M. A. Pathan and Waseem A. Khan

SOME NEW CLASSES OF GENERALIZED HERMITE-BASED APOSTOL-EULER AND APOSTOL-GENOCCHI POLYNOMIALS

Abstract

In this paper, we introduce a new class of generalized Apostol-Hermite-Euler polynomials and Apostol-Hermi-te-Genocchi polynomials and derive some implicit summation formulae by applying the generating functions. These results extend some known summations and identities of generalized Hermite-Euler polynomials studied by Dattoli et al, Kurt and Pathan. Key words: Hermite polynomials, Apostol-Hermite-Bernoulli polynomials, Apostol-Hermite-Euler polynomials, Apostol-Her-mite-Genocchi polynomials, summation formulae.

AMS Mathematics Subject Classification: 05A10, 11B65, 28B99, 11B68.

1. Introduction

The 2-variable Kampe de Feriet generalization of the Hermite polynomials [2] reads

$$
\begin{equation*}
H_{n}(x, y)=n!\sum_{r=0}^{\left[\frac{n}{2}\right]} \frac{y^{r} x^{n-2 r}}{r!(n-2 r)!} \tag{1}
\end{equation*}
$$

These polynomials are usually defined by the generating function

$$
\begin{equation*}
e^{x t+y t^{2}}=\sum_{n=0}^{\infty} H_{n}(x, y) \frac{t^{n}}{n!} \tag{2}
\end{equation*}
$$

and reduce to the ordinary Hermite polynomials $H_{n}(x)$ when $y=-1$ and x is replaced by $2 x$.

The classical Bernoulli polynomials $B_{n}(x)$, the classical Euler polynomials $E_{n}(x)$ and the classical Genocchi polynomials $G_{n}(x)$, together with their
familiar generalizations $B_{n}^{(\alpha)}(x), E_{n}^{(\alpha)}(x)$ and $G_{n}^{(\alpha)}(x)$ of (real or complex) order α are usually defined by means of the following generating functions (see for details [1], [21], pp. 532-533 and [23], p. 61; see also [24] and the references cited therein):

$$
\begin{equation*}
\left(\frac{t}{e^{t}-1}\right)^{\alpha} e^{x t}=\sum_{n=0}^{\infty} B_{n}^{(\alpha)} \frac{t^{n}}{n!}\left(|t|<2 \pi ; 1^{\alpha}=1\right) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{2}{e^{t}+1}\right)^{\alpha} e^{x t}=\sum_{n=0}^{\infty} E_{n}^{(\alpha)} \frac{t^{n}}{n!}\left(|t|<\pi ; 1^{\alpha}=1\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{2 t}{e^{t}+1}\right)^{\alpha} e^{x t}=\sum_{n=0}^{\infty} G_{n}^{(\alpha)} \frac{t^{n}}{n!}\left(|t|<\pi ; 1^{\alpha}=1\right) \tag{5}
\end{equation*}
$$

So that obviously the classical Bernoulli polynomials $B_{n}(x)$, the classical Euler polynomials $E_{n}(x)$ and the classical Genocchi polynomials $G_{n}(x)$ are given respectively by

$$
B_{n}(x)=B_{n}^{(1)}(x), E_{n}(x)=E_{n}^{(1)}(x)
$$

and

$$
\begin{equation*}
G_{n}(x)=G_{n}^{(1)}(x) \quad(n \in N) \tag{6}
\end{equation*}
$$

For the classical Bernoulli numbers B_{n}, the classical Euler numbers E_{n} and the classical Genocchi numbers G_{n}

$$
B_{n}^{1}(0)=B_{n}(0)=B_{n}, \quad E_{n}^{1}(0)=E_{n}(0)=E_{n}
$$

and

$$
\begin{equation*}
G_{n}^{1}(0)=G_{n}(0)=G_{n} \tag{7}
\end{equation*}
$$

respectively.
In particular, Luo and Srivastava [8, 9] introduced the generalized ApostolBernoulli polynomials $B_{n}^{(\alpha)}(x ; \lambda)$ of order $\alpha \in \mathcal{C}$; Luo [11, 12, 13] introduced the generalized Apostol-Euler polynomials $E_{n}^{(\alpha)}(x ; \lambda)$ of order $\alpha \in \mathcal{C}$ and the generalized Apostol-Genocchi polynomials $G_{n}^{(\alpha)}(x ; \lambda)$ of order $\alpha \in \mathcal{C}$ in [10, $15,16,17]$. These polynomials are defined, respectively as follows.

Definition 1. The generalized Apostol-Bernoulli polynomials $B_{n}^{(\alpha)}(x)$ of order α are defined by means of the generating function

$$
\begin{align*}
& \left(\frac{t}{\lambda e^{t}-1}\right)^{\alpha}=\sum_{n=0}^{\infty} B_{n}^{(\alpha)}(x ; \lambda) \frac{t^{n}}{n!} \tag{8}\\
& \quad\left(|t|<2 \pi, \text { if } \lambda=1 ; \quad|t|<|\log \lambda|, \text { if } \lambda \neq 1 ; 1^{\alpha}=1\right)
\end{align*}
$$

with

$$
B_{n}^{(\alpha)}(x)=B_{n}^{(\alpha)}(x ; 1)
$$

and

$$
\begin{equation*}
B_{n}^{(\alpha)}(\lambda)=B_{n}^{(\alpha)}(0 ; \lambda) \tag{9}
\end{equation*}
$$

where $B_{n}^{(\alpha)}(\lambda)$ denotes the so called Apostol-Bernoulli numbers of order α.
Definition 2. The generalized Apostol-Euler polynomials $E_{n}^{(\alpha)}(x)$ of order α are defined by means of the generating function

$$
\begin{equation*}
\left(\frac{2}{\lambda e^{t}+1}\right)^{\alpha}=\sum_{n=0}^{\infty} E_{n}^{(\alpha)}(x ; \lambda) \frac{t^{n}}{n!}, \quad\left(|t|<|\log (-\lambda)|<\pi, 1^{\alpha}=1\right) \tag{10}
\end{equation*}
$$

with

$$
E_{n}^{(\alpha)}(x)=E_{n}^{(\alpha)}(x ; 1)
$$

and

$$
\begin{equation*}
E_{n}^{(\alpha)}(\lambda)=E_{n}^{(\alpha)}(0 ; \lambda) \tag{11}
\end{equation*}
$$

where $E_{n}^{(\alpha)}(\lambda)$ denotes the so called Apostol-Euler numbers of order α.
Definition 3. The generalized Apostol-Genocchi polynomials $G_{n}^{(\alpha)}(x)$ of order α are defined by means of the generating function

$$
\begin{equation*}
\left(\frac{2 t}{\lambda e^{t}+1}\right)^{\alpha}=\sum_{n=0}^{\infty} G_{n}^{(\alpha)}(x ; \lambda) \frac{t^{n}}{n!}, \quad\left(|t|<|\log (-\lambda)|<\pi, 1^{\alpha}=1\right) \tag{12}
\end{equation*}
$$

with

$$
\begin{equation*}
G_{n}^{(\alpha)}(x)=G_{n}^{(\alpha)}(x ; 1), \quad G_{n}^{(\alpha)}(\lambda)=G_{n}^{(\alpha)}(0 ; \lambda) \tag{13}
\end{equation*}
$$

where $G_{n}^{(\alpha)}(\lambda)$ denotes the so called Apostol-Genocchi numbers of order α.
Recently, Tremblay et al [25, 26] studied a new family of generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials of order α in the following form.

