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1. Introduction

In 1975, Kramosil and Michalek [14] introduced the concept of fuzzy
metric space. George and Veeramani [11] modified the concept of fuzzy
metric space.In 1963, Gahler [9, 10] generalized usual notion of metric space
called 2-metric space.

Using the notion of 2-metric space, S. Sharma [26] and S. Kumar [15]
introduced fuzzy-2-metric spaces without knowing each other but Ha et al.
in [12] shows that 2-metric need not be continuous function, further there is
no easy relationship between results obtained in the two settings. In 1992,
Bapure Dhage [7] in his Ph.D thesis introduced a new class of generalized
metric space called D-metric space [7]. B. Singh and M. Chouhan [27] defined
S-fuzzy metric space by using the concept of D-metric space [7]. However,
Mustafa and Sims in [16] have pointed out that most of the results claimed
by Dhage and others in D-metric spaces are invalid. To overcome these
fundamental flaws, they introduced a new concept of generalized metric
space called G-metric space [17]. Using the concept of G-metric space,
G. Sun and K Yang [29] introduced the notion of Q-Fuzzy metric space,
K.P.R. Rao et. al. [20] proved two fixed point theorems in symmetric
Q(G)-metric space, Sedghi et. al. in [25] introduced D∗-metric space which
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is a generalization of G-metric space and gave an example which is D∗ metric
space but not G-metric space. Using the concept of D∗-metric space, Sedghi
and Shobe [23] defined M -fuzzy metric space. Very recently, Sedghi et. al
[24] defined S-metric space which is a generalization of D∗-metric space and
G-metric space and justified their work by various examples and definitions
related to topology of S-metric space.The recent literatures of fixed point in
fuzzy metric spaces is also given in [3, 4, 5, 6, 8, 19].

In present paper, after preliminaries in section 3, we define N -fuzzy met-
ric space using S-metric space [24] which generalized Q(orG) fuzzy metric
space and M -fuzzy metric space. We also define open balls for topology,
convergent sequence, Cauchy sequence and continuous functions and prove
various interesting lemmas related to topology and convergent sequence in
the NFM space. In Section 4, we define compatible maps, weak compatible
maps, semi compatible maps and property (E.A.) with counter examples in
the NFM space. In Section 5, we define Pseudo-N -fuzzy metric space with
counter example and recall definition implicit relation from [1]. Finally in
Section 6, we extend a fixed point theorem of Irshad Aalam et. al [1] using
implicit relation in the structure of NFM space with appropriate example.

2. Preliminaries

We recall the following definitions of fuzzy metric spaces and S-metric
space.

Definition 1 ([21]). A mapping *:[0, 1] × [0, 1] → [0, 1] is called a con-
tinuous t-norm if ([0, 1], ∗) is an abelian topological monoid with unit 1 such
that a ∗ b ≤ c ∗ d for a ≤ c, b ≤ d. Examples of t-norms are a ∗ b = min{a, b}
(minimum t-norm) a∗ b = ab (product t-norm) and a∗ b = max{a+ b−1, 0}
(Lukasiewicz t-norm).

Definition 2 ([11]). A 3-tuple (X,M, ∗) is said to be a fuzzy metric
space if X is an arbitrary non empty set, ∗ is a continuous t-norm, and M
is a fuzzy set on X2× (0,∞) satisfying following conditions for all x, y ∈ X,
s, t > 0:
M1 : M(x, y, t) > 0
M2 : M(x, y, t) = 1 if and only if x = y
M3 : M(x, y, t) = M(y, x, t)
M4 : M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s)
M5 : M(x, y, ·) : (0,∞)→ (0, 1] is a continuous function.

The pair (M, ∗) (or only M) is called a fuzzy metric on X. Here M(x, y, t)
is considered as the degree of nearness of x and y with respect to t. The
axiom M1 is justified because a classical metric cannot take the value∞ then
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M cannot take the value 0. The axiom M2 is equivalent to the following:
M(x, x, t) = 1 for all x ∈ X and t > 0 and M(x, y, t) < 1 for all x 6= y and
t > 0. The axiom M2 gives the idea that when x = y the degree of nearness
of x and y is perfect or simply 1 and then M(x, x, t) = 1 for each x ∈ X
and for each t > 0. Finally, in M5 we assume that the variable t behave
nicely, that is assume that for fixed x and y, t→M(x, y, t) is a continuous
function. The reader can refer to the examples and related definitions of
fuzzy metric space in [11] and [14].

Remark 1. The above definition of George-Veeramani is a modified ver-
sion of Kramosil-Michalek. This modification is necessary since the topology
induced by the fuzzy metric in definition of Kramsol-Michalek is not Haus-
dorff.

Definition 3 ([15]). A map *:[0, 1] × [0, 1] × [0, 1] → [0, 1] is called a
continuous t-norm if it satisfies the following conditions:
T1 : ∗(a, 1, 1) = a, ∗(0, 0, 0) = 0
T2 : ∗(a, b, c) = ∗(a, c, b) = ∗(b, c, a)
T3 : ∗(a1, b1, c1) ≥ ∗(a2, b2, c2) for a1 ≥ a2, b1 ≥ b2, c1 ≥ c2

examples of t-norm are (1) : a∗ b∗ c = a.b.c and (2) : a∗ b∗ c = min{a, b, c}

Definition 4 ([15, 26]). The triplet (X,M, ∗) is a fuzzy 2-metric space
if X is an arbitrary non empty set, ∗ is a continuous t-norm and M is a
fuzzy set on X3×(0,∞) satisfying following conditions for all x, y, z, a ∈ X,
r, s, t > 0:
M1 : M(x, y, a, t) > 0
M2 : M(x, y, a, t) = 1 if and only if at least two of x, y, z are equal.
M3 : M(x, y, a, t) = M(y, a, x, t) = M(a, y, x, t) (symmetry)
M4 : M(x, y, a, r + s+ t) ≥M(x, y, z, r) ∗M(x, z, a, s) ∗M(z, y, a, t)
M5 : M(x, y, a, .) : (0,∞)→ (0, 1] is left continuous
M6 : limt→∞M(x, y, a, t) = 1.

For examples and related definitions of fuzzy 2-metric space the reader
can refer [15] and [26].

Definition 5 ([27]). A 3-tuple (X,S, ∗) is said to be an S-fuzzy metric
space if X is an arbitrary non empty set, ∗ is a continuous t-norm and S is a
fuzzy set on X3×(0,∞) satisfying following conditions for all x, y, z, w ∈ X,
r, s, t > 0:

(i) S(x, y, z, t) > 0
(ii) S(x, y, z, t) = 1 if and only if x = y = z

(iii) S(x, y, z, t) = S(y, z, x, t) = S(z, y, x, t). . .
(iv) S(x, y, z, r + s+ t) ≥ S(x, y, w, r) ∗ S(x,w, z, s) ∗ S(w, y, z, t)
(v) S(x, y, z, .) : (0,∞)→ (0, 1] is continuous.
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For more on S-fuzzy metric space,the reader may consult in [27].

Definition 6 ([22]). A 3-tuple (X,M, ∗) is called an M -fuzzy metric
space if X is an arbitrary (non empty) set, ∗ is a continuous t-norm and
M is a fuzzy set on X3 × (0,∞) satisfying the following conditions for each
x, y, z, a ∈ X and s, t > 0:

(i) M(x, y, z, t) > 0
(ii) M(x, y, z, t) = 1 if and only if x = y = z
(iii) M(x, y, z, t) = M(P (x, y, z), t) where P is a permutation function.
(iv) M(x, y, a, t) ∗M(a, z, z, s) ≤M(x, y, z, t+ s)
(v) M(x, y, z, .) : (0,∞)→ (0, 1] is continuous.

For related definitions and examples of M fuzzy metric space the reader
can refer [22] and [23].

Definition 7 ([29]). A 3-tuple (X,Q, ∗) is called a Q-fuzzy metric space if
X is an arbitrary (non empty) set, ∗ is a continuous t-norm and Q is a fuzzy
set on X3× (0,∞) satisfying the following conditions for each x, y, z, a ∈ X
and s, t > 0:
Q1 : Q(x, x, y, t) > 0 and Q(x, x, y, t) ≤ Q(x, y, z, t) for all x, y, z ∈ X

with z 6= y
Q2 : Q(x, y, z, t) = 1 if and only if x = y = z
Q3 : Q(x, y, z, t) = Q(P (x, y, z), t) (symmetry) where P is a permutation

function.
Q4 : Q(x, a, a, t) ∗Q(a, y, z, s) ≤ Q(x, y, z, t+ s)
Q5 : Q(x, y, z, .) : (0,∞)→ (0, 1] is continuous.

For details of Q-fuzzy metric space the reader can refer [29] and [20].

Definition 8 ([24]). Let X be a non empty set. An S- metric on X is
a function S : X3 → [0,∞), that satisfies the following conditions for all
x, y, z, a ∈ X.

(i) S(x, y, z) ≥ 0,
(ii) S(x, y, z) = 0 if and only if x = y = z,
(iii) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

Then the function S is called an S metric and the pair (X,S) is called an
S-metric space.

Remark 2. Every D∗-metric space and G-metric space is an S-metric
space but in general, the converse is not true. The reader can refer to the
examples and related definitions of S- metric space in [24].

Definition 9 ([13]). A t-norm T is said to be of H-type if the family
of its iterates {Tn} where n is natural number is given by T 0(x) = 1 and
Tn(x) = T (Tn−1(x), x) for all n ≥ 1, is equicontinuous at x = 1. A trivial
example of a t-norm of H-type is the minimum t-norm.
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3. The N-fuzzy metric space

The concept of N -fuzzy metric space is defined as follows:

Definition 10. A triplet (X,N, ∗) is an N -fuzzy metric space (NFMSs),
if X is an arbitrary (non empty) set, ∗ is a continuous t-norm and N is a
fuzzy set on X3×(0,∞) satisfying the following conditions for all x, y, z ∈ X
and r, s, t > 0:

(i) N(x, y, z, t) > 0
(ii) N(x, y, z, t) = 1 if and only if x = y = z
(iii) N(x, y, z, r + s+ t) ≥ N(x, x, a, r) ∗N(y, y, a, s) ∗N(z, z, a, t)
(iv) N(x, y, z, .) : (0,∞)→ (0, 1] is a continuous function.

Example 1. Let X = R be a real line and S be an S-metric on X
defined by

S(x, y, z) =| x− z | + | y − z |

or

S(x, y, z) =| y + z − 2x | + | y − z | .

Define a ∗ b ∗ c = a b c for every a, b, c ∈ [0, 1] and let N be the function on
X3× (0,∞) defined by N(x, y, z, t) = t

t+S(x,y,z) for all x, y, z ∈ X and t > 0.

Then (R,N, ∗) is an N -fuzzy metric space, but it is not Q-fuzzy metric
space and M -fuzzy metric space because N is not symmetric.

Example 2. Let X = R be a real line and S be an S-metric as defined
in above Example 1. Define a ∗ b ∗ c = a b c for every a, b, c ∈ [0, 1] and let

N be the function on X3× (0,∞) defined by N(x, y, z, t) = [exp[S(x,y,z)t ]]−1

for all x, y, z ∈ X and t > 0.

Then (R,N, ∗) is an N -fuzzy metric space, but it is not Q-fuzzy metric
space and M -fuzzy metric space because N is not symmetric.

4. Topology of N-fuzzy metric space

Definition 11. Let (X,N, ∗) be an N -fuzzy metric space. For t > 0, the
open ball B(x, r, t) with center x ∈ X and radius 0 < r < 1 is defined by
B(x, r, t) = {y ∈ X : N(y, y, x, t) > 1− r}.

The collection {B(x, r, t) : x ∈ X, 0 < r < 1, t > 0} is a neighborhood
system for topology τ on X induced by the N -fuzzy metric N .

Proposition 1. Let (X,N, ∗) be an N -fuzzy metric space, then for all
x, y,∈ X and t > 0, we have N(x, x, y, t) = N(y, y, x, t).
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Proof. Since N -fuzzy metric is induced by S-metric and in S-metric
space S(x, x, y) = S(y, y, x) for all x, y ∈ X. Therefore in N -fuzzy metric
space N(x, x, y, t) = N(y, y, x, t) for all x, y ∈ X and t > 0. �

Lemma 1. N(x, x, y, ·) is nondecreasing for all x, y in X.

Proof. Suppose that N(x, x, y, t) > N(x, x, y, s) for some 0 < t < s.
Then

N(x, x, x,
s

2
) ∗N(x, x, x,

s

2
− t) ∗N(y, y, x, t) ≤ N(x, x, y, s)

< N(x, x, y, t).

By Definition 10, we have

N(x, x, x,
s

2
) = 1

and
N(x, x, x,

s

2
− t) = 1.

Thus

N(y, y, x, t) ≤ N(x, x, y, s)

N(x, x, y, t) ≤ N(x, x, y, s) [As N(x, x, y, t) = N(y, y, x, t)]

a contradiction. �

Theorem 1. Every N -fuzzy metric space is Hausdorff.

Proof. Let (X,N, ∗) be the N -fuzzy metric space. Let x, y be two
distinct points of X. Then 0 < N(x, x, y, t) < 1. Let N(x, x, y, t) = r for
some r, 0 < r < 1. For each r0, r < r0 < 1, we can find an r1 such that
r1∗r1∗r1 ≥ r0. Now consider the open balls B(x, 1−r1, t3) and B(y, 1−r1, t3).

Clearly

B(x, 1− r1,
t

3
) ∩B(y, 1− r1,

t

3
) = φ.

For if there exists

z ∈ B(x, 1− r1,
t

3
) ∩B(y, 1− r1,

t

3
).

Then

r = N(x, x, y, t) ≥ N(x, x, z,
t

3
) ∗N(x, x, z,

t

3
) ∗N(y, y, z,

t

3
)

> r1 ∗ r1 ∗ r1 ≥ r0 > r

which is a contradiction. Therefore (X,N, ∗) is Hausdorff. �



The N-fuzzy metric spaces and mappings . . . 139

Definition 12. A sequence {xn} in (X,N, ∗) is converges to x ∈ X if
N(xn, xn, x, t) → 1 or N(x, x, xn, t) → 1 as n → ∞ for each t > 0. That
is for each ε > 0 and t > 0 there exists n0 ∈ N such that for all n ≥ n0,
N(xn, xn, x, t) > 1− ε or N(x, x, xn, t) > 1− ε.

Lemma 2. Let (X,N, ∗) be an N -fuzzy metric space, where ∗ is mini-
mum t-norm (H-type). Let {xn} be a sequence in X. If {xn} converges to x
and {xn} also converges to y then x = y. That is the limit of {xn} if exists
is unique.

Proof. Let {xn} converges to x and y. Then N(x, x, xn, r) → 1 as
n → ∞ for each r > 0 and N(y, y, xn, t − 2r) → 1 as n → ∞ for each
t− 2r > 0.

N(x, x, y, t) ≥ N(x, x, xn, r) ∗N(x, x, xn, r) ∗N(y, y, xn, t− 2r)

= 1 ∗ 1 ∗ 1 as n→∞
→ 1 [where1 ∗ 1 ∗ 1 = min{1, 1, 1}

by Definition 3, Example 2 (H-type)].

�

Definition 13. Let (X,N, ∗) be an N -fuzzy metric space and {xn} be a
sequence in X is called Cauchy sequence. If for each ε > 0 and t > 0 there
exists n0 ∈ N such that

N(xn, xn, xm, t) > 1− ε

or

N(xm, xm, xn, t) > 1− ε for all n,m ≥ n0.

Definition 14. Let (X,N, ∗) be an N -fuzzy metric space. If every
Cauchy sequence in X is convergent in X, then X is called a complete
N -fuzzy metric space.

Lemma 3. Let (X,N, ∗) be an N -fuzzy metric space, where ∗ is mini-
mum t-norm (H-type) and {xn} be a sequence in X. If {xn} converges to x,
then {xn} is a Cauchy sequence.

Proof. For each r, t > 0 there is N such that p ∈ N,

N(xn, xn, x, r)→ 1 as n→∞

and

N(xn+p, xn+p, x, t− 2r)→ 1 as n→∞ for each t− 2r > 0,
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N(xn, xn, xn+p, t) ≥ N(xn, xn, x, r) ∗N(xn, xn, x, r)

∗N(xn+p, xn+p, x, t− 2r)

= 1 ∗ 1 ∗ 1 as n→∞
= 1 [where 1 ∗ 1 ∗ 1 = min{1, 1, 1}

by Definition 3, Example 2 (H-type)].

�

Therefore {xn} is a Cauchy sequence.

Remark 3. It is easy to prove that the induced N -fuzzy metric space
(X,N, ∗) is complete if and only if the S-metric space (X,S) is complete
where N(x, y, z, t) = t

t+s(x,y,z) for all x, y, z ∈ X and t ∈ (0,∞).

Definition 15. Let (X,N, ∗) and (X
′
, N

′
, ∗) be N -fuzzy metric spaces.

Then a function f : X → X
′

is said to be continuous at a point x ∈ X
if and only if it is sequentially continuous at x, that is whenever {xn} is
convergent to x we have {fxn} is convergent to f(x).

Lemma 4. Let (X,N, ∗) be an N -fuzzy metric space. Let {xn} and
{yn} be two sequences in X and suppose xn → x, yn → y as n → ∞
and N(x, x, y, tn) → N(x, x, y, t) as n → ∞. Then N(xn, xn, yn, tn) →
N(x, x, y, t) as n→∞.

Proof. Since limn→∞ xn = x, limn→∞ yn = y and limn→∞N(x, x, y, tn) =
N(x, x, y, t) there is n0 ∈ N such that | t − tn |< δ for n ≥ n0 and δ < t

2 .
We know that N(x, x, y, t) is nondecreasing with respect to t, so we have

N(xn, xn, yn, tn) ≥ N(xn, xn, yn, t− δ)

≥ N(xn, xn, x,
δ

3
) ∗N(xn, xn, x,

δ

3
) ∗N(yn, yn, x, t−

5δ

3
)

≥ N(xn, xn, x,
δ

3
) ∗N(xn, xn, x,

δ

3
) ∗N(yn, yn, y,

δ

6
)

∗N(yn, yn, y,
δ

6
) ∗N(y, y, x, t− 2δ)

and

N(x, x, y, t+ 2δ) ≥ N(x, x, y, tn + δ)

≥ N(x, x, xn,
δ

3
) ∗N(x, x, xn,

δ

3
) ∗N(y, y, xn, tn +

δ

3
)

≥ N(x, x, xn,
δ

3
) ∗N(x, x, xn,

δ

3
) ∗N(y, y, yn,

δ

6
)

∗ N(y, y, yn,
δ

6
) ∗N(xn, xn, yn, tn).
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In view of Definition 12 and combining the arbitrariness of δ and the conti-
nuity of N(x, x, y, ·) w.r. to t. For large enough n, we have

N(x, x, y, t) ≥ N(xn, xn, yn, tn) ≥ N(y, y, x, t),

N(x, x, y, t) ≥ N(xn, xn, yn, tn) ≥ N(x, x, y, t) [by Proposition 1].

Consequently

lim
n→∞

N(xn, xn, yn, tn)→ N(x, x, y, t).

�

Lemma 5. Let (X,N, ∗) be an N -fuzzy metric space. If there exists
g ∈ (0, 1) such that N(x, x, y, gt) ≥ N(x, x, y, t) for all x, y ∈ X, t > 0 and

lim
t→∞

N(x, y, z, t) = 1

then x = y.

Proof. Suppose that there exists g ∈ (0, 1) such that N(x, x, y, gt) ≥
N(x, x, y, t) for all x, y ∈ X and t > 0.

Then

N(x, x, y, t) ≥ N(x, x, y,
t

g
)

and so

N(x, x, y, t) ≥ N(x, x, y,
t

gn
)

for positive integer n. Taking limit as n → ∞, N(x, x, y, t) ≥ 1 and hence
x = y. �

5. The various types of mapping in NFM spaces

Definition 16. Let S and T maps from an NFM space (X,N, ∗) into
itself. The maps S and T are said to be compatible, if for all t > 0.

lim
n→∞

N(STxn, STxn, TSxn, t) = 1

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = z
for some z ∈ X.

Example 3. Let X = [2, 20). For each t ∈ (0,∞) and for all x, y, z ∈ X,
define

N(x, y, z, t) =
t

t+ | x− z | + | y − z |
.
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Clearly, (X,N, ∗) is an N -fuzzy metric space, where ∗ is defined by a ∗
b ∗ c = abc. Let S and T be self- maps of X defined as

S(x) =

{
2 if x = 2 or x > 5
6 if 2 < x ≤ 5

, T (x) =


2 if x = 2 or x > 5
12 if 2 < x ≤ 5
x+1
3 if x > 5

.

Let sequence {xn} be defined as xn = 5 + 1
n , n ≥ 1 then we have

limn→∞ Sxn = limn→∞ Txn = 2. Hence, S and T satisfy the property
(E.A.). Also,

lim
n→∞

N(STxn, STxn, TSxn, t) =
t

t+ | 2− 2 | + | 2− 2 |
=

t

t+ 0
= 1.

This shows that S and T are compatible.

Definition 17. Let S and T be maps from an NFM space (X,N, ∗)
into itself. The maps are said to be weakly compatible, if they commute at
their coincidence points, that is, Sz = Tz implies that STz = TSz.

Definition 18. Let S and T maps from an NFM space (X,N, ∗) into
itself. The maps S and T are said to be semicompatible, if for all t > 0.

lim
n→∞

N(STxn, STxn, T z, t) = 1

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = z
for some z ∈ X.

Note that the semicompatibility of the pair(S, T ), need not imply the
semicompatibility of (T, S).

The following is an example of a pair of self-maps (S, T ) which is com-
patible but not semicompatible. Further, it is also seen that the semicom-
patibility of the pair(S, T ) need not imply the semicompatibility of (T, S).

Example 4. Let X = [0, 1] and let (X,N, ∗) be the N -fuzzy metric
space with

N(x, y, z, t) =
[
exp

[| x− z | + | y − z |]
t

]−1
for all x, y, z ∈ X, t > 0.

Example 5. Define self- map S as follows:

S(x) =

{
x if 0 ≤ x < 1

2
1 if x ≥ 1

2

.

Let I be the identity map on X and xn = 1
2−

1
n . Then, {Ixn} = {xn} → 1

2
and {Sxn} = {xn} → 1

2 . Thus, {ISxn} = {Sxn} = 1
2 6= S{12}. Hence (IS)

is not semicompatible.
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Again as (I, S) is commuting, it is compatible. Further, for any sequence
{xn} in X such that {xn} → x and {Sxn} → x, we have {SIxn} = {Sxn} →
x = Ix. Hence (SI) is always semicompatible.

Remark 4. The above example gives an important aspect of semicom-
patibility as the pair of self-maps (IS) is commuting, hence it is weakly
commuting, compatible and weak compatible yet it is not semicompatible.
Further, it is to be noted that the pair (S, I) is semicompatible but (I, S) is
not semicompatible here.

The following is an example of a pair of self maps (A,S) which is semi-
compatible but not compatible.

Example 6. Let X = [0, 2] and (X,N, ∗) be an N -fuzzy metric space,
where the definition of ∗ and N are same as defined in Example 3. Define
self-maps A and S on X as follows

A(x) =

{
2 if 0 ≤ x ≤ 1
x
2 if 1 < x ≤ 2

, S(x) =

{
2 if x = 1
x+3
5 otherwise

and xn = 2 − 1
2n , n ≥ 1. Then we have S(1) = A(1) = 2 and S(2) =

A(2) = 1. Also SA(1) = AS(1) = 1 and SA(2) = AS(2) = 2. Thus (A,S)
is weak compatible. Again, Axn = 1− 1

4n , Sxn = 1− 1
10n . Thus, Axn → 1,

Sxn → 1. Hence u = 1
Further,

SAxn =
4

5
− 1

20n
, ASxn = 2.

Now,

lim
n→∞

N(ASxn, ASxn, Su, t) = lim
n→∞

N(2, 2, 2, t) = 1,

lim
n→∞

N(ASxn, ASxn, SAxn, t) = lim
n→∞

N(2, 2,
4

5
− 1

20n
, t)

=
t

t+ | 2− 4
5 | + | 2−

4
5 |

=
t

t+ 12
5

< 1 ∀t > 0.

Hence (A,S) is semicompatible but it is not compatible.

Definition 19. Let S and T be two self-maps of an NFM space (X,N, ∗).
We say that S and T satisfy the property (E.A.) if there exists a sequence
{xn} such that limn→∞ Sxn = limn→∞ Txn = z for some z ∈ X.
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Remark 5. Note that the weakly compatible and property (E.A.) are
independent to each other. See the following example.

Example 7. Let (X,N, ∗) be an N -Fuzzy metric space where X = [0, 1]
and N is defined as in Example 3. Define S, T : X → X by

S(x) = 1− x, if x ∈ [0,
1

2
] and S(x) = 0, if x ∈ (

1

2
, 1]

T (x) =
1

2
, if x ∈ [0,

1

2
] and T (x) =

3

4
, if x ∈ (

1

2
, 1].

Then, for the sequence {xn} = {12 −
1
n}, n ≥ 2, we have

lim
n→∞

S
(1

2
− 1

n

)
= lim

n→∞

1

2
+

1

n
=

1

2
= lim

n→∞
T
(1

2
− 1

n

)
.

Thus the pair (S, T ) satisfies property (E.A.). Further, S and T are
weakly compatible since x = 1

2 is their unique coincidence point and ST (12) =
S(12) = T (12) = TS(12). We further observe that

lim
n→∞

N
(
ST (

1

2
− 1

n
), ST (

1

2
− 1

n
), TS(

1

2
− 1

n
)
)

= lim
n→∞

t

t+ 2 | ST (12 −
1
n)− TS(12 −

1
n) |

=
t

t+ 2 | 12 −
3
4 |

=
t

t+ 1
2

6= 1,

showing that the pair (S, T ) is noncompatible.

Example 8. Let (X,N, ∗) be an N -fuzzy metric space where X = R+

with t-norm defined by a∗b∗c = a.b.c for all a, b, c ∈ [0, 1] and N(x, y, z, t) =
t

t+|x−y|+|y−z|+|z−x| for all t > 0 and x, y, z ∈ X. Define S, T : X → X by

S(x) = 0, if 0 < x ≤ 1 and S(x) = 1, if x > 1 or x = 0; and T (x) = [x], the
greatest integer that is less than or equal to x ∀x ∈ X.

Consider a sequence {xn} = {1 + 1
n}n≥2 in (1, 2), then we have

lim
n→∞

Sxn = 1 = lim
n→∞

Txn.

Similarly, for the sequence {yn} = {1− 1
n}n≥2 in (0, 1), we have

lim
n→∞

Syn = 0 = lim
n→∞

Tyn.

Thus the pair (S, T ) satisfies the property (E.A). However S and T are
not weakly compatible; as each u1 ∈ (0, 1) and u2 ∈ (1, 2) are coincidence
points of S and T , where they do not commute. Moreover, they commute
at x = 0, 1, 2, ..., but none of these points are coincidence points of S and T .
Further, (S, T ) is non compatible. Hence property (E.A.) does not imply
weak compatibility.
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Remark 6. From the Definition 16, it is inferred that two self maps S
and T on NFM space (X,N, ∗) are noncompatible iff there exists at least
one sequence {xn} in X such that limn→∞ Sxn = limn→∞ Txn = z for some
z ∈ X, but for some t > 0 either limn→∞N(STxn, STxn, TSxn, t) 6= 1
or the limit does not exist. Therefore, any two noncompatible self- maps
of (X,N, ∗) satisfy the property (E.A) from the Definition 19. But the
Example 3 shows that two maps satisfy the property (E.A) need not be
noncompatible.

Note. For detail study of compatible maps, noncompatible maps, weak
compatible, semicompatible maps and property (E.A.) in metric space,the
reader can refer [28], [18] and [2].

5. Pseudo N-fuzzy metric spaces

Definition 20. A 3-tuple (X,N, ∗) is said to be Pseudo N -fuzzy metric
space if X is an arbitrary (non empty)set, ∗ is a continuous t-norm and N
is a fuzzy set on X3 × (0,∞) satisfying the following conditions.
P1 : ∀ x, y, z ∈ X and ∀ t > 0 N(x, y, z, t) > 0
P2 : ∀ x, y, z ∈ X and ∀ t > 0 N(x, y, z, t) = 1 if x = y = z
P3 : ∀ x, y, z, a ∈ X and ∀ r, s, t > 0 N(x, y, z, r + s+ t) ≥ N(x, x, a, r) ∗

N(y, y, a, s) ∗N(z, z, a, t)
P4 : ∀ x, y, z ∈ X, N(x, y, z, .) : (0,∞)→ (0, 1] is continuous.

