1/b ∈ c�c0. Case α). We have x ∈ Scp implies (`pa)∆ ⊂ s
(c)
b

and D1/bΣDa ∈ (`p, c). From the characterization of (`p, c) we deduce 1/b ∈
c. We conclude that if 1/b /∈ c, then Scp = ∅. Case β). We have x ∈ Scp
implies

(15) x ∈ s(c)
b

and

(16) s
(c)
b ⊂ (`pa)∆ + s(c)

x .

Again using similar arguments that as those in Lemma 7, we easily see that

since b ∈ s(c)
b there are λ ∈ `p and ϕ ∈ c such that

bn
xn

(
1− 1

bn

n∑
k=1

akλk

)
= ϕn for all n.

From the characterization of (`p, c0), (cf. [16, Theorem 1.37, pp. 160-161])
we have D1/bΣDa ∈ (`p, c0) since 1/b ∈ c0 and aq ∈ cs together imply(
b−qn (aq1 + . . .+ aqn)

)
n
∈ s1. We deduce

(
D1/bΣDa

)
n
λ =

1

bn

n∑
k=1

akλk → 0 (n→∞) ,

and b/x ∈ c. Using the condition in (15) we conclude x ∈ Scp implies

s
(c)
x = s

(c)
b . Conversely, assume s

(c)
x = s

(c)
b . Since 1/b ∈ c0 and aq ∈ cs

together imply D1/bΣDa ∈ (`p, c), (cf. [16, Theorem 1.37]), we successively

obtain (`pa)∆ ⊂ s
(c)
b , (`pa)∆ + s

(c)
x = (`pa)∆ + s

(c)
b = s

(c)
b and x ∈ Scp. We

conclude Scp = clc (b).

Case γ). Here we have s
(c)
b = c and we are led to study the (SSE)

(17) (`pa)∆ + s(c)
x = c.

We have x ∈ Scp implies s
(c)
x ⊂ c, that is, xn → l (n→∞). Then by Lemma 7

(ii) with E = `p and F = c, the condition x ∈ Scp implies x ∈ Ic`p and x ∈ s•1.
This means l > 0 and Scp = clc (e). This completes the proof. �

From Theorem 1 we immediately obtain the following.
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Corollary 1. Let b ∈ U+ and let S be the set of all positive sequences

x that satify the (SSE) (c0)∆ + s
(c)
x = s

(c)
b . Then the next statements are

equivalent, where,
(i) S6= ∅,
(ii) S = clc (b),
(iii) 1/b ∈ s(1/n)n

.

We also obtain the following corollary, where bvp = `p∆ is the set of all
sequences of p-bounded variation.

Corollary 2. Let b ∈ U+ and p > 1, and denote by Sp the set of all

positive sequences x that satify the (SSE) bvp + s
(c)
x = s

(c)
b . Then the next

statements are equivalent, where,
(i) Sp 6= ∅,
(ii) Sp = clc (b),
(iii) 1/b ∈ s(1/nq)n

with q = p/ (p− 1).

6.2. The equation s
(c)
x = s

(c)
b and the perturbed equation(

s0
a

)
∆

+ s
(c)
x = s

(c)
b

In view of perturbed equations we can state the following. Let b be a
positive sequence. The equation

(18) s(c)
x = s

(c)
b

is equivalent to xn/bn → l (n→∞) for some l > 0. Then the (SSE)

(19)
(
s0
a

)
∆

+ s(c)
x = s

(c)
b

can be considered as a perturbed equation of (18), and the question is:
what are the conditions on a for which the perturbed equation and the
(SSE) defined by (18) have the same solutions. As a direct consequence of
Theorem 1 we obtain the next corollary, where cs is the complement of cs.

Corollary 3. Let a, b ∈ U+. Then we have
(i) if 1/b ∈ c, then the equations in (18) and (19) are equivalent if and

only if a ∈ cs ∪ (cs ∩ (sb)Σ).
(ii) If 1/b /∈ c, the perturbed equation in (19) has no solutions.

Proof. (i) is an immediate consequence of Theorem 1. (ii) Let a /∈ cs.
The condition σ ∈ s1 should imply 1/bn ≤ K (

∑n
k=1 ak)

−1 for all n and
for some K > 0 and 1/b ∈ c0, which is contradictory. So the perturbed
equation in (19) has no solutions. The case a ∈ cs is a direct consequence
of Theorem 1 (i) b). �
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Remark 1. We may state a similar result for the perturbed equation

(`pa)∆ + s
(c)
x = s

(c)
b .

6.3. Cases when b, or bq is in Ĉ1.

Now we state the next elementary results, where Ĉ1 is the set of all
positive sequences x that satisfy

(
x−1
n

∑n
k=1 xk

)
n
∈ `∞, (cf. [1]).

Corollary 4. Let a, b ∈ U+. Then we have
(i) Let b ∈ Ĉ1. Then the set Sc0 of all positive x ∈ U+ such that

(
s0
a

)
∆

+

s
(c)
x = s

(c)
b is determined in the following way.

a) Let a /∈ cs. Then we have

(20) Sc0 =

{
clc (b) , if a/b ∈ s1,

∅, if a/b /∈ s1.

b) Let a ∈ cs. Then we have Sc0 = clc (b).

(ii) Let p > 1 and let bq ∈ Ĉ1 with q = p/ (p− 1). Then the set Scp of all

x ∈ U+ such that (`pa)∆ + s
(c)
x = s

(c)
b is determined in the following way.

a) Let aq /∈ cs. Then Scp = Sc0 defined by (20).
b) Let aq ∈ cs. Then Scp = Sc0 = clc (b).

Proof. (i) a) We have σ ∈ s1 if and only if a ∈ sb (Σ). But by [1,

Theorem 2.6, p. 1789] we have b ∈ Ĉ1 if and only if sb (∆) = sb. This
implies that ∆ ∈ (sb, sb) is bijective and so is for Σ = ∆−1. So we have
sb (Σ) = sb. We have σ ∈ s1 if and only if a/b ∈ s1, and we conclude by
Theorem 1. This completes the proof of (i) a).

(i) b) comes from that fact that b ∈ Ĉ1 implies 1/b ∈ c0, (see [1, Propo-
sition 2.1, p. 1786]).

(ii) a) Here we have(
aq1 + ...+ aqn

bqn

)
n

∈ s1 if and only if aq ∈ sbq (Σ) ,

and as we have just seen we have sbq (Σ) = sbq since bq ∈ Ĉ1. So we obtain

(ii) a). (ii) b) we have bq ∈ Ĉ1 implies that there are C > 0 and γ > 1 such
that bqn ≥ Cγn, for all n, (cf. [1, Proposition 2.1, p. 1786]). So we have
bn ≥ C1/qγn/q for all n, and 1/b ∈ c0. We conclude by Theorem 1. This
completes the proof. �

Remark 2. Notice that for b ∈ Ĉ1 we have Sc0 6= ∅ if and only if
a ∈ (cs ∪ (cs ∩ sb)) ∩ U+.
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Example 1. Consider the (SSE) with operator defined by

(21)
(
s0

(n−α)

)
∆

+ s(c)
x = s

(c)
b ,

with 0 < α ≤ 1 and b ∈ Ĉ1. We have a/b = (n−α/bn)n. By [1, Propo-

sition 2.1, p 1786], b ∈ Ĉ1 implies that there are K > 0 and γ > 1 such
that bn ≥ Kγn for all n. This implies a/b ∈ c0. We may apply Corollary
4 and conclude that the solutions of the (SSE) in (21) satisfy the condition
xn ∼ Cbn (n→∞) for some C > 0.

Example 2. Let bq ∈ Ĉ1. It can easily be shown that the solutions of

the (SSE)
(
`p(nα)

)
∆

+ s
(c)
x = s

(c)
b are defined by xn ∼ Cbn (n→∞) for some

C > 0 and for all reals α.

Remark 3. Notice that if a ∈ Ĉ1, the set Sc0 = S
(
s0
a, c
)

is determined

by Corollary 4 (i). Indeed, a ∈ Ĉ1 implies
(
s0
a

)
∆

= s0
a, (cf. [1, Theorem 2.6,

p. 1789]) and we conclude from the solvability of the (SSE) s0
a + s

(c)
x = s

(c)
b ,

(cf. [11, Theorem 4.4, p. 7]).

Remark 4. If limn→∞ (an−1/an) < 1, then (`pa)∆ = `pa, (cf. [2, Theorem
6.5 p. 3200]). So we have Scp = clc (b) if a/b ∈ s1, and Scp = ∅ if a/b /∈ s1.

7. Applications to particular (SSE) where a and b
are classical sequences

7.1. On the (SSE)
(
s0
R

)
∆

+ s
(c)
x = s

(c)

R

We obtain the next corollary whose the proof is elementary and is left to
the reader.

Corollary 5. Let R, R > 0, and denote by SR,R the set of all positive

sequences x that satify the (SSE)
(
s0
R

)
∆

+ s
(c)
x = s

(c)

R
. Then we obtain

(i) Case R < 1. We have

SR,R =

{
clc
(
R
)
, if R ≥ 1,

∅, if R < 1.

(ii) Case R = 1. We have

SR,R =

{
clc
(
R
)
, if R > 1,

∅, if R ≤ 1.
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(iii) Case R > 1. We have

SR,R =

{
clc
(
R
)
, if R ≤ R,

∅, if R > R.

As a direct consequence of the preceding we can state the next remark.

Remark 5. Let R, R > 0. We have SR,R 6= ∅ if and only if R = 1 < R,

or 1 < R ≤ R, or R < 1 ≤ R. For instance the set of all positive sequences

that satisfy the (SSE)
(
s0
R

)
∆

+ s
(c)
x = s

(c)
2 is non empty if and only if R ≤ 2.

7.2. On the (SSE)
(
s0

1/r

)
∆

+ s
(c)
1/x = s

(c)
(1/nα)n

and(
s0

(n−α)n

)
∆

+ s
(c)
1/x = s

(c)
1/r

7.2.1. The (SSE)
(
s0

1/r

)
∆

+ s
(c)
1/x = s

(c)
(1/nα)n

Now we consider the next statement: the condition nαyn → l1 (n→∞)
holds if and only if there are two sequences u, v, with y = u+ v such that

rn (un − un−1)→ 0 and xnvn → l2 (n→∞)

for some scalars l1, l2 and for all y ∈ ω. The set of all x that satisfy the
previous statement is equivalent to the (SSE)

(22)
(
s0

1/r

)
∆

+ s
(c)
1/x = s

(c)
(1/nα)n

.

We obtain the following.

Corollary 6. Let r > 0 and α be a real and let Sr,α be the set of all
positive sequences x that satisfy the (SSE) defined by (22). Then we obtain

(i) if r < 1, then Sr,α = ∅.
(ii) If r = 1, then we have

Sr,α =

{
clc ((nα)n) , if α ≤ −1,

∅, if α > −1.

(iii) If r > 1, then we have

Sr,α =

{
clc ((nα)n) , if α ≤ 0,

∅, if α > 0.
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Proof. Notice that r < 1 implies a = (r−n)n /∈ cs. So the statement in
(i) comes from the equivalence σn ∼ (1− r)−1 nαr−n (n→∞) and σ /∈ s1,
for r < 1. Let r = 1. Then we have σn ∼ nα+1 (n→∞) and σ ∈ s1 if and
only if α ≤ −1, and we conclude by conclude by Theorem 1. This shows ii).
Finally for r > 1, we have a ∈ cs and 1/b = (nα)n ∈ c if and only if α ≤ 0,
and we conclude by Theorem 1. This completes the proof. �

We immediately deduce the next remark.

Remark 6. We have Sr,α 6= ∅ if and only if r = 1 ≤ α, or r > 1 and
α ≤ 0. We also have Sr,0 6= ∅ if and only if r > 1.

Example 3. Consider the statement: yn/n → l1 (n→∞) holds if and
only if there are two sequences u, v, with y = u+v such that un−un−1 → 0
and xnvn → l2 (n→∞) for some scalars l1, l2 and for all y ∈ ω. This
statement holds if and only if x ∈ S1,−1, that is, xn/n → L (n→∞) with
L > 0.

7.2.2. On the (SSE)
(
s0

(1/nα)

)
∆

+ s
(c)
1/x = s

(c)
1/r

As an application of Theorem 1 the following can easily be shown.

Corollary 7. Let r > 0, α be a real and Sα,r be the set of all x ∈ U+

such that
(
s0

(1/nα)

)
∆

+ s
(c)
1/x = s

(c)
1/r. The next statements are equivalent.

(i) Sα,r 6= ∅,

(ii) Sα,r = clc ((rn)n),
(iii) r ≤ 1 < α, or α ≤ 1 and r < 1.

Proof. This result is a direct consequence of the equivalences

∫n =
n∑
k=1

k−α ∼
n1−α

1− α
(n→∞) if α 6= 1; and

∫n ∼ lnn (n→∞) if α = 1.

Then if α 6= 1, we have
(
rnn1−α)

n
∈ `∞ if and only if r ≤ 1 < α, or α

and r < 1; and if α = 1 we have (rn lnn)n ∈ `∞ if and only if r < 1. This
concludes the proof. �

Example 4. For r = 1/2 we have Sα,1/2 = clc ((2−n)n) for all reals α.

7.3. On the (SSE)
(
s0

(1/nα)n

)
∆

+ s
(c)
1/x = s

(c)

(1/nβ)
n

Now let Sα,β for all reals α and β, be the set of all positive sequences
x = (xn)n that satisfy the following statement. For every y the condition
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nβyn → l1 (n→∞) holds if and only if there are two sequences u, v, with
y = u + v such that nα (un − un−1) → 0 and xnvn → l2 (n→∞) for some
scalars l1, l2. This statement leads to the solvability of the (SSE) defined

by
(
s0

(1/nα)n

)
∆

+ s
(c)
1/x = s

(c)

(1/nβ)
n

. We obtain the next result which can be

obtained by similar arguments as those used above.

Corollary 8. Let α, β be reals. Then
(i) if α < 1, then we have

Sα,β =

{
clc
((
nβ
)
n

)
, if β ≤ α− 1,

∅, if β > α− 1.

(ii) If α = 1, then we have

Sα,β =

{
clc
((
nβ
)
n

)
, if β < 0,

∅, if β ≥ 0.

(iii) If α > 1, then we have

Sα,β =

{
clc
((
nβ
)
n

)
, if β ≤ 0,

∅, if β > 0.

Corollary 9. Sα,β 6= ∅ if and only if β ≤ α − 1 < 0, or α = 1 and
β < 0, or α > 1 and β ≤ 0.

Example 5. As a direct consequence of the preceding, notice that the

(SSE)
(
s0

(n−α)n

)
∆

+ s
(c)
1/x = c is equivalent to xn → L (n→∞) with L > 0,

for all α > 1.

7.4. On the (SSE)
(
`p
(n−α)n

)
∆

+ s
(c)
1/x = s

(c)

(n−β)
n

In the next corollary we deal with the statement for reals α and β and
p > 1: the condition nβyn → l1 holds if and only if there are u, v ∈ ω with
y = u + v such that

∑∞
k=1 (kα |uk − uk−1|)p < ∞ and xnvn → l1 (n→∞)

for all y ∈ ω, and for some scalars l1, l2. This is equivalent to the (SSE)

(23)
(
`p
(n−α)n

)
∆

+ s
(c)
1/x = s

(c)

(n−β)
n

.

We obtain the next result.

Corollary 10. Let α and β be reals and let Scp be the set of all the
solutions of the (SSE) determined by (23). Then we have
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(i) if αq ≥ 1, then we have

Scp =

{
clc
((
nβ
)
n

)
, if β < 0,

∅, if β ≥ 0.

(ii) If αq < 1, then we have

Scp =

{
clc
((
nβ
)
n

)
, if α− β ≥ 1

q ,

∅, if α− β < 1
q .

Proof. The proof comes from the fact that

σn ∼
n(β−α)q+1

1− αq
(n→∞)

if αq 6= 1; and σn ∼ nβq lnn (n→∞) if αq = 1. Then it can easily be seen
that σ ∈ `∞ if and only if α− β ≥ 1/q for αq < 1, or β < 0 for αq ≥ 1. We
conclude by Theorem 1. �

We deal for reals β with the statement: nβyn → l1 if and only if y = u+v
with

∞∑
k=1

(
|uk − uk−1|

k

)2

<∞ and xnvn → l2 (n→∞) for all y

and for some scalars l1, l2. This statement is equivalent to the (SSE) defined

by
(
`2(n)n

)
∆

+ s
(c)
1/x = s

(c)

(n−β)
n

and this (SSE) has solutions if and only if

β ≤ −3/2.