Definition 4. For arbitrary real or complex parameter α and for $a, c \in$ \Re^{+}, the generalized Apostol-Bernoulli polynomials $B_{n}^{[m-1, \alpha]}(x ; a, c, \lambda), m \in$ $N, \lambda \in \mathcal{C}$ are defined in a suitable neighborhood of $t=0$ with $|t \log (a)|<2 \pi$, if $\lambda=1$ or with $|t \log (a)<|\log (\lambda)|$, if $\lambda \neq 1$ by means of the following generating function:

$$
\begin{equation*}
t^{m \alpha}[A(\lambda, a ; t)]^{\alpha} c^{x t}=\sum_{n=0}^{\infty} B_{n}^{[m-1, \alpha]}(x ; a, c, \lambda) \frac{t^{n}}{n!} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
A(\lambda, a ; t)=\left(\lambda a^{t}-\sum_{h=0}^{m-1} \frac{(t \log a)^{h}}{h!}\right)^{-1} \tag{15}
\end{equation*}
$$

It is easy to see that if we set $m=1, a=c=e$ in (14), we arrive at the following

$$
\begin{equation*}
\left(\frac{t}{\lambda e^{t}-1}\right)^{\alpha} e^{x t}=\sum_{n=0}^{\infty} B_{n}^{(\alpha)}(x ; e, e, \lambda) \frac{t^{n}}{n!},|t|<2 \pi, 1^{\alpha}=1 \tag{16}
\end{equation*}
$$

with

$$
\begin{equation*}
B_{n}^{[0, \alpha]}(x, e, e ; \lambda)=B_{n}^{(\alpha)}(x ; \lambda) \tag{17}
\end{equation*}
$$

Obviously when we set $\lambda=1$ and $\alpha=1$ in (17), we obtain

$$
B_{n}^{[0,1]}(x, e, e ; 1)=B_{n}^{(\alpha)}(x)
$$

where $B_{n}(x)$ are the classical Bernoulli polynomials.
Definition 5. For arbitrary real or complex parameter α and for the $a, c \in R^{+}$, the Apostol-Euler polynomials $E_{n}^{[m-1, \alpha]}(x ; a, c, \lambda), m \in N, \lambda \in \mathcal{C}$ are defined in a suitable neighborhood of $t=0$ with $|t \log a|<|t \log (-\lambda)|$ by means of the generating function

$$
\begin{equation*}
2^{m \alpha}[B(\lambda, a ; t)]^{\alpha} c^{x t}=\sum_{n=0}^{\infty} E_{n}^{[m-1, \alpha]}(x ; a, c, \lambda) \frac{t^{n}}{n!} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
B(\lambda, a ; t)=\left(\lambda a^{t}+\sum_{h=0}^{m-1} \frac{(t \log a)^{h}}{h!}\right)^{-1} \tag{19}
\end{equation*}
$$

It is easy to see that if we set $m=1, a=c=e$ in (18), we arrive at the following

$$
\begin{equation*}
\left(\frac{2}{\lambda e^{t}+1}\right)^{\alpha} e^{x t}=\sum_{n=0}^{\infty} E_{n}^{[0, \alpha]}(x ; e, e, \lambda) \frac{t^{n}}{n!},|t|<\pi, 1^{\alpha}=1 \tag{20}
\end{equation*}
$$

with

$$
E_{n}^{[0, \alpha]}(x, e, e ; \lambda)=E_{n}^{(\alpha)}(x ; \lambda)
$$

Definition 6. For arbitrary real or complex parameter α and for the $a, c \in R^{+}$, the Apostol-Genocchi polynomials $G_{n}^{[m-1, \alpha]}(x ; a, c, \lambda), m \in N$, $\lambda \in \mathcal{C}$ are defined in a suitable neighborhood of $t=0$ with $|t \log a|<\mid$ $t \log (-\lambda) \mid$ by means of the generating function

$$
\begin{equation*}
2^{m \alpha} t^{m \alpha}[B(\lambda, a ; t)]^{\alpha} c^{x t}=\sum_{n=0}^{\infty} G_{n}^{[m-1, \alpha]}(x ; a, c, \lambda) \frac{t^{n}}{n!} \tag{21}
\end{equation*}
$$

where $B(\lambda, a ; t)$ is given by equation (19). Obviously if we set $m=1, a=$ $c=e$ in (21), we obtain

$$
\begin{equation*}
\left(\frac{2 t}{\lambda e^{t}+1}\right)^{\alpha} e^{x t}=\sum_{n=0}^{\infty} G_{n}^{[0, \alpha]}(x ; e, e, \lambda) \frac{t^{n}}{n!}, \quad|t|<\pi, \quad 1^{\alpha}=1 \tag{22}
\end{equation*}
$$

with

$$
\begin{equation*}
G_{n}^{[0, \alpha]}(x, e, e ; \lambda)=G_{n}^{(\alpha)}(x ; \lambda) \tag{23}
\end{equation*}
$$

The popularity of Hermite, Bernoulli and Euler polynomials in number theory, combinatorics and mathematical physics is due in part to the papers of researchers in [3] to [5], [9] to [14], [18], [19], [20], [22] and their generalizations and various extensions which appeared in the literature. In this paper, we propose a further generalization of Apostol-Euler polynomials and Apostol-Genocchi polynomials and we give some properties involving them. For the new class of Apostol-Hermite-Euler polynomials ${ }_{H} E_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda)$ and Apostol-Hermite-Genocchi polynomials ${ }_{H} G_{n}^{[\alpha, m-1]}$ $(x, y ; a, c, \lambda)$, we modify generating functions given by Tremblay et al [26] and derive some identities.

2. New classes of generalized Hermite-Based, Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials

The following definitions provide a natural generalization of the ApostolBernoulli polynomials $B_{n}^{[m-1, \alpha]}(x ; \lambda), m \in N$ of order $\alpha \in \mathcal{C}$, Apostol-Euler polynomials $E_{n}^{[m-1, \alpha]}(x ; \lambda), m \in N$ of order $\alpha \in \mathcal{C}$ and Apostol-Genocchi polynomials $G_{n}^{[m-1, \alpha]}(x ; \lambda), m \epsilon N$ of order $\alpha \in \mathcal{C}$.