Remark 7. Clearly every N -fuzzy metric space is a Pseudo N -fuzzy
metric space but converse is not true [see the following Example 9].

Example 9. Consider R with the usual metric. Let X = {{xn} : {xn}
is convergent in R}. Define a ∗ b ∗ c = a.b.c for all a, b, c ∈ [0, 1] and

N(xn, yn, zn, t) =
[
exp

lim[| xn − zn | + | yn − zn |]
t

]−1
.

Clearly (X,N, ∗) is a Pseudo N -fuzzy metric space but not N -fuzzy met-
ric space. To see this:

Let {xn} = 1
n {yn} = 2

n and {zn} = 3
n . Then xn 6= yn 6= zn for all

xn, yn, zn ∈ X but N(xn, yn, zn, t) = 1.

A class of implicit relation [1]. Let Φ be the set of all real continuous
functions Φ : [R+]4 → R, nondecreasing in first argument and satisfying the
following conditions.

(1) (i) For u, v ≥ 0, Φ(u, v, v, u) ≥ 0 or Φ(u, v, u, v) ≥ 0 implies u ≥ v

(2) (ii) Φ(u, v, 1, 1) ≥ 0 implies that u ≥ 1.
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Example 10. 1. Define φ(t1, t2, t3, t4) = 15t1 − 13t2 + 5t3 − 7t4. Then
φ ∈ Φ

2. Define φ(t1, t2, t3, t4) = 14t1 − 12t2 + 6t3 − 8t4. Then φ ∈ Φ

6. Application in fixed point theory

As an application of weak compatible maps and the property(EA), we
prove the fixed point theorem of Irshad Aalam et.al [1] in NFM space.

Theorem 2. Let E, F , S and T be self maps of an NFM space (X,N, ∗)
satisfying the following conditions:

(3) E(X) ⊆ T (X), F (X) ⊆ S(X);

(4) (E,S) and (F, T ) are weakly compatible pairs;

(5) (E,S) or (F, T )satisfies the property (E.A.);

For some φ ∈ Φ, there exist k ∈ (0, 1) such that for all x, y,∈ X, t > 0

φ
(
N(Ex,Ex, Fy, kt), N(Sx, Sx, Ty, t),(6)

N(Ex,Ex, Sx, t), N(Fy, Fy, Ty, t)
)
≥ 0.

If the range of one of the maps E, F , S or T is a complete subspace of
X, then E, F , S and T have a unique common fixed point in X.

Proof. If the pair (F, T ) satisfies the property (E.A.) then there exists a
sequence {xn} such that Fxn → z and Txn → z for some z ∈ X as n→∞.

Since F (X) ⊆ S(X), there exists in X a sequence {yn} such that Fxn =
Syn. Hence Syn → z as n→∞.

Now we claim that Eyn → z as n → ∞. Suppose Eyn → w (6= z) ∈ X,
then by (6),we have

φ
(
N(Eyn, Eyn, Fxn, kt), N(Syn, Syn, Txn, t),

N(Eyn, Eyn, Syn, t), N(Fxn, Fxn, Txn, t)
)
≥ 0

that is,

φ
(
N(Eyn, Eyn, Fxn, kt), N(Fxn, Fxn, Txn, t),

N(Eyn, Eyn, Fxn, t), N(Fxn, Fxn, Txn, t)
)
≥ 0.
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As φ is nondecreasing in the first argument, we have

φ
(
N(Eyn, Eyn, Fxn, t), N(Fxn, Fxn, Txn, t),

N(Eyn, Eyn, Fxn, t), N(Fxn, Fxn, Txn, t)
)
≥ 0.

Using (1), we get N(Eyn, Eyn, Fxn, t) ≥ N(Fxn, Fxn, Txn, t). Letting
n→∞, N(w,w, z, t) ≥ 1 for all t > 0. Hence, N(w,w, z, t) = 1 Thus w = z.
This shows that Eyn → z as n→∞.

Suppose that S(X) is a complete subspace of X. Then z = Su for some
u ∈ X. Subsequently, we have Eyn → Su, Fxn → Su, Txn → Su and
Syn → Su as n→∞.

By (6), we have

φ
(
N(Eu,Eu, Fxn, kt), N(Su, Su, Txn, t),

N(Eu,Eu, Su, t), N(Fxn, Fxn, Txn, t)
)
≥ 0.

Letting n→∞

φ
(
N(Eu,Eu, Su, kt), 1, N(Eu,Eu, Su, t), 1

)
≥ 0.

As φ is nondecreasing in the first argument, we have

φ
(
N(Eu,Eu, Su, t), 1, N(Eu,Eu, Su, t), 1

)
≥ 0.

Using (1), we get N(Eu,Eu, Su, t) ≥ 1 for all t > 0. Hence, N(Eu,Eu,
Su, t) = 1. Thus, Eu = Su.

The weak compatibility of E and S implies that ESu = SEu and then
EEu = ESu = SEu = SSu.

On the other hand, since E(X) ⊆ T (X), there exists a v ∈ X such that
Eu = Tv. We show that Tv = Fv. By (6), we have

φ
(
N(Eu,Eu, Fv, kt), N(Su, Su, Tv, t),

N(Eu,Eu, Su, t), N(Fv, Fv, Tv, t)
)
≥ 0

that is,

φ
(
N(Tv, Tv, Fv, kt), 1, 1, N(Fv, Fv, Tv, t)

)
≥ 0.

As φ is nondecreasing in the first argument, we have

φ
(
N(Tv, Tv, Fv, t), 1, 1, N(Fv, Fv, Tv, t)

)
≥ 0

[As N(x, x, y, t) = N(y, y, x, t)].
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Using (1), we getN(Tv, Tv, Fv, t) ≥ 1 for all t > 0. Hence, N(Tv, Tv, Fv,
t) = 1. Thus, Fv = Tv.

This implies Eu = Su = Tv = Fv. The weak compatibility of F and T
implies that FTv = TFv and then TTv = TFv = FTv = FFv.

Now,we will show that Eu is a common fixed point of E,F, S and T . In
view of (6) it follows

φ
(
N(EEu,EEu, Fv, kt), N(SEu, SEu, Tv, t),

N(EEu,EEu, SEu, t), N(Fv, Fv, Tv, t)
)
≥ 0

that is,

φ
(
N(EEu,EEu,Eu, kt), N(EEu,EEu,Eu, t), 1, 1

)
≥ 0.

As φ is nondecreasing in the first argument, we have

φ
(
N(EEu,EEu,Eu, t), N(EEu,EEu,Eu, t), 1, 1

)
≥ 0

Using (2), we get N(EEu,EEu,Eu, t) ≥ 1 for all t > 0. Hence, N(EEu,
EEu,Eu, t) = 1. Thus, EEu = Eu.

Therefore, Eu = EEu = SEu and Eu is a common fixed point of E
and S. Similarly, we prove that Fv is a common fixed point of F and T .
Since Eu = Fv, we conclude that Eu is a common fixed point of E,F, S and
T . The proof is similar when T (X) is assumed to be a complete subspace
of X. The cases in which E(X) or F (X) is a complete subspace of X
are similar to the cases in which T (X) or S(X) respectively, is complete
since E(X) ⊆ T (X), F (X) ⊆ S(X). If Eu = Fu = Tu = Su = u and
Ev = Fv = Sv = Tv = v then (6) gives

φ
(
N(Eu,Eu, Fv, kt), N(Su, Su, Tv, t), N(Eu,Eu, Su, t),

N(Fv, Fv, Tv, t)
)
≥ 0

that is,

φ
(
N(u, u, v, kt), N(u, u, v, t), 1, 1

)
≥ 0.

Using (2), we get N(u, u, v, t) ≥ 1 for all t > 0. Hence, N(u, u, v, t) = 1.
Thus, u = v. Therefore, the common fixed point is unique. �

The following example illustrates our result.

Example 11. Let (X,N, ∗) be an N -fuzzy metric space as defined in
Example 3. Define E,F, S, T : X → X by

E(x) =

{
2 if x = 2
3 if 2 < x < 20

, F (x) =

{
2 if x = 2
7 if 2 < x < 20

,
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S(x) =


2 if x = 2
6 if 2 < x ≤ 10
(x− 7) if 10 < x < 20

, T (x) =


2 if x = 2
3 if 2 < x ≤ 10
(x− 3) if 10 < x < 20

.

Then E, F , S and T satisfy all the conditions of Theorem (2) with
k ∈ (0, 1) and have a unique common fixed point x = 2. Clearly (E,S)
and (F, T ) are weakly compatible since they commute at their coincidence
points. Let sequence {xn} be defined as xn = 10 + 1

n , n ≥ 1, then we have
limn→∞ Fxn = limn→∞ Txn = 7. Hence, F and T satisfy the property
(E.A.).

Conclusion. In the present study, we introduced the notion of N -fuzzy
metric space, which generalized various fuzzy metric spaces like S-fuzzy
metric space, M -fuzzy metric space, Q-fuzzy metric space, fuzzy 2-metric
space and fuzzy metric space. We also prove a fixed point theorem using
implicit relation, weak compatibility and the property (E.A.). This theorem
extend the well known result of I. Aalam [1] et. al in new structure. Also,
our result does not require either the completeness of the whole space or
continuity of the maps.

We have also defined few more definitions like Pseudo-NFM space and
Compatible maps, Weak compatible maps, Semi compatible maps and the
property (E.A.) in NFM space.

Acknowledgement. The author is thankful to the referee for their
valuable comments and suggestions in modifying the first version of this
paper.
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