Example 6. Notice that the set of all the solutions of the (SSE) defined

by

(
`2
(1/
√
n)
n

)
∆

+ s
(c)
x = s

(c)
(lnn)n

are determined by limn→∞ (xn/ lnn) > 0.

This result comes from the equivalence
∑n

k=1

(
1/
√
k
)2
∼ lnn (n→∞).

8. Solvability of the (SSE) of the form (Ea)∆ + s0
x = s0

b

In this section we solve the (SSE) (Ea)∆ + s0
x = s0

b where E = c, or
`∞. For E = c, the solvability of the previous (SSE) consists in determining
the set of all positive sequences x = (xn)n that satisfy the next statement.
For every y the condition yn/bn → 0 (n→∞) holds if and only if there
are two sequences u, v, with y = u + v such that (un − un−1) /an → l and
vn/xn → 0 (n→∞) for some scalar l. Here also we may consider the (SSE)
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s

(c)
a

)
∆

+ s0
x = s0

b as a perturbed equation of the equation s0
x = s0

b , which

is equivalent to K1 ≤ xn/bn ≤ K2 for all n and for some K1, K2 > 0. We
obtain the equivalence of these two equations under some conditions on a
and b.

8.1. Solvability of the (SSE) (Ea)∆ + s0
x = s0

b where E = c,

or `∞ in the general case

To prove the next result we need a lemma.

Lemma 8. Let b ∈ U+ and let T be a triangle. Then we have

s0
b ⊂ Ts1 if and only if sb ⊂ Ts1.

Proof. We have s0
b ⊂ Ts1 if and only if

(24) T−1Db ∈ (c0, s1) .

Since (c0, s1) = (s1, s1) the condition in (24) is equivalent to sb ⊂ Ts1. This
concludes the proof. �

Theorem 2. The set S0
E of all the solutions of the (SSE) (Ea)∆+s0

x = s0
b

where E = c, or `∞ is determined by

S0
E =

{
cl∞ (b) , if σ ∈ c0,

∅, if σ /∈ c0.

Proof. Let x ∈ S0
E . Then we have the inclusion (Ea)∆ + s0

x ⊂ s0
b . This

implies (Ea)∆ ⊂ s0
b and D1/bΣDa ∈ (E, c0). This implies

D1/bΣDa ∈ (c, c0)

since E ⊃ c and

(25) σn → 0 (n→∞) .

Now we have s0
x ⊂ s0

b and

(26) x ∈ sb.

Then we consider the (SSIE) defined by

(27) s0
b ⊂ (Ea)∆ + s0

x.
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The (SSIE) in (27) with E ⊂ s1 implies s0
b ⊂ Ts1 with T = ΣDa + Dx. So

the inclusion in (27) implies

sb ⊂ (sa)∆ + sx

by Lemma 8. Since (sa)∆ = Σsa there are h, k ∈ s1 such that

bn
xn

(
1− 1

bn

n∑
k=1

akhk

)
= kn for all n.

We have ∣∣∣∣∣ 1

bn

n∑
k=1

akhk

∣∣∣∣∣ ≤ Kσn for all n and for some K > 0,

and from the condition in (25) we deduce b/x ∈ s1. Using the condition in
(26) we conclude x ∈ S0

E implies x ∈ cl∞ (b). Conversely, assume x ∈ cl∞ (b)
and (25) holds. Since 1/b ∈ c0, we have (Ea)∆ ⊂ s0

b for E = c0, or s1, we
obtain

(Ea)∆ + s0
x = (Ea)∆ + s0

b = s0
b ,

and x ∈ S0
E . We conclude S0

E = cl∞ (b). �

For a = e we easily obtain the next result.

Corollary 11. (i) The set S (E∆, c0) of all the solutions of the (SSE)
E∆ + s0

x = s0
b where E = c, or `∞ is determined by

S (E∆, c0) =

{
cl∞ (b) if (n/bn)n ∈ c0,

∅ if (n/bn)n /∈ c0.

