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1. Introduction

Generalized open sets play a very important role in General Topology
and they are now the research topics of many topologists worldwide. In-
deed a significant theme in General Topology and Real Analysis concerns
the variously modified forms of continuity, separation axioms, compactness,
connectedness etc. by utilizing generalized open sets. One of the most well
known notions and also an inspiration source is the notion of semiopen sets
was introduced by Levine in 1963. In 1995, Sundaram and Sheik John [9]
introduced the concepts of ω-open sets and ω-continuity. This notion was
further studied by Sheik John and Sundaram in [8] and Noiri and Popa in
[4]. In this paper, we obtain further properties of ω-continuity in topological
spaces.

2. Preliminaries

Throughout this paper (X, τ) and (Y, σ) (or simply X and Y ) represent
topological spaces on which no separation axioms are assumed unless other-
wise mentioned. For a subset A of a space (X, τ), Cl(A) and Int(A) denote
the closure of A and the interior of A, respectively.

We recall the following definitions, which are useful in the sequel.

Definition 1. A subset A of a space (X, τ) is called semiopen [2] if
A ⊂ Cl(Int(A)). The complement of a semiopen set is called a semiclosed
set [1].
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Definition 2. A subset A of a space (X, τ) is called ω-closed [9] if
Cl(A) ⊂ U whenever A ⊂ U and U is semiopen in X. The complement of
an ω-closed set is called an ω-open set.

The family of all ω-open (resp. ω-closed) sets of (X, τ) is denoted by
ω(τ) (resp. ωC(X)). We set ωO(X,x) = {U : U ∈ ω(τ) and x ∈ U}. In [9]
shown that the set ω(τ) forms a topology, which is finer than τ .

Definition 3. The intersection of all ω-closed sets containing A is called
the ω-closure [7] of A and is denoted by ωCl(A). A set A is ω-closed if and
only if ωCl(A) = A [7].

3. Properties of ω-continuous functions

Definition 4. A function f : (X, τ)→ (Y, σ) is called :
(1) an ω-continuous [9] at a point x ∈ X if for each open subset V in Y
containing f(x), there exists a U ∈ ω(X,x) such that f(U) ⊂ V ;

(2) an ω-continuous [9] if it has this property at each point of X.

Theorem 1 ([7]). The following statements are equivalent for a function
f : (X, τ)→ (Y, σ):

(1) f is ω-continuous;
(2) f : (X,ω(τ))→ (Y, σ) is continuous;
(3) for every open set V of Y , f−1(V ) is ω-open in X;
(4) for every closed set V of Y , f−1(V ) is ω-closed in X.

Lemma 1 ([9]). Let A ⊂ B ⊂ X, A be ω-open in B and B an open set
in (X, τ), then A ∈ ω(τ).

Theorem 2. Let f : (X, τ)→ (Y, σ) be a function and Λ = {Ui : i ∈ I}
be a cover of X such that Ui ∈ ω(τ) for each i ∈ I. If f |Ui is continuous for
each i ∈ I, then f is ω-continuous.

Proof. Suppose that V is any open subset of (Y, σ). Since f |Ui is
ω-continuous for each i ∈ I, it follows that (f |Ui)−1(V ) is open in Ui. We
have f−1(V ) = ∪i∈I (f−1(V ) ∩ Ui) = ∪i∈I(f |Ui)−1(V ). Then by Lemma 1,
we obtain f−1(V ) ∈ ω(τ), which means that f is ω-continuous. �

Theorem 3. Let f : (X, τ) → (Y, σ) be a function and x ∈ X. If there
exists an open set U of X such that x ∈ U , and the restriction of f to U is
ω-continuous at x, then f is ω-continuous at x.

Proof. Suppose that F is an open subset of (Y, σ) containing f(x). Since
f |U is ω-continuous at x, there exists an ω-open set V of U containing x
such that f(V ) = (f |U ) (V ) ⊂ F . Since U is open in X containing x, it
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follows from Lemma 1 that V ∈ ω(τ) containing x. Thus, f is ω-continuous
at x. �

Theorem 4. A sequence {gn : X → R} of functions converges uniformly
if and only if for every ε > 0, there exists a natural number N such that
for all natural numbers n and m with n ≥ m ≥ N for all x ∈ X, we have
|gn(x)− gm(x)| < ε.

Theorem 5. Let {fn : X → R} be a sequence of ω-continuous function

such that |fn| ≤ Mn for each n, where
∞
Σ
n=1

Mn is a convergent series of the

function gn = f1 +f2 + ...+fn is ω-continuous for each n, then the function

f defined by f(x) =
∞
Σ
n=1

fn(x) exists and is ω-continuous on X.

Proof. For each n, let gn = f1 + f2 + . . . + fn. Let ε > 0. Since
∞
Σ
n=1

Mn is a convergent series, there exists a natural number N such that

∞
Σ
i=N

Mn < ε. Let n and m be natural numbers such that n ≥ m ≥ N . Then

for all x ∈ X, |gn(x) − gm(x)| < |
n
Σ
i=m

fi(x)| ≤
n
Σ
i=m
|fi(x)| ≤

∞
Σ
i=N

Mn < ε.

By Theorem 4, this means that the sequence {gn} converges uniformly on
X. For each x ∈ X, define f : X → R by f(x) = lim

n→∞
gn(x). Since

gn → f uniformly on X, it follows that f(x) =
∞
Σ
n=1

fn(x). It remains to

show that f is ω-continuous on X. To this end, let ε > 0 and p ∈ X.
Since gn → f uniformly on X, there exists a natural number m such that
for all x ∈ X, we have |gm(x) − f(x)| < ε/3. Since gm is ω-continuous,
there exists an ω-open set Wε containing p such that for all z ∈ Wε, we
have |gm(z)− gm(p)| < ε/3. Thus, for all z ∈ Wε. We have |f(z)− g(p)| =
(|f(z) − gm(z)| + |gm(z) − gm(p)| + |gm(p) − f(p)|) < ε. This means that
for every open set V = (f(p) − ε, f(p) + ε) containing f(p), there exists an
ω-open set Wε containing p such that f(Wε) ⊂ V . Therