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1. Introduction

The 2-variable Kampe de Feriet generalization of the Hermite polynomi-
als [2] reads

(1) Hn(x, y) = n!

[n
2
]∑

r=0

yrxn−2r

r!(n− 2r)!
.

These polynomials are usually defined by the generating function

(2) ext+yt
2

=

∞∑
n=0

Hn(x, y)
tn

n!

and reduce to the ordinary Hermite polynomials Hn(x) when y = −1 and x
is replaced by 2x.

The classical Bernoulli polynomials Bn(x), the classical Euler polynomi-
als En(x) and the classical Genocchi polynomials Gn(x), together with their
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familiar generalizations B
(α)
n (x), E

(α)
n (x) and G

(α)
n (x) of (real or complex)

order α are usually defined by means of the following generating functions
(see for details [1], [21], pp. 532-533 and [23], p. 61; see also [24] and the
references cited therein):

(3)

(
t

et − 1

)α
ext =

∞∑
n=0

B(α)
n

tn

n!
(| t |< 2π; 1α = 1)

(4)

(
2

et + 1

)α
ext =

∞∑
n=0

E(α)
n

tn

n!
(| t |< π; 1α = 1)

and

(5)

(
2t

et + 1

)α
ext =

∞∑
n=0

G(α)
n

tn

n!
(| t |< π; 1α = 1).

So that obviously the classical Bernoulli polynomials Bn(x), the classical
Euler polynomials En(x) and the classical Genocchi polynomials Gn(x) are
given respectively by

Bn(x) = B(1)
n (x), En(x) = E(1)

n (x).

and

(6) Gn(x) = G(1)
n (x) (n ∈ N).

For the classical Bernoulli numbers Bn, the classical Euler numbers En and
the classical Genocchi numbers Gn

B1
n(0) = Bn(0) = Bn, E1

n(0) = En(0) = En

and

(7) G1
n(0) = Gn(0) = Gn,

respectively.
In particular, Luo and Srivastava [8, 9] introduced the generalized Apostol-

Bernoulli polynomials B
(α)
n (x;λ) of order α ∈ C; Luo [11, 12, 13] introduced

the generalized Apostol-Euler polynomials E
(α)
n (x;λ) of order α ∈ C and the

generalized Apostol-Genocchi polynomials G
(α)
n (x;λ) of order α ∈ C in [10,

15, 16, 17]. These polynomials are defined, respectively as follows.
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Definition 1. The generalized Apostol-Bernoulli polynomials B
(α)
n (x) of

order α are defined by means of the generating function(
t

λet − 1

)α
=

∞∑
n=0

B(α)
n (x;λ)

tn

n!
,(8)

(| t |< 2π, if λ = 1; | t |<| log λ |, if λ 6= 1; 1α = 1)

with
B(α)
n (x) = B(α)

n (x; 1)

and

(9) B(α)
n (λ) = B(α)

n (0;λ)

where B
(α)
n (λ) denotes the so called Apostol-Bernoulli numbers of order α.

Definition 2. The generalized Apostol-Euler polynomials E
(α)
n (x) of or-

der α are defined by means of the generating function

(10)

(
2

λet + 1

)α
=
∞∑
n=0

E(α)
n (x;λ)

tn

n!
, (| t |<| log(−λ) |< π, 1α = 1)

with
E(α)
n (x) = E(α)

n (x; 1)

and

(11) E(α)
n (λ) = E(α)

n (0;λ)

where E
(α)
n (λ) denotes the so called Apostol-Euler numbers of order α.

Definition 3. The generalized Apostol-Genocchi polynomials G
(α)
n (x) of

order α are defined by means of the generating function

(12)

(
2t

λet + 1

)α
=

∞∑
n=0

G(α)
n (x;λ)

tn

n!
, (| t |<| log(−λ) |< π, 1α = 1)

with

(13) G(α)
n (x) = G(α)

n (x; 1), G(α)
n (λ) = G(α)

n (0;λ)

where G
(α)
n (λ) denotes the so called Apostol-Genocchi numbers of order α.

Recently, Tremblay et al [25, 26] studied a new family of generalized
Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials of or-
der α in the following form.
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Definition 4. For arbitrary real or complex parameter α and for a, c ∈
<+, the generalized Apostol-Bernoulli polynomials B

[m−1,α]
n (x; a, c, λ), m ∈

N , λ ∈ C are defined in a suitable neighborhood of t = 0 with | t log(a) |< 2π,
if λ = 1 or with | t log(a) <| log(λ) |, if λ 6= 1 by means of the following
generating function:

(14) tmα[A(λ, a; t)]αcxt =
∞∑
n=0

B[m−1,α]
n (x; a, c, λ)

tn

n!

where

(15) A(λ, a; t) =

(
λat −

m−1∑
h=0

(t log a)h

h!

)−1
.

It is easy to see that if we set m = 1, a = c = e in (14), we arrive at the
following

(16)

(
t

λet − 1

)α
ext =

∞∑
n=0

B(α)
n (x; e, e, λ)

tn

n!
, | t |< 2π, 1α = 1

with

(17) B[0,α]
n (x, e, e;λ) = B(α)

n (x;λ).

Obviously when we set λ = 1 and α = 1 in (17), we obtain

B[0,1]
n (x, e, e; 1) = B(α)

n (x)

where Bn(x) are the classical Bernoulli polynomials.

Definition 5. For arbitrary real or complex parameter α and for the

a, cεR+, the Apostol-Euler polynomials E
[m−1,α]
n (x; a, c, λ), m ∈ N , λ ∈ C

are defined in a suitable neighborhood of t = 0 with | t log a |<| t log(−λ) |
by means of the generating function

(18) 2mα[B(λ, a; t)]αcxt =

∞∑
n=0

E[m−1,α]
n (x; a, c, λ)

tn

n!

where

(19) B(λ, a; t) =

(
λat +

m−1∑
h=0

(t log a)h

h!

)−1
.
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It is easy to see that if we set m = 1, a = c = e in (18), we arrive at the
following

(20)

(
2

λet + 1

)α
ext =

∞∑
n=0

E[0,α]
n (x; e, e, λ)

tn

n!
, | t |< π, 1α = 1

with
E[0,α]
n (x, e, e;λ) = E(α)

n (x;λ).

Definition 6. For arbitrary real or complex parameter α and for the

a, c ∈ R+, the Apostol-Genocchi polynomials G
[m−1,α]
n (x; a, c, λ), m ∈ N ,

λ ∈ C are defined in a suitable neighborhood of t = 0 with | t log a |<|
t log(−λ) | by means of the generating function

(21) 2mαtmα[B(λ, a; t)]αcxt =
∞∑
n=0

G[m−1,α]
n (x; a, c, λ)

tn

n!

where B(λ, a; t) is given by equation (19). Obviously if we set m = 1, a =
c = e in (21), we obtain

(22)

(
2t

λet + 1

)α
ext =

∞∑
n=0

G[0,α]
n (x; e, e, λ)

tn

n!
, | t |< π, 1α = 1

with

(23) G[0,α]
n (x, e, e;λ) = G(α)

n (x;λ).

The popularity of Hermite, Bernoulli and Euler polynomials in number
theory, combinatorics and mathematical physics is due in part to the pa-
pers of researchers in [3] to [5], [9] to [14], [18], [19], [20], [22] and their
generalizations and various extensions which appeared in the literature.
In this paper, we propose a further generalization of Apostol-Euler poly-
nomials and Apostol-Genocchi polynomials and we give some properties
involving them. For the new class of Apostol-Hermite-Euler polynomials

HE
[α,m−1]
n (x, y; a, c, λ) and Apostol-Hermite-Genocchi polynomials HG

[α,m−1]
n

(x, y; a, c, λ), we modify generating functions given by Tremblay et al [26]
and derive some identities.
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2. New classes of generalized Hermite-Based,
Apostol-Bernoulli, Apostol-Euler and

Apostol-Genocchi polynomials

The following definitions provide a natural generalization of the Apostol-

Bernoulli polynomials B
[m−1,α]
n (x;λ), m ∈ N of order αεC, Apostol-Euler

polynomials E
[m−1,α]
n (x;λ), m ∈ N of order α ∈ C and Apostol-Genocchi

polynomials G
[m−1,α]
n (x;λ), mεN of order αεC.

Definition 7. For arbitrary real or complex parameter α and for a, cε<+,

the generalized Apostol-Hermite-Bernoulli polynomials HB
[m−1,α]
n (x, y; a, c, λ)

m ∈ N , λ ∈ C are defined in a suitable neighborhood of t = 0 with |
t log(a) <| log(−λ) |, by means of the following generating function:

(24) tmα[A(λ, a; t)]αcxt+yt
2

=

∞∑
n=0

HB
[m−1,α]
n (x, y; a, c, λ)

tn

n!

where A(λ, a; t) is given by equation (15). It is easy to see that if we set y=0
in (24), we arrive at a recent result of Tremblay et al [26, p. 3, Eq. (1.8)]
involving the generalized Apostol-Bernoulli polynomials

(25) tmα[A(λ, a; t)]αcxt =

∞∑
n=0

B[m−1,α]
n (x; a, c, λ)

tn

n!
.

For c = e in (24) gives

(26) tmα[A(λ, a; t)]αext+yt
2

=
∞∑
n=0

HB
[m−1,α]
n (x, y; a, e, λ)

tn

n!
.