Definition 7. For arbitrary real or complex parameter α and for $a, c \varepsilon \Re^{+}$, the generalized Apostol-Hermite-Bernoulli polynomials ${ }_{H} B_{n}^{[m-1, \alpha]}(x, y ; a, c, \lambda)$ $m \in N, \lambda \in \mathcal{C}$ are defined in a suitable neighborhood of $t=0$ with \mid $t \log (a)<|\log (-\lambda)|$, by means of the following generating function:

$$
\begin{equation*}
t^{m \alpha}[A(\lambda, a ; t)]^{\alpha} c^{x t+y t^{2}}=\sum_{n=0}^{\infty} H_{n}^{[m-1, \alpha]}(x, y ; a, c, \lambda) \frac{t^{n}}{n!} \tag{24}
\end{equation*}
$$

where $A(\lambda, a ; t)$ is given by equation (15). It is easy to see that if we set $y=0$ in (24), we arrive at a recent result of Tremblay et al [26, p. 3, Eq. (1.8)] involving the generalized Apostol-Bernoulli polynomials

$$
\begin{equation*}
t^{m \alpha}[A(\lambda, a ; t)]^{\alpha} c^{x t}=\sum_{n=0}^{\infty} B_{n}^{[m-1, \alpha]}(x ; a, c, \lambda) \frac{t^{n}}{n!} \tag{25}
\end{equation*}
$$

For $c=e$ in (24) gives

$$
\begin{equation*}
t^{m \alpha}[A(\lambda, a ; t)]^{\alpha} e^{x t+y t^{2}}=\sum_{n=0}^{\infty} H_{n} B_{n}^{[m-1, \alpha]}(x, y ; a, e, \lambda) \frac{t^{n}}{n!} \tag{26}
\end{equation*}
$$

Moreover if we set $y=0, m=1, a=c=e$ in (24), we arrive at the following result

$$
\begin{equation*}
\left(\frac{t}{\lambda e^{t}-1}\right)^{\alpha} e^{x t}=\sum_{n=0}^{\infty} B_{n}^{[0, \alpha]}(x ; e, e, \lambda) \frac{t^{n}}{n!}, \quad\left(|t|<2 \pi, 1^{\alpha}=1\right) \tag{27}
\end{equation*}
$$

which is a generating function for the generalized Apostol-Bernoulli polynomials of order α. Thus we have

$$
\begin{equation*}
B_{n}^{[0, \alpha]}(x ; e, e, \lambda)=B_{n}^{[\alpha]}(x ; \lambda) \tag{28}
\end{equation*}
$$

Definition 8. For arbitrary real or complex parameter α and $a, c \in R^{+}$, the generalized Apostol-Hermite-Euler polynomials ${ }_{H} E_{n}^{[m-1, \alpha]}(x, y ; a, c, \lambda)$,
$m \in N, \lambda \in \mathcal{C}$ are defined in a suitable neighborhood of $t=0$ with $|t \log a|<\mid$ $\log (-\lambda) \mid$ by means of generating function

$$
\begin{equation*}
2^{m \alpha}[B(\lambda, a ; t)]^{\alpha} c^{x t+y t^{2}}=\sum_{n=0}^{\infty} H E_{n}^{[m-1, \alpha]}(x, y ; a, c, \lambda) \frac{t^{n}}{n!} \tag{29}
\end{equation*}
$$

where $B(\lambda, a ; t)$ is given by equation (19). It is easy to see that if we set $y=0$ in (29), we arrive at a recent result of Tremblay et al [26, p.3, Eq.(2.1)] involving the generalized Apostol-Euler polynomials

$$
\begin{equation*}
2^{m \alpha}[B(\lambda, a ; t)]^{\alpha} c^{x t}=\sum_{n=0}^{\infty} E_{n}^{[m-1, \alpha]}(x ; a, c, \lambda) \frac{t^{n}}{n!} \tag{30}
\end{equation*}
$$

For $c=e$ in (29) gives

$$
\begin{equation*}
2^{m \alpha}[B(\lambda, a ; t)]^{\alpha} e^{x t+y t^{2}}=\sum_{n=0}^{\infty} H_{n}^{[m-1, \alpha]}(x, y ; a, e, \lambda) \frac{t^{n}}{n!} \tag{31}
\end{equation*}
$$

Moreover if we set $y=0, m=1, a=c=e$ in (29), we arrive at the following result

$$
\begin{equation*}
\left(\frac{2}{\lambda e^{t}+1}\right)^{\alpha} e^{x t}=\sum_{n=0}^{\infty} E_{n}^{[0, \alpha]}(x ; e, e, \lambda) \frac{t^{n}}{n!}, \quad\left(|t|<\pi, 1^{\alpha}=1\right) \tag{32}
\end{equation*}
$$

which is a generating function for the generalized Apostol-Euler polynomials of order α. Thus we have

$$
\begin{equation*}
E_{n}^{[0, \alpha]}(x ; e, e, \lambda)=E_{n}^{[\alpha]}(x ; \lambda) \tag{33}
\end{equation*}
$$

Definition 9. For arbitrary real or complex parameter α and $a, c \in R^{+}$, the generalized Apostol-Hermite-Genocchi polynomials ${ }_{H} G_{n}^{[m-1, \alpha]}(x, y ; a, c, \lambda)$, $m \epsilon N, \lambda \epsilon \mathcal{C}$ are defined in a suitable neighborhood of $t=0$ with $|t \log a|<1$ $\log (-\lambda) \mid$ by means of generating function

$$
\begin{equation*}
2^{m \alpha} t^{m \alpha}[B(\lambda, a ; t)]^{\alpha} c^{x t+y t^{2}}=\sum_{n=0}^{\infty} H_{n}^{[m-1, \alpha]}(x, y ; a, c, \lambda) \frac{t^{n}}{n!} \tag{34}
\end{equation*}
$$

where $B(\lambda, a ; t)$ is given by equation (19). It is easy to see that if we set $y=0$ in (34), we arrive at a recent result of Tremblay et al [26, p.5, Eq.(2.4)] involving the generalized Apostol-Genocchi polynomials

$$
\begin{equation*}
2^{m \alpha} t^{m \alpha}[B(\lambda, a ; t)]^{\alpha} c^{x t}=\sum_{n=0}^{\infty} G_{n}^{[m-1, \alpha]}(x ; a, c, \lambda) \frac{t^{n}}{n!} \tag{35}
\end{equation*}
$$

For $c=e$ in (34) gives

$$
\begin{equation*}
2^{m \alpha} t^{m \alpha}[B(\lambda, a ; t)]^{\alpha} e^{x t+y t^{2}}=\sum_{n=0}^{\infty} H_{n}^{[m-1, \alpha]}(x, y ; a, e, \lambda) \frac{t^{n}}{n!} \tag{36}
\end{equation*}
$$

Obviously if we set $y=0, m=1, a=c=e$ in (34), we arrive at the following result

$$
\begin{equation*}
\left(\frac{2 t}{\lambda e^{t}+1}\right)^{\alpha} e^{x t}=\sum_{n=0}^{\infty} G_{n}^{[0, \alpha]}(x ; e, e, \lambda) \frac{t^{n}}{n!}, \quad\left(|t|<\pi, 1^{\alpha}=1\right) \tag{37}
\end{equation*}
$$

which is a generating function for the generalized Apostol-Genocchi polynomials of order α. Thus we have

$$
\begin{equation*}
G_{n}^{[0, \alpha]}(x ;, e, e, \lambda)=G_{n}^{[\alpha]}(x ; \lambda) \tag{38}
\end{equation*}
$$

The generalized Apostol-Hermite-Euler polynomials ${ }_{H} E_{n}^{[m-1, \alpha]}(x, y ; a, c, \lambda)$ defined by (25) posses the following interesting properties. These are stated as Theorems 1 to 4 below:

Theorem 1. The generalized Apostol-Hermite-Euler polynomials ${ }_{H} E_{n}^{[m-1, \alpha]}$ $(x, y ; a, c, \lambda)$ and Apostol-Hermite-Bernoulli polynomials ${ }_{H} B_{n}^{[m-1, \alpha]}(x, y ; a, c, \lambda)$, $\alpha \in N_{0}$ are related by

$$
\begin{equation*}
{ }_{H} B_{n}^{[m-1, \alpha]}(x, y ; a, c,-\lambda)=\frac{(-1)^{\alpha} n!}{2^{m \alpha}(n-m \alpha)!} H E_{n-m \alpha}^{[m-1, \alpha]}(x, y ; a, c, \lambda) \tag{39}
\end{equation*}
$$

or equivalently by

$$
\begin{equation*}
{ }_{H} E_{n}^{[m-1, \alpha]}(x, y ; a, c,-\lambda)=\frac{\left(-2^{m}\right)^{\alpha} n!}{(n+m \alpha)!} H^{[m+1, \alpha]}(x, y ; a, c, \lambda) \tag{40}
\end{equation*}
$$

Proof. Considering the generating function (24)

$$
\begin{gathered}
t^{m \alpha}[A(-\lambda, a ; t)]^{\alpha} c^{x t+y t^{2}}=\sum_{n=0}^{\infty} H_{n} B_{n}^{[m-1, \alpha]}(x, y ; a, c,-\lambda) \frac{t^{n}}{n!} \\
\frac{(-1)^{\alpha} t^{m \alpha}}{2^{m \alpha}} t^{m \alpha}[B(\lambda, a ; t)]^{\alpha} c^{x t+y t^{2}}=\sum_{n=0}^{\infty} H_{n} B_{n}^{[m-1, \alpha]}(x, y ; a, c,-\lambda) \frac{t^{n}}{n!} \\
\sum_{n=0}^{\infty} H B_{n}^{[m-1, \alpha]}(x, y ; a, c,-\lambda) \frac{t^{n}}{n!}=\frac{(-1)^{\alpha}}{2^{m \alpha}} \sum_{n=0}^{\infty} H E_{n}^{[m-1, \alpha]}(x, y ; a, c, \lambda) \frac{t^{n+m \alpha}}{n!}
\end{gathered}
$$

Replacing n by $n-m \alpha$ in R.H.S of above equation, we get

$$
\sum_{n=0}^{\infty} H_{n}^{[m-1, \alpha]}(x, y ; a, c,-\lambda) \frac{t^{n}}{n!}=\frac{(-1)^{\alpha}}{2^{m \alpha}} \sum_{n=0}^{\infty} H_{n-m \alpha}^{[m-1, \alpha]}(x, y ; a, c, \lambda) \frac{t^{n}}{(n-m \alpha)!}
$$

Comparing the coefficients of t^{n} on both sides of the above equation, we obtain the result (38). Next consider the generating function (25)

$$
\begin{gathered}
2^{m \alpha}[B(\lambda, a ; t)]^{\alpha} c^{x t+y t^{2}}=\sum_{n=0}^{\infty} H E_{n}^{[m-1, \alpha]}(x, y ; a, c, \lambda) \frac{t^{n}}{n!} \\
\frac{(-1)^{\alpha} 2^{m \alpha}}{t^{m \alpha}} t^{m \alpha}[A(\lambda, a ; t)]^{\alpha} c^{x t+y t^{2}}=\sum_{n=0}^{\infty} H E_{n}^{[m-1, \alpha]}(x, y ; a, c,-\lambda) \frac{t^{n}}{n!} \\
\left(-2^{m}\right)^{\alpha} \sum_{n=0}^{\infty} H B_{n}^{[m-1, \alpha]}(x, y ; a, c, \lambda) \frac{t^{n-m \alpha}}{n!}=\sum_{n=0}^{\infty} H E_{n}^{[m-1, \alpha]}(x, y ; a, c,-\lambda) \frac{t^{n}}{n!}
\end{gathered}
$$

Replacing n by $n+m \alpha$ in L.H.S of above equation, we get

$$
\begin{gathered}
\left(-2^{m}\right)^{\alpha} \sum_{n=0}^{\infty} H B_{n+m \alpha}^{[m-1, \alpha]}(x, y ; a, c, \lambda) \frac{t^{n}}{(n+m \alpha)!} \\
=\sum_{n=0}^{\infty} H E_{n}^{[m-1, \alpha]}(x, y ; a, c,-\lambda) \frac{t^{n}}{n!}
\end{gathered}
$$

Comparing the coefficients of t^{n} on both sides of the above equation, we obtain the result (40).

For $y=0$ in equation (39) and (40), the result reduces to known result Tremblay et al [26](see also [6]).

Theorem 2. Let $a, b, c \in R^{+}, \alpha$ an arbitrary complex number and $m \epsilon N$. Then the generalized Apostol-Hermite-Euler polynomials ${ }_{H} E_{n}^{[m-1, \alpha]}(x, y ; a, c, \lambda)$ satisfy the following relations

$$
\begin{align*}
& H E_{n}^{[m-1, \alpha+\beta]}(x+u, y ; a, c, \lambda) \tag{41}\\
& \quad=\sum_{k=0}^{n}\binom{n}{k}{ }_{H} E_{k}^{[m-1, \alpha]}(x, y ; a, c, \lambda) E_{n-k}^{[m-1, \beta]}(u, a, c ; \lambda)
\end{align*}
$$

Proof. Considering the generating function (29) as

$$
\begin{align*}
& 2^{m \alpha}[B(\lambda, a ; t)]^{\alpha+\beta} c^{(x+u) t+y t^{2}} \\
& \quad=\sum_{k=0}^{\infty} H_{k}^{[m-1, \alpha]}(x, y ; a, c, \lambda) \frac{t^{k}}{k!} \sum_{n=0}^{\infty} E_{n}^{[m-1, \beta]}(u, a, c, \lambda) \frac{t^{n}}{n!} \\
& \sum_{n=0}^{\infty} H E_{n}^{[m-1, \alpha+\beta]}(x+u, y ; a, c, \lambda) \frac{t^{n}}{n!} \tag{42}\\
& \quad=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} H E_{k}^{[m-1, \alpha]}(x, y ; a, c, \lambda) E_{n}^{[m-1, \beta]}(u, a, c, \lambda) \frac{t^{n+k}}{n!k!}
\end{align*}
$$

Replacing n by $n-k$ in R.H.S of above equation, we get

$$
\begin{aligned}
& \sum_{n=0}^{\infty}{ }_{H} E_{n}^{[m-1, \alpha+\beta]}(x+u, y ; a, c, \lambda) \frac{t^{n}}{n!} \\
& \quad=\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k}{ }_{H} E_{k}^{[m-1, \alpha]}(x, y ; a, c, \lambda) E_{n-k}^{[m-1, \beta]}(u, a, c, \lambda) \frac{t^{n}}{n!}
\end{aligned}
$$

Finally equating the coefficients of $\frac{t^{n}}{n!}$, we get the result (41).
For $y=0$ in equation (41), the result reduces to known result of Tremblay et al [26].