Example 7. The equation E∆ + s0
x = s0

(nα)n
where E = c, or `∞,

has solutions if and only if α > 1. So the equation E∆ + s0
x = c0 has no

solution, and the solutions of the equation E∆ + s0
x = s0

(n2)n
are determined

by K1n
2 ≤ xn ≤ K2n

2 for all n and for some K1, K2 > 0.

8.2. Applications to the solvability of (SSE) of the form
(Ea)∆ + s0

x = s0
b for particular sequences a and b

Consider the (SSE) determined by(
s

(c)
(n−α)n

)
∆

+ s0
1/x = s0

(n−β)
n

(28) (
s

(c)
R

)
∆

+ s0
x = s0

R ,(29) (
s

(c)
(n−α)n

)
∆

+ s0
1/x = s0

1/R,(30) (
s

(c)
1/R

)
∆

+ s0
1/x = s0

(n−β)
n

,(31)
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with reals α and β and R, R > 0. We obtain the following.

Proposition 1. (i) The (SSE) defined in (28) has solutions if and only
if β < α− 1 < 0, or α ≥ 1 and β < 0.

(ii) The (SSE) defined in (29) has solutions if and only if R ≤ 1 < R,
or 1 < R < R.

(iii) The (SSE) defined in (30) has solutions if and only if R < 1 < α,
or R < α = 1, or α and R < 1.

(iv) The (SSE) defined in (31) has solutions if and only if R = 1 and
β < −1, or R > 1 and β < 0.

Proof. (i) It can easily be seen that σn ∼ nβ−α+1/ (1− α) (n→∞) for
α < 1; σn ∼ nβ lnn (n→∞) for α = 1; and σn ∼ Knβ (n→∞) for α > 1.
We conclude the (SSE) defined by (28) has solutions if and only if σn = o (1)
(n→∞), that is, for β < α− 1 < 0, or α ≥ 1 and β < 0.

(ii) We have

σn ∼
1

R− 1

Rn+1

R
n (n→∞) for R > 1;

σn ∼
R

1−R
1

R
n (n→∞) for R < 1;

and
σn ∼

n

R
n (n→∞) for R = 1;

and we conclude as above.
(iii) This result is a direct consequence of the following. We have σn ∼

KRn (n→∞) for α > 1 and for some K > 0; σn ∼ Rn lnn (n→∞) for
α = 1; and σn ∼ n1−αRn/ (1− α) (n→∞) for α < 1. We conclude by
Theorem 2.

(iv) Here we have σn ∼ nβ/ (R− 1) (n→∞) for R > 1; σn ∼ nβ+1

(n→∞) for R = 1; and σn ∼ nβR−n/ (1−R) (n→∞) for R < 1 and we
conclude by Theorem 2. �

Example 8. The (SSE)
(
s

(c)
1/2

)
∆

+ s0
x = s0

R
has solutions if and only if

R > 1.

Example 9. Let τ , τ ′ be reals. Then the system of (SSE) defined by c∆ + s0
x = s0

(nτ )n
,(

s
(c)
1/2

)
∆

+ s0
x = s0

(nτ ′)
n

,

where x is the unknown, has solutions if and only if τ = τ ′ > 1. Then x is
a solution of the system if and only if xn ∼ Cnτ (n→∞) for some C > 0.
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This is a direct consequence of Proposition 1 (iv) and of the elementary fact
that s(nτ )n

= s(nτ ′)
n

if and only if τ = τ ′.

Example 10. Let S0
c be the set of all positive sequences that satisfy

the following statement. For every y the condition yn/n → 0 (n→∞)
holds if and only if there are two sequences u, v, with y = u + v such
that

√
n (un − un−1) → L and xnvn → 0 (n→∞) for some scalar L. By

Proposition 1 (i), we have x ∈ S0
c if and only if K1/n ≤ xn ≤ K2/n for all

n and for some K1, K2 > 0.
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[16] Malkowsky E., Rakočević V., An introduction into the theory of sequence
spaces and measure of noncompactness, Zbornik Radova, Matematički institut
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