Moreover if we set y = 0, m = 1, a = c = e in (24), we arrive at the
following result

(27)

(
t

λet − 1

)α
ext =

∞∑
n=0

B[0,α]
n (x; e, e, λ)

tn

n!
, (| t |< 2π, 1α = 1)

which is a generating function for the generalized Apostol-Bernoulli polyno-
mials of order α. Thus we have

(28) B[0,α]
n (x; e, e, λ) = B[α]

n (x;λ).

Definition 8. For arbitrary real or complex parameter α and a, c ∈ R+,

the generalized Apostol-Hermite-Euler polynomials HE
[m−1,α]
n (x, y; a, c, λ),
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m ∈ N , λ ∈ C are defined in a suitable neighborhood of t = 0 with | t log a |<|
log(−λ) | by means of generating function

(29) 2mα[B(λ, a; t)]αcxt+yt
2

=
∞∑
n=0

HE
[m−1,α]
n (x, y; a, c, λ)

tn

n!

where B(λ, a; t) is given by equation (19). It is easy to see that if we set
y=0 in (29), we arrive at a recent result of Tremblay et al [26, p.3, Eq.(2.1)]
involving the generalized Apostol-Euler polynomials

(30) 2mα[B(λ, a; t)]αcxt =
∞∑
n=0

E[m−1,α]
n (x; a, c, λ)

tn

n!
.

For c = e in (29) gives

(31) 2mα[B(λ, a; t)]αext+yt
2

=

∞∑
n=0

HE
[m−1,α]
n (x, y; a, e, λ)

tn

n!
.

Moreover if we set y = 0, m = 1, a = c = e in (29), we arrive at the
following result

(32)

(
2

λet + 1

)α
ext =

∞∑
n=0

E[0,α]
n (x; e, e, λ)

tn

n!
, (| t |< π, 1α = 1)

which is a generating function for the generalized Apostol-Euler polynomials
of order α. Thus we have

(33) E[0,α]
n (x; e, e, λ) = E[α]

n (x;λ).

Definition 9. For arbitrary real or complex parameter α and a, cεR+, the

generalized Apostol-Hermite-Genocchi polynomials HG
[m−1,α]
n (x, y; a, c, λ),

mεN , λεC are defined in a suitable neighborhood of t = 0 with | t log a |<|
log(−λ) | by means of generating function

(34) 2mαtmα[B(λ, a; t)]αcxt+yt
2

=

∞∑
n=0

HG
[m−1,α]
n (x, y; a, c, λ)

tn

n!

where B(λ, a; t) is given by equation (19). It is easy to see that if we set y = 0
in (34), we arrive at a recent result of Tremblay et al [26, p.5, Eq.(2.4)]
involving the generalized Apostol-Genocchi polynomials

(35) 2mαtmα[B(λ, a; t)]αcxt =

∞∑
n=0

G[m−1,α]
n (x; a, c, λ)

tn

n!
.
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For c = e in (34) gives

(36) 2mαtmα[B(λ, a; t)]αext+yt
2

=
∞∑
n=0

HG
[m−1,α]
n (x, y; a, e, λ)

tn

n!
.

Obviously if we set y = 0, m = 1, a = c = e in (34), we arrive at the
following result

(37)

(
2t

λet + 1

)α
ext =

∞∑
n=0

G[0,α]
n (x; e, e, λ)

tn

n!
, (| t |< π, 1α = 1)

which is a generating function for the generalized Apostol-Genocchi polyno-
mials of order α. Thus we have

(38) G[0,α]
n (x; , e, e, λ) = G[α]

n (x;λ).

The generalized Apostol-Hermite-Euler polynomials HE
[m−1,α]
n (x, y; a, c, λ)

defined by (25) posses the following interesting properties. These are stated
as Theorems 1 to 4 below:

Theorem 1. The generalized Apostol-Hermite-Euler polynomials HE
[m−1,α]
n

(x, y; a, c, λ) and Apostol-Hermite-Bernoulli polynomials HB
[m−1,α]
n (x, y; a, c, λ),

α ∈ N0 are related by

(39) HB
[m−1,α]
n (x, y; a, c,−λ) =

(−1)αn!

2mα(n−mα)!
HE

[m−1,α]
n−mα (x, y; a, c, λ)

or equivalently by

(40) HE
[m−1,α]
n (x, y; a, c,−λ) =

(−2m)αn!

(n+mα)!
HB

[m−1,α]
n+mα (x, y; a, c, λ)

Proof. Considering the generating function (24)

tmα[A(−λ, a; t)]αcxt+yt
2

=

∞∑
n=0

HB
[m−1,α]
n (x, y; a, c,−λ)

tn

n!

(−1)αtmα

2mα
tmα[B(λ, a; t)]αcxt+yt

2
=
∞∑
n=0

HB
[m−1,α]
n (x, y; a, c,−λ)

tn

n!

∞∑
n=0

HB
[m−1,α]
n (x, y; a, c,−λ)

tn

n!
=

(−1)α

2mα

∞∑
n=0

HE
[m−1,α]
n (x, y; a, c, λ)

tn+mα

n!

Replacing n by n−mα in R.H.S of above equation, we get

∞∑
n=0

HB
[m−1,α]
n (x, y; a, c,−λ)

tn

n!
=

(−1)α

2mα

∞∑
n=0

HE
[m−1,α]
n−mα (x, y; a, c, λ)

tn

(n−mα)!
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Comparing the coefficients of tn on both sides of the above equation, we
obtain the result (38). Next consider the generating function (25)

2mα[B(λ, a; t)]αcxt+yt
2

=
∞∑
n=0

HE
[m−1,α]
n (x, y; a, c, λ)

tn

n!

(−1)α2mα

tmα
tmα[A(λ, a; t)]αcxt+yt

2
=
∞∑
n=0

HE
[m−1,α]
n (x, y; a, c,−λ)

tn

n!

(−2m)α
∞∑
n=0

HB
[m−1,α]
n (x, y; a, c, λ)

tn−mα

n!
=

∞∑
n=0

HE
[m−1,α]
n (x, y; a, c,−λ)

tn

n!

Replacing n by n+mα in L.H.S of above equation, we get

(−2m)α
∞∑
n=0

HB
[m−1,α]
n+mα (x, y; a, c, λ)

tn

(n+mα)!

=

∞∑
n=0

HE
[m−1,α]
n (x, y; a, c,−λ)

tn

n!

Comparing the coefficients of tn on both sides of the above equation, we
obtain the result (40). �

For y = 0 in equation (39) and (40), the result reduces to known result
Tremblay et al [26](see also [6]).

Theorem 2. Let a, b, cεR+, α an arbitrary complex number and mεN .

Then the generalized Apostol-Hermite-Euler polynomials HE
[m−1,α]
n (x, y; a, c, λ)

satisfy the following relations

HE
[m−1,α+β]
n (x+ u, y; a, c, λ)(41)

=

n∑
k=0

(
n
k

)
HE

[m−1,α]
k (x, y; a, c, λ)E

[m−1,β]
n−k (u, a, c;λ)

Proof. Considering the generating function (29) as

2mα[B(λ, a; t)]α+βc(x+u)t+yt
2

=
∞∑
k=0

HE
[m−1,α]
k (x, y; a, c, λ)

tk

k!

∞∑
n=0

E[m−1,β]
n (u, a, c, λ)

tn

n!

∞∑
n=0

HE
[m−1,α+β]
n (x+ u, y; a, c, λ)

tn

n!
(42)

=
∞∑
n=0

∞∑
k=0

HE
[m−1,α]
k (x, y; a, c, λ)E[m−1,β]

n (u, a, c, λ)
tn+k

n!k!



162 M. A. Pathan and Waseem A. Khan

Replacing n by n− k in R.H.S of above equation, we get

∞∑
n=0

HE
[m−1,α+β]
n (x+ u, y; a, c, λ)

tn

n!

=

∞∑
n=0

n∑
k=0

(
n
k

)
HE

[m−1,α]
k (x, y; a, c, λ)E

[m−1,β]
n−k (u, a, c, λ)

tn

n!

Finally equating the coefficients of tn

n! , we get the result (41).
For y = 0 in equation (41), the result reduces to known result of Tremblay

et al [26]. �

Theorem 3. The generalized Apostol-Hermite-Euler polynomials HE
[m−1,α]
n

(x, y; a, c, λ) satisfies the following recurrence relation

λHE
[m−1,α]
n (x+ 1, y; a, c, λ) + HE

[m−1,α]
n (x, y; a, c, λ)(43)

= 2
n∑
k=0

(
n
k

)
HE

[m−1,α]
k (x, y; a, c, λ)E

(−1)
n−k (0, a, λ).

Proof. Let

λHE
[m−1,α]
n (x+ 1, y; a, c, λ) + HE

[m−1,α]
n (x, y; a, c, λ)

=
(
2mat

)α
cxt+yt

2
(λct + 1)

= 22mα[B(λ, a; t)]αcxt+yt
2

(
2

λat + 1

)(−1)

= 2
∞∑
k=0

HE
[m−1,α]
k (x, y; a, c, λ)

tk

k!

∞∑
n=0

E(−1)
n (0, a;λ)

tn

n!

= 2
∞∑
n=0

∞∑
k=0

HE
[m−1,α]
k (x, y; a, c, λ)E(−1)

n (0, a;λ)
tn+k

n!k!
.