Theorem 3. The generalized Apostol-Hermite-Euler polynomials ${ }_{H} E_{n}^{[m-1, \alpha]}$ $(x, y ; a, c, \lambda)$ satisfies the following recurrence relation

$$
\begin{align*}
& \lambda_{H} E_{n}^{[m-1, \alpha]}(x+1, y ; a, c, \lambda)+{ }_{H} E_{n}^{[m-1, \alpha]}(x, y ; a, c, \lambda) \tag{43}\\
& \quad=2 \sum_{k=0}^{n}\binom{n}{k}{ }_{H} E_{k}^{[m-1, \alpha]}(x, y ; a, c, \lambda) E_{n-k}^{(-1)}(0, a, \lambda) .
\end{align*}
$$

Proof. Let

$$
\begin{aligned}
& \lambda_{H} E_{n}^{[m-1, \alpha]}(x+1, y ; a, c, \lambda)+{ }_{H} E_{n}^{[m-1, \alpha]}(x, y ; a, c, \lambda) \\
&=\left(2^{m} a^{t}\right)^{\alpha} c^{x t+y t^{2}}\left(\lambda c^{t}+1\right) \\
&=22^{m \alpha}[B(\lambda, a ; t)]^{\alpha} c^{x t+y t^{2}}\left(\frac{2}{\lambda a^{t}+1}\right)^{(-1)} \\
&=2 \sum_{k=0}^{\infty}{ }_{H} E_{k}^{[m-1, \alpha]}(x, y ; a, c, \lambda) \frac{t^{k}}{k!} \sum_{n=0}^{\infty} E_{n}^{(-1)}(0, a ; \lambda) \frac{t^{n}}{n!} \\
&=2 \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} H E_{k}^{[m-1, \alpha]}(x, y ; a, c, \lambda) E_{n}^{(-1)}(0, a ; \lambda) \frac{t^{n+k}}{n!k!}
\end{aligned}
$$

Replacing n by $n-k$ in R.H.S of above equation, we get

$$
\begin{aligned}
\sum_{n=0}^{\infty} & \left(\lambda_{H} E_{n}^{[m-1, \alpha]}(x+1, y ; a, c, \lambda)+{ }_{H} E_{n}^{[m-1, \alpha]}(x, y ; a, c, \lambda)\right) \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(2 \sum_{k=0}^{n} H_{k}^{[m-1, \alpha]}(x, y ; a, c, \lambda) E_{n-k}^{(-1)}(0, a ; \lambda)\right) \frac{t^{n}}{(n-k)!k!}
\end{aligned}
$$

Comparing the coefficients of $\frac{t^{n}}{n!}$ in the above equation, we get the result (43).

For $y=0$ in equation (43), the result reduces to known result Tremblay et al [26].

Remark 1. Setting $y=0, m=1$ and $b=c=e$ in (43) and using (29), we find

$$
\begin{equation*}
\lambda E_{n}^{\alpha}(x+1 ; \lambda)+E_{n}^{\alpha}(x ; \lambda)=2 \sum_{k=0}^{n}\binom{n}{k} E_{k}^{(\alpha)}(x ; \lambda) E_{n-k}^{(-1)}(0 ; \lambda) \tag{44}
\end{equation*}
$$

Using the well known result (see [9])

$$
\begin{equation*}
E_{n}^{\alpha+\beta}(x+y ; \lambda)=2 \sum_{k=0}^{n}\binom{n}{k} E_{k}^{(\alpha)}(x ; \lambda) E_{n-k}^{(\beta)}(y ; \lambda) \tag{45}
\end{equation*}
$$

equation (44) becomes the familiar relation for the generalized Apostol-Euler polynomials (see [9])

$$
\begin{equation*}
\lambda E_{n}^{\alpha}(x+1 ; \lambda)+E_{n}^{\alpha}(x ; \lambda)=2 E_{n}^{(\alpha-1)}(x ; \lambda) \tag{46}
\end{equation*}
$$

Theorem 4. Let $a, b \in R, \alpha$ and β arbitrary complex numbers, $m \in N$. Then the generalized Apostol-Hermite-Euler polynomials ${ }_{H} E_{n}^{[\alpha, m-1]}(x, y ; a$, $c, \lambda)$ satisfy the following relation

$$
\begin{align*}
& { }_{H} E_{n}^{[\alpha+\beta, m-1]}\left(x_{1}+x_{2}, y_{1}+y_{2} ; a, c, \lambda\right) \tag{47}\\
& \quad=\sum_{k=0}^{n}\binom{n}{k}{ }_{H} E_{n-k}^{[\alpha, m-1]}\left(x_{1}, y_{1} ; a, c, \lambda\right)_{H} E_{k}^{[\beta, m-1]}\left(x_{2}, y_{2} ; a, c, \lambda\right)
\end{align*}
$$

Proof. Use definition (25) to get

$$
\begin{aligned}
& \sum_{n=0}^{\infty} H_{n} E_{n}^{[\alpha+\beta, m-1]}\left(x_{1}+x_{2}, y_{1}+y_{2} ; a, c, \lambda\right) \frac{t^{n}}{n!} \\
& =2^{m \alpha}[B(\lambda, a ; t)]^{\alpha+\beta} c^{\left(x_{1}+x_{2}\right) t+\left(y_{1}+y_{2}\right) t^{2}} \\
& =\left(\sum_{n=0}^{\infty} H_{n}^{[\alpha, m-1]}\left(x_{1}, y_{1} ; a, c, \lambda\right) \frac{t^{n}}{n!}\right)\left(\sum_{k=0}^{\infty} H E_{k}^{[\beta, m-1]}\left(x_{2}, y_{2} ; a, c, \lambda\right) \frac{t^{k}}{k!}\right) \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} H_{n}^{[\alpha, m-1]}\left(x_{1}, y_{1} ; a, c, \lambda\right)_{H} E_{k}^{[\beta, m-1]}\left(x_{2}, y_{2} ; a, c, \lambda\right) \frac{t^{n+k}}{n!k!}
\end{aligned}
$$

Replacing n by $n-k$ in R.H.S of above equation, we get

$$
\left.\begin{array}{rl}
L . H . S .= & \sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\right)
\end{array}\right){ }_{H} E_{n-k}^{[\alpha, m-1]}\left(x_{1}, y_{1} ; a, c, \lambda\right) .
$$

Comparing the coefficients of $\frac{t^{n}}{n!}$ in above equation, we get the desired result (47). For $\mathrm{m}=1$ in equation (47), the result reduces to a known result of Gaboury et al [6., p.7, Eq. 3.6].

3. New classes of Apostol-Hermite-Genocchi polynomials

Now let us shift our focus on some interesting properties for the generalized Apostol-Hermite-Genocchi polynomials ${ }_{H} G_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda)$ defined by (35). These are stated as Theorem 5 to Theorem 9 below:

Theorem 5. The generalized Apostol-Hermite-Genocchi polynomials ${ }_{H} G_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda)$, the generalized Apostol-Hermite-Bernoulli polynomials ${ }_{H} B_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda)$ and the generalized Apostol-Hermite-Euler polynomials ${ }_{H} E_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda)$ are related by

$$
\begin{equation*}
{ }_{H} G_{n}^{[\alpha, m-1]}(x, y ; a, c,-\lambda)=\left(-2^{m}\right)^{\alpha}{ }_{H} B_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda), \quad(\alpha \in \mathcal{C}) \tag{48}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
{ }_{H} G_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda)=\frac{n!}{(n-m \alpha)!}{ }^{H} E_{n-m \alpha}^{[\alpha, m-1]}(x, y ; a, c, \lambda), \tag{49}
\end{equation*}
$$ $n, \alpha, m \in N, n \geq m \alpha$.

Proof. Using definition (24)

$$
\begin{gathered}
t^{m \alpha}[A(\lambda, a ; t)]^{\alpha} c^{x t+y t^{2}}=\sum_{n=0}^{\infty} H B_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda) \frac{t^{n}}{n!} \\
t^{m \alpha}[B(-\lambda, a ; t)]^{\alpha} c^{x t+y t^{2}}=\left(-2^{m}\right)^{\alpha} \sum_{n=0}^{\infty} H B_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda) \frac{t^{n}}{n!} \\
\sum_{n=0}^{\infty} H G_{n}^{[\alpha, m-1]}(x, y ; a, c,-\lambda) \frac{t^{n}}{n!}=\left(-2^{m}\right)^{\alpha} \sum_{n=0}^{\infty} H B_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda) \frac{t^{n}}{n!}
\end{gathered}
$$

Comparing the coefficients of $\frac{t^{n}}{n!}$ on both sides, we get the desired result (48). Next using definition (26)

$$
\begin{aligned}
& 2^{m \alpha} t^{m \alpha}[B(\lambda, a ; t)]^{\alpha} c^{x t+y t^{2}}=\sum_{n=0}^{\infty}{ }_{H} G_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda) \frac{t^{n}}{n!} \\
& 2^{m \alpha} t^{m \alpha}[B(\lambda, a ; t)]^{\alpha} c^{x t+y t^{2}}=\sum_{n=0}^{\infty}{ }_{H} G_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda) \frac{t^{n}}{n!}
\end{aligned}
$$

$$
\sum_{n=0}^{\infty} H_{n} E_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda) \frac{t^{n+m \alpha}}{n!}=\sum_{n=0}^{\infty}{ }_{H} G_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda) \frac{t^{n}}{n!}
$$

Replace n by $n-m \alpha$ in L.H.S of the above equation, we get

$$
\sum_{n=m \alpha}^{\infty} H E_{n-m \alpha}^{[\alpha, m-1]}(x, y ; a, c, \lambda) \frac{t^{n}}{(n-m \alpha)!}=\sum_{n=0}^{\infty}{ }_{H} G_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda) \frac{t^{n}}{n!}
$$

Comparing the coefficients of t on both sides, we get the result (49).
For $y=0$ in equation (48) and (49), the result reduces to known result of Tremblay et al [26].

Theorem 6. Let $a, c \epsilon R, \alpha$ an arbitrary complex number and $m \epsilon N$, then the generalized Apostol-Hermite-Genocchi polynomials ${ }_{H} G_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda)$ satisfy the following relations

$$
\begin{align*}
& { }_{H} G_{n}^{[\alpha+\beta, m-1]}(x+u, y ; a, c, \lambda) \tag{50}\\
& \quad=\sum_{k=0}^{n}\binom{n}{k}{ }_{H} G_{k}^{[m-1, \alpha]}(x, y ; a, c, \lambda) G_{n-k}^{[m-1, \beta]}(u, a, c, \lambda) .
\end{align*}
$$

Proof. Using definition (26)

$$
\begin{aligned}
\sum_{n=0}^{\infty} & { }_{H} G_{n}^{[\alpha+\beta, m-1]}(x+u, y ; a, c, \lambda) \frac{t^{n}}{n!} \\
& =2^{m \alpha} t^{m \alpha}[B(\lambda, a ; t)]^{\alpha} c^{x t+y t^{2}} 2^{m \alpha} t^{m \alpha}[B(\lambda, a ; t)]^{\beta} c^{u t} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}{ }_{H} G_{k}^{[\alpha, m-1]}(x, y ; a, c, \lambda) G_{n}^{[\beta, m-1]}(u, a, c, \lambda) \frac{t^{n+k}}{n!}
\end{aligned}
$$

Replacing n by $n-k$ in above equation, we have

$$
\text { L.H.S. }=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}{ }_{H} G_{k}^{[\alpha, m-1]}(x, y ; a, c, \lambda) G_{n-k}^{[\beta, m-1]}(u, a, c, \lambda)\right) \frac{t^{n}}{(n-k)!k!}
$$

Finally equating the coefficients of $\frac{t^{n}}{n!}$, we get the result (50).
For $y=0$ in equation (50), the result reduces to known result of Tremblay et al [26].