Replacing n by n− k in R.H.S of above equation, we get

∞∑
n=0

(
λHE

[m−1,α]
n (x+ 1, y; a, c, λ) + HE

[m−1,α]
n (x, y; a, c, λ)

) tn
n!

=
∞∑
n=0

(
2

n∑
k=0

HE
[m−1,α]
k (x, y; a, c, λ)E

(−1)
n−k (0, a;λ)

)
tn

(n− k)!k!
.

Comparing the coefficients of tn

n! in the above equation, we get the result
(43).

For y = 0 in equation (43), the result reduces to known result Tremblay
et al [26]. �
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Remark 1. Setting y = 0, m = 1 and b = c = e in (43) and using (29),
we find

(44) λEαn (x+ 1;λ) + Eαn (x;λ) = 2
n∑
k=0

(
n
k

)
E

(α)
k (x;λ)E

(−1)
n−k (0;λ)

Using the well known result (see [9])

(45) Eα+βn (x+ y;λ) = 2

n∑
k=0

(
n
k

)
E

(α)
k (x;λ)E

(β)
n−k(y;λ)

equation (44) becomes the familiar relation for the generalized Apostol-Euler
polynomials (see [9])

(46) λEαn (x+ 1;λ) + Eαn (x;λ) = 2E(α−1)
n (x;λ).

Theorem 4. Let a, b ∈ R, α and β arbitrary complex numbers, mεN .

Then the generalized Apostol-Hermite-Euler polynomials HE
[α,m−1]
n (x, y; a,

c, λ) satisfy the following relation

HE
[α+β,m−1]
n (x1 + x2, y1 + y2; a, c, λ)(47)

=

n∑
k=0

(
n
k

)
HE

[α,m−1]
n−k (x1, y1; a, c, λ)HE

[β,m−1]
k (x2, y2; a, c, λ).

Proof. Use definition (25) to get

∞∑
n=0

HE
[α+β,m−1]
n (x1 + x2, y1 + y2; a, c, λ)

tn

n!

= 2mα[B(λ, a; t)]α+βc(x1+x2)t+(y1+y2)t2

=

( ∞∑
n=0

HE
[α,m−1]
n (x1, y1; a, c, λ)

tn

n!

)( ∞∑
k=0

HE
[β,m−1]
k (x2, y2; a, c, λ)

tk

k!

)

=
∞∑
n=0

∞∑
k=0

HE
[α,m−1]
n (x1, y1; a, c, λ)HE

[β,m−1]
k (x2, y2; a, c, λ)

tn+k

n!k!
.

Replacing n by n− k in R.H.S of above equation, we get

L.H.S. =
∞∑
n=0

(
n∑
k=0

)
HE

[α,m−1]
n−k (x1, y1; a, c, λ)

×HE[β,m−1]
k (x2, y2; a, c, λ)

tn

(n− k)!k!
.
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Comparing the coefficients of t
n

n! in above equation, we get the desired result
(47). For m=1 in equation (47), the result reduces to a known result of
Gaboury et al [6., p.7, Eq. 3.6]. �

3. New classes of Apostol-Hermite-Genocchi polynomials

Now let us shift our focus on some interesting properties for the general-

ized Apostol-Hermite-Genocchi polynomials HG
[α,m−1]
n (x, y; a, c, λ) defined

by (35). These are stated as Theorem 5 to Theorem 9 below:

Theorem 5. The generalized Apostol-Hermite-Genocchi polynomials

HG
[α,m−1]
n (x, y; a, c, λ), the generalized Apostol-Hermite-Bernoulli polynomi-

als HB
[α,m−1]
n (x, y; a, c, λ) and the generalized Apostol-Hermite-Euler poly-

nomials HE
[α,m−1]
n (x, y; a, c, λ) are related by

(48) HG
[α,m−1]
n (x, y; a, c,−λ) = (−2m)αHB

[α,m−1]
n (x, y; a, c, λ), (α ∈ C)

or equivalently

(49) HG
[α,m−1]
n (x, y; a, c, λ) =

n!

(n−mα)!
HE

[α,m−1]
n−mα (x, y; a, c, λ),

n, α,m ∈ N , n ≥ mα.

Proof. Using definition (24)

tmα[A(λ, a; t)]αcxt+yt
2

=
∞∑
n=0

HB
[α,m−1]
n (x, y; a, c, λ)

tn

n!

tmα[B(−λ, a; t)]αcxt+yt
2

= (−2m)α
∞∑
n=0

HB
[α,m−1]
n (x, y; a, c, λ)

tn

n!

∞∑
n=0

HG
[α,m−1]
n (x, y; a, c,−λ)

tn

n!
= (−2m)α

∞∑
n=0

HB
[α,m−1]
n (x, y; a, c, λ)

tn

n!

Comparing the coefficients of tn

n! on both sides, we get the desired result
(48). Next using definition (26)

2mαtmα[B(λ, a; t)]αcxt+yt
2

=
∞∑
n=0

HG
[α,m−1]
n (x, y; a, c, λ)

tn

n!

2mαtmα[B(λ, a; t)]αcxt+yt
2

=
∞∑
n=0

HG
[α,m−1]
n (x, y; a, c, λ)

tn

n!
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∞∑
n=0

HE
[α,m−1]
n (x, y; a, c, λ)

tn+mα

n!
=
∞∑
n=0

HG
[α,m−1]
n (x, y; a, c, λ)

tn

n!

Replace n by n−mα in L.H.S of the above equation, we get

∞∑
n=mα

HE
[α,m−1]
n−mα (x, y; a, c, λ)

tn

(n−mα)!
=
∞∑
n=0

HG
[α,m−1]
n (x, y; a, c, λ)

tn

n!

Comparing the coefficients of t on both sides, we get the result (49).
For y = 0 in equation (48) and (49), the result reduces to known result

of Tremblay et al [26]. �

Theorem 6. Let a, cεR, α an arbitrary complex number and mεN , then

the generalized Apostol-Hermite-Genocchi polynomials HG
[α,m−1]
n (x, y; a, c, λ)

satisfy the following relations

HG
[α+β,m−1]
n (x+ u, y; a, c, λ)(50)

=
n∑
k=0

(
n
k

)
HG

[m−1,α]
k (x, y; a, c, λ)G

[m−1,β]
n−k (u, a, c, λ).

Proof. Using definition (26)

∞∑
n=0

HG
[α+β,m−1]
n (x+ u, y; a, c, λ)

tn

n!

= 2mαtmα[B(λ, a; t)]αcxt+yt
2
2mαtmα[B(λ, a; t)]βcut

=
∞∑
n=0

∞∑
k=0

HG
[α,m−1]
k (x, y; a, c, λ)G[β,m−1]

n (u, a, c, λ)
tn+k

n!
.

Replacing n by n− k in above equation, we have

L.H.S. =
∞∑
n=0

(
n∑
k=0

HG
[α,m−1]
k (x, y; a, c, λ)G

[β,m−1]
n−k (u, a, c, λ)

)
tn

(n− k)!k!

Finally equating the coefficients of tn

n! , we get the result (50).
For y = 0 in equation (50), the result reduces to known result of Tremblay

et al [26]. �

Theorem 7. The generalized Apostol-Hermite-Genocchi polynomials

HG
[m−1,α]
n (x, y; a, c, λ) satisfy the following recurrence relation

λHG
[m−1,α]
n (x+ 1, y; a, c, λ) + HG

[m−1,α]
n (x, y; a, c, λ)(51)

= 2n

n∑
k=0

(
n− 1
k

)
HG

[m−1,α]
k (x, y; a, c, λ)G

(−1)
n−1−k(0, a, λ)
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Proof. Let us write

L.H.S = 2mαtmα[B(λ, a; t)]αcxt+yt
2
(λat + 1)

= 2t2mαtmα[B(λ, a; t)]αcxt+yt
2

(
2t

λat + 1

)(−1)

= 2t
∞∑
k=0

HG
[m−1,α]
k (x, y; a, c, λ)

tk

k!

∞∑
n=0

G(−1)
n (0, a;λ)

tn

n!

= 2

∞∑
n=0

∞∑
k=0

HG
[m−1,α]
k (x, y; a, c, λ)G(−1)

n (0, a;λ)
tn+k+1

n!k!
.

Replacing n by n− k − 1 in R.H.S of above equation, we get

∞∑
n=0

(
λHG

[m−1,α]
n (x+ 1, y; a, c, λ) + HG

[m−1,α]
n (x, y; a, c, λ)

) tn
n!

=

∞∑
n=0

(
2n

n∑
k=0

HG
[m−1,α]
k (x, y; a, c, λ)G

(−1)
n−1−k(0, a;λ)

)
tn

(n− 1− k)!k!
.

Comparing the coefficients of tn

n! in the above equation, we get the result
(51).