Theorem 7. The generalized Apostol-Hermite-Genocchi polynomials ${ }_{H} G_{n}^{[m-1, \alpha]}(x, y ; a, c, \lambda)$ satisfy the following recurrence relation

$$
\begin{align*}
& \lambda_{H} G_{n}^{[m-1, \alpha]}(x+1, y ; a, c, \lambda)+{ }_{H} G_{n}^{[m-1, \alpha]}(x, y ; a, c, \lambda) \tag{51}\\
& \quad=2 n \sum_{k=0}^{n}\binom{n-1}{k}{ }_{H} G_{k}^{[m-1, \alpha]}(x, y ; a, c, \lambda) G_{n-1-k}^{(-1)}(0, a, \lambda)
\end{align*}
$$

Proof. Let us write

$$
\begin{aligned}
L . H . S & =2^{m \alpha} t^{m \alpha}[B(\lambda, a ; t)]^{\alpha} c^{x t+y t^{2}}\left(\lambda a^{t}+1\right) \\
& =2 t 2^{m \alpha} t^{m \alpha}[B(\lambda, a ; t)]^{\alpha} c^{x t+y t^{2}}\left(\frac{2 t}{\lambda a^{t}+1}\right)^{(-1)} \\
& =2 t \sum_{k=0}^{\infty}{ }_{H} G_{k}^{[m-1, \alpha]}(x, y ; a, c, \lambda) \frac{t^{k}}{k!} \sum_{n=0}^{\infty} G_{n}^{(-1)}(0, a ; \lambda) \frac{t^{n}}{n!} \\
& =2 \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}{ }_{H} G_{k}^{[m-1, \alpha]}(x, y ; a, c, \lambda) G_{n}^{(-1)}(0, a ; \lambda) \frac{t^{n+k+1}}{n!k!} .
\end{aligned}
$$

Replacing n by $n-k-1$ in R.H.S of above equation, we get

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(\lambda_{H} G_{n}^{[m-1, \alpha]}(x+1, y ; a, c, \lambda)+{ }_{H} G_{n}^{[m-1, \alpha]}(x, y ; a, c, \lambda)\right) \frac{t^{n}}{n!} \\
& \quad=\sum_{n=0}^{\infty}\left(2 n \sum_{k=0}^{n}{ }_{H} G_{k}^{[m-1, \alpha]}(x, y ; a, c, \lambda) G_{n-1-k}^{(-1)}(0, a ; \lambda)\right) \frac{t^{n}}{(n-1-k)!k!}
\end{aligned}
$$

Comparing the coefficients of $\frac{t^{n}}{n!}$ in the above equation, we get the result (51).

For $y=0$ in equation (51), the result reduces to known result of Tremblay et al [26].

Remark 2. Setting $y=0, m=1$ and $\mathrm{b}=\mathrm{c}=\mathrm{e}$ in (51) and using (34), we find

$$
\begin{equation*}
\lambda G_{n}^{\alpha}(x+1 ; \lambda)+G_{n}^{\alpha}(x ; \lambda)=2 n \sum_{k=0}^{n}\binom{n-1}{k} G_{k}^{(\alpha)}(x ; \lambda) E_{n-1-k}^{(-1)}(0 ; \lambda \tag{52}
\end{equation*}
$$

Using the well known result (see [9])

$$
\begin{equation*}
G_{n}^{\alpha+\beta}(x+y ; \lambda)=\sum_{k=0}^{n}\binom{n}{k} G_{k}^{(\alpha)}(x ; \lambda) G_{n-k}^{(\beta)}(y ; \lambda) \tag{53}
\end{equation*}
$$

equation (52) becomes the familiar relation for the generalized Apostol-Genocchi polynomials (see [9])

$$
\begin{equation*}
\lambda G_{n}^{\alpha}(x+1 ; \lambda)+G_{n}^{\alpha}(x ; \lambda)=2 n G_{n-1}^{(\alpha-1)}(x ; \lambda) \tag{54}
\end{equation*}
$$

Theorem 8. Let $a, b, c, p, q \in R, \alpha$ an arbitrary complex number and $m \epsilon N$, then the generalized Apostol-Hermite-Genocchi polynomials ${ }_{H} G_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda)$ satisfy the following relation

$$
\begin{align*}
& { }_{H} G_{n}^{[\alpha+\beta, m-1]}(p x, q y ; a, c, \lambda) \tag{55}\\
& \quad=n!\sum_{k=0}^{n} \sum_{j=0}^{\left[\frac{k}{2}\right]}{ }_{H} G_{n-k}^{[m-1, \alpha]}(x, y ; a, c, \lambda)((p-1) x \ln c)^{k} \\
& \quad \times((q-1) y \ln c)^{j} \frac{1}{(n-k-2 j)!j!}
\end{align*}
$$

Proof. Using definition (26)

$$
\begin{aligned}
\sum_{n=0}^{\infty}{ }_{H} & G_{n}^{[\alpha+\beta, m-1]}(p x, q y ; a, c, \lambda) \frac{t^{n}}{n!} \\
= & 2^{m \alpha} t^{m \alpha}[B(\lambda, a ; t)]^{\alpha} c^{x t+y t^{2}} c^{(p-1) x t} c^{(q-1) y t^{2}} \\
= & \left(\sum_{n=0}^{\infty}{ }_{H} G_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda) \frac{t^{n}}{n!}\right) \\
& \times\left(\sum_{k=0}^{\infty}((p-1) x \ln c)^{k} \frac{t^{k}}{k!}\right)\left(\sum_{j=0}^{\infty}((q-1) y \ln c)^{j} \frac{t^{2 j}}{j!}\right) \\
= & \left(\sum_{n=0}^{\infty} H_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda) \frac{t^{n}}{n!}\right) \\
& \times \sum_{k=0}^{\infty} \sum_{j=0}^{\infty}((p-1) x \ln c)^{k}((q-1) y \ln c)^{j} \frac{t^{k+2 j}}{k!j!}
\end{aligned}
$$

Replacing k by $k-2 j$ in above equation, we have

$$
\begin{aligned}
\text { L.H.S. }= & \left(\sum_{n=0}^{\infty} H G_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda) \frac{t^{n}}{n!}\right) \\
& \times \sum_{k=0}^{\infty} \sum_{j=0}^{\left[\frac{k}{2}\right]}((p-1) x \ln c)^{k-2 j}((q-1) y \ln c)^{j} \frac{t^{k}}{(k-2 j)!j!} \\
= & \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{j=0}^{\left[\frac{k}{2}\right]} H_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda)((p-1) x \ln c)^{k-2 j} \\
& \times((q-1) y \ln c)^{j} \frac{t^{n+k}}{(k-2 j)!j!n!}
\end{aligned}
$$

Replacing n by $n-k$ in above equation, we have

$$
\begin{aligned}
\text { L.H.S. }= & \sum_{n=0}^{\infty} \sum_{k=0}^{n} \sum_{j=0}^{\left[\frac{k}{2}\right]}{ }_{H} G_{n-k}^{[\alpha, m-1]}(x, y ; a, c, \lambda)((p-1) x \ln c)^{k-2 j} \\
& \times((q-1) y \ln c)^{j} \frac{t^{n}}{(n-k-2 j)!j!k!}
\end{aligned}
$$

Finally equating the coefficients of $\frac{t^{n}}{n!}$, we get the result (3.8). For $m=1$ in equation (3.8), the result reduces to a known result of Gaboury et al [6, p.10.,Eq.3.16].

Theorem 9. Let $a, b \in R, \alpha$ and β arbitrary complex number $m \in N$ then the generalized Apostol-Hermite-Genocchi polynomials ${ }_{H} G_{n}^{[\alpha, m-1]}(x, y ; a, c, \lambda)$ satisfy the following relation

$$
\begin{aligned}
& { }_{H} G_{n}^{[\alpha+\beta, m-1]}\left(x_{1}+x_{2}, y_{1}+y_{2} ; a, c, \lambda\right) \\
& \quad=\sum_{k=0}^{n}\binom{n}{k}{ }_{H} G_{n-k}^{[\alpha, m-1]}\left(x_{1}, y_{1} ; a, c, \lambda\right)_{H} G_{k}^{[\beta, m-1]}\left(x_{2}, y_{2} ; a, c, \lambda\right)
\end{aligned}
$$

Proof. Use definition (25) to get

$$
\begin{aligned}
L . H . S= & 2^{m \alpha} t^{m \alpha}[B(\lambda, a ; t)]^{\alpha+\beta} c^{\left(x_{1}+x_{2}\right) t+\left(y_{1}+y_{2}\right) t^{2}} \\
= & \left(\sum_{n=0}^{\infty}{ }_{H} G_{n}^{[\alpha, m-1]}\left(x_{1}, y_{1} ; a, c, \lambda\right) \frac{t^{n}}{n!}\right) \\
& \times\left(\sum_{k=0}^{\infty}{ }_{H} G_{k}^{[\beta, m-1]}\left(x_{2}, y_{2} ; a, c, \lambda\right) \frac{t^{k}}{k!}\right) \\
= & \sum_{n=0}^{\infty} \sum_{k=0}^{\infty}{ }_{H} G_{n}^{[\alpha, m-1]}\left(x_{1}, y_{1} ; a, c, \lambda\right)_{H} G_{k}^{[\beta, m-1]}\left(x_{2}, y_{2} ; a, c, \lambda\right) \frac{t^{n+k}}{n!k!} \\
= & \sum_{n=0}^{\infty} \sum_{k=0}^{n} \\
& \times{ }_{H} G_{n-k}^{[\alpha, m-1]}\left(x_{1}, y_{1} ; a, c, \lambda\right)_{H} G_{k}^{[\beta, m-1]}\left(x_{2}, y_{2} ; a, c, \lambda\right) \frac{t^{n}}{(n-k)!k!}
\end{aligned}
$$

Comparing the coefficients of $\frac{t^{n}}{n!}$ in above equation, we get the desired result (56). For $m=1$ in equation (56), the result reduces to a known result of Gaboury et al [6, p.7, Eq. 3.6].

Acknowledgement. The first author M.A.Pathan would like to thank the Department of Science and Technology, Government of India, for the financial assistance for this work under project number SR/S4/MS:794/12.

References

[1] Apostol T.M., On the Lerch zeta function, Pacific J. Math., 1(1951), 161-167.
[2] Bell E.T., Exponential polynomials, Ann. of Math., 35(1934), 258-277.
[3] Boyadzhiev K.N., Apostol-Bernoulli functions derivative polynomials and Eulerian polynomials, Advances and Appl. in Discrete Math., 1(2)(2008), 109-122.
[4] Choi J., Anderson P.J., Srivastava H.M., Some q-extensions of the Apo-stol-Bernoulli and the Apostol-Euler polynomials of order n and the multiple Hurwitzz zeta function, Applied Math and Comp., 199(2)(2008), 723-737.
[5] Dattoli G., Lorenzutta S., Cesarano C., Finite sums and generalized forms of Bernoulli polynomials, Rendiconti di Mathematica, 19(1999), 385-391.
[6] Gaboury S., Kurt B., Some relations involving Hermite-Based ApostolGenocchi polynomials, J. Appl. Math. Sci., 82(2012),4091-4102.
[7] Kurt B., A further generalization of the Euler polynomials and on the 2D-Euler polynomials, In Press,
[8] Luo Q.M, Srivastava H.M., Some relationships between the ApostolBernoulli and Apostol-Euler polynomials, Computers and Mathematics with Applications, 51(3-4)(2006), 631-642.
[9] Luo Q.M., Srivastava H.M., Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. and Appl., 308(1)(2005), 290302.
[10] Luo Q.M., Srivastava H.M., Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind, Applied Math. and Comput., 217(12)(2011), 5702-5728.
[11] Luo Q.M., Fourier expansions and integral representations for the ApostolBernoulli and Apostol-Euler polynomials, Math. of Comp., 78(2009), 21932208.
[12] Luo Q.M., The multiplication formulas for the Apostol-Bernoulli and Apo-stol-Euler polynomials of higher order, Integral Transform and Special Functions, 20(5-6)(2009), 377-391.
[13] Luo Q.M., Some formulas for the Apostol-Euler polynomials associated with Hurwitz zeta function at rational arguments, Applicable Analysis and Discrete Mathematics, 3(2)(2009), 336-346.
[14] Luo Q.M., An explicit relationship between the generalized Apostol-Bernoulli and Apolstol-Euler polynomials associated with the λ-Stirling numbers of second kind, Houston J. Math., 36(4)(2010), 1159-1171.
[15] Luo Q.M., Fourier expansions and integral representations for the Genocchi polynomials, J. Integer Seq., 12(2009), 1-9.
[16] Luo Q.M., q-extension for the Apostol-Genocchi polynomials, Gen. Math., 17(2009), 113-125.
[17] Luo Q.M., Extension for the Genocchi polynomials and its Fourier expansions and integral representations, Osaka J. Math., 48(2011), 291-310.
[18] Luo D.Q., Luo Q.M., Some properties of the generalized Apostol-type polynomials, DOI:10,1186/1687-2770, 64(2013).
[19] Pathan M.A., A new class of generalized Hermite-Bernoulli polynomials, Georgian Mathematical Journal, 19(2012), 559-573.
[20] Prevost M., Pade approximation and Apostol-Bernoulli and Apostol-Euler polynomials, J. Comp. and Appl. Math., 233(11)(2010), 3005-3017.
[21] Sandor J., Crisci, Handbook of Number Theory, Vol.II. Kluwer Academic Publishers, Dordrecht Boston and London, 2004.
[22] Srivastava H.M., Garg M., Choudhary S., Some new families of generalized Euler and Genocchi polynomials, Tawanese J. Math., 15(1)(2011), 283-305.
[23] Srivastava H.M., Choi J., Series associated with the Zeta and related functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.
[24] Srivastava H.M., Pinter A., Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett., 17(2004), 375-380.
[25] Tremblay R., Gaboury S., Fugere B.J., A further generalization of Apostol-Bernoulli polynomials and related polynomials, Honam Math. J., 34(2012), 311-326.
[26] Tremblay R, Gaboury S, Fugere B.J., Some new classes of generalized Apostol-Euler and Apostol-Genocchi polynomials, Int. J. Math and Math. Sci., 2012., DOI:10.1155/2012/182785.

M. A. Pathan
Centre for Mathematical and Statistical Sciences (CMSS) KFRI, Peechi P.O., Thrissur, Kerala-680653, India
e-mail: mapathan@gmail.com

Waseem A. Khan
Department of Mathematics
Integral University
Lucknow-226026, India
e-mail: waseem08_khan@rediffmail.com
Received on 03.07.2014 and, in revised form, on 07.05.2015.