For y = 0 in equation (51), the result reduces to known result of Tremblay
et al [26]. �

Remark 2. Setting y = 0, m = 1 and b=c=e in (51) and using (34), we
find

(52) λGαn(x+ 1;λ) +Gαn(x;λ) = 2n

n∑
k=0

(
n− 1
k

)
G

(α)
k (x;λ)E

(−1)
n−1−k(0;λ

Using the well known result (see [9])

(53) Gα+βn (x+ y;λ) =
n∑
k=0

(
n
k

)
G

(α)
k (x;λ)G

(β)
n−k(y;λ)

equation (52) becomes the familiar relation for the generalized Apostol-Genocchi
polynomials (see [9])

(54) λGαn(x+ 1;λ) +Gαn(x;λ) = 2nG
(α−1)
n−1 (x;λ).
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Theorem 8. Let a, b, c, p, q ∈ R, α an arbitrary complex number and

mεN , then the generalized Apostol-Hermite-Genocchi polynomials HG
[α,m−1]
n (x, y; a, c, λ)

satisfy the following relation

HG
[α+β,m−1]
n (px, qy; a, c, λ)(55)

= n!

n∑
k=0

[ k
2
]∑

j=0

HG
[m−1,α]
n−k (x, y; a, c, λ)((p− 1)x ln c)k

× ((q − 1)y ln c)j
1

(n− k − 2j)!j!

Proof. Using definition (26)

∞∑
n=0

HG
[α+β,m−1]
n (px, qy; a, c, λ)

tn

n!

= 2mαtmα[B(λ, a; t)]αcxt+yt
2
c(p−1)xtc(q−1)yt

2

=

( ∞∑
n=0

HG
[α,m−1]
n (x, y; a, c, λ)

tn

n!

)

×

( ∞∑
k=0

((p− 1)x ln c)k
tk

k!

) ∞∑
j=0

((q − 1)y ln c)j
t2j

j!


=

( ∞∑
n=0

HG
[α,m−1]
n (x, y; a, c, λ)

tn

n!

)

×
∞∑
k=0

∞∑
j=0

((p− 1)x ln c)k((q − 1)y ln c)j
tk+2j

k!j!

Replacing k by k − 2j in above equation, we have

L.H.S. =

( ∞∑
n=0

HG
[α,m−1]
n (x, y; a, c, λ)

tn

n!

)

×
∞∑
k=0

[ k
2
]∑

j=0

((p− 1)x ln c)k−2j((q − 1)y ln c)j
tk

(k − 2j)!j!

=
∞∑
n=0

∞∑
k=0

[ k
2
]∑

j=0

HG
[α,m−1]
n (x, y; a, c, λ)((p− 1)x ln c)k−2j

× ((q − 1)y ln c)j
tn+k

(k − 2j)!j!n!
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Replacing n by n− k in above equation, we have

L.H.S. =
∞∑
n=0

n∑
k=0

[ k
2
]∑

j=0

HG
[α,m−1]
n−k (x, y; a, c, λ)((p− 1)x ln c)k−2j

× ((q − 1)y ln c)j
tn

(n− k − 2j)!j!k!

Finally equating the coefficients of tn

n! , we get the result (3.8). For m = 1
in equation (3.8), the result reduces to a known result of Gaboury et al [6,
p.10.,Eq.3.16]. �

Theorem 9. Let a, b ∈ R, α and β arbitrary complex number mεN then

the generalized Apostol-Hermite-Genocchi polynomials HG
[α,m−1]
n (x, y; a, c, λ)

satisfy the following relation

HG
[α+β,m−1]
n (x1 + x2, y1 + y2; a, c, λ)

=

n∑
k=0

(
n
k

)
HG

[α,m−1]
n−k (x1, y1; a, c, λ)HG

[β,m−1]
k (x2, y2; a, c, λ)

Proof. Use definition (25) to get

L.H.S = 2mαtmα[B(λ, a; t)]α+βc(x1+x2)t+(y1+y2)t2

=

( ∞∑
n=0

HG
[α,m−1]
n (x1, y1; a, c, λ)

tn

n!

)

×

( ∞∑
k=0

HG
[β,m−1]
k (x2, y2; a, c, λ)

tk

k!

)

=

∞∑
n=0

∞∑
k=0

HG
[α,m−1]
n (x1, y1; a, c, λ)HG

[β,m−1]
k (x2, y2; a, c, λ)

tn+k

n!k!

=

∞∑
n=0

n∑
k=0

× HG
[α,m−1]
n−k (x1, y1; a, c, λ)HG

[β,m−1]
k (x2, y2; a, c, λ)

tn

(n− k)!k!

Comparing the coefficients of t
n

n! in above equation, we get the desired result
(56). For m = 1 in equation (56), the result reduces to a known result of
Gaboury et al [6, p.7, Eq. 3.6]. �

Acknowledgement. The first author M.A.Pathan would like to thank
the Department of Science and Technology, Government of India, for the
financial assistance for this work under project number SR/S4/MS:794/12.



Some new classes of generalized . . . 169

References

[1] Apostol T.M., On the Lerch zeta function, Pacific J. Math., 1(1951),
161-167.

[2] Bell E.T., Exponential polynomials, Ann. of Math., 35(1934), 258-277.
[3] Boyadzhiev K.N., Apostol-Bernoulli functions derivative polynomials and

Eulerian polynomials, Advances and Appl. in Discrete Math., 1(2)(2008),
109-122.

[4] Choi J., Anderson P.J., Srivastava H.M., Some q-extensions of the Apo-
stol-Bernoulli and the Apostol-Euler polynomials of order n and the multiple
Hurwitzz zeta function, Applied Math and Comp., 199(2)(2008), 723-737.

[5] Dattoli G., Lorenzutta S., Cesarano C., Finite sums and generalized
forms of Bernoulli polynomials, Rendiconti di Mathematica, 19(1999), 385-391.

[6] Gaboury S., Kurt B., Some relations involving Hermite-Based Apostol-
Genocchi polynomials, J. Appl. Math. Sci., 82(2012),4091-4102.

[7] Kurt B., A further generalization of the Euler polynomials and on the
2D-Euler polynomials, In Press, ....

[8] Luo Q.M, Srivastava H.M., Some relationships between the Apostol-
Bernoulli and Apostol-Euler polynomials, Computers and Mathematics with
Applications, 51(3-4)(2006), 631-642.

[9] Luo Q.M., Srivastava H.M., Some generalizations of the Apostol-Bernoulli
and Apostol-Euler polynomials, J. Math. Anal. and Appl., 308(1)(2005), 290-
302.

[10] Luo Q.M., Srivastava H.M., Some generalizations of the Apostol-Genocchi
polynomials and the Stirling numbers of the second kind, Applied Math. and
Comput., 217(12)(2011), 5702-5728.

[11] Luo Q.M., Fourier expansions and integral representations for the Apostol-
Bernoulli and Apostol-Euler polynomials, Math. of Comp., 78(2009), 2193-
2208.

[12] Luo Q.M., The multiplication formulas for the Apostol-Bernoulli and Apo-
stol-Euler polynomials of higher order, Integral Transform and Special Func-
tions, 20(5-6)(2009), 377-391.

[13] Luo Q.M., Some formulas for the Apostol-Euler polynomials associated with
Hurwitz zeta function at rational arguments, Applicable Analysis and Discrete
Mathematics, 3(2)(2009), 336-346.

[14] Luo Q.M., An explicit relationship between the generalized Apostol-Bernoulli
and Apolstol-Euler polynomials associated with the λ-Stirling numbers of sec-
ond kind, Houston J. Math., 36(4)(2010), 1159-1171.

[15] Luo Q.M., Fourier expansions and integral representations for the Genocchi
polynomials, J. Integer Seq., 12(2009), 1-9.

[16] Luo Q.M., q-extension for the Apostol-Genocchi polynomials, Gen. Math.,
17(2009), 113-125.

[17] Luo Q.M., Extension for the Genocchi polynomials and its Fourier expansions
and integral representations, Osaka J. Math., 48(2011), 291-310.

[18] Luo D.Q., Luo Q.M., Some properties of the generalized Apostol-type poly-
nomials, DOI:10,1186/1687-2770, 64(2013).

[19] Pathan M.A., A new class of generalized Hermite-Bernoulli polynomials,
Georgian Mathematical Journal, 19(2012), 559-573.



170 M. A. Pathan and Waseem A. Khan

[20] Prevost M., Pade approximation and Apostol-Bernoulli and Apostol-Euler
polynomials, J. Comp. and Appl. Math., 233(11)(2010), 3005-3017.

[21] Sandor J., Crisci, Handbook of Number Theory, Vol.II. Kluwer Academic
Publishers, Dordrecht Boston and London, 2004.

[22] Srivastava H.M., Garg M., Choudhary S., Some new families of gen-
eralized Euler and Genocchi polynomials, Tawanese J. Math., 15(1)(2011),
283-305.

[23] Srivastava H.M., Choi J., Series associated with the Zeta and related func-
tions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.

[24] Srivastava H.M., Pinter A., Remarks on some relationships between the
Bernoulli and Euler polynomials, Appl. Math. Lett., 17(2004), 375-380.

[25] Tremblay R., Gaboury S., Fugere B.J., A further generalization of
Apostol-Bernoulli polynomials and related polynomials, Honam Math. J.,
34(2012), 311-326.

[26] Tremblay R, Gaboury S, Fugere B.J., Some new classes of generalized
Apostol-Euler and Apostol-Genocchi polynomials, Int. J. Math and Math.
Sci., 2012., DOI:10.1155/2012/182785.

M. A. Pathan
Centre for Mathematical and Statistical Sciences (CMSS)

KFRI, Peechi P.O., Thrissur, Kerala-680653, India

e-mail: mapathan@gmail.com

Waseem A. Khan
Department of Mathematics

Integral University
Lucknow-226026, India

e-mail: waseem08 khan@rediffmail.com

Received on 03.07.2014 and, in revised form, on 07.05.2015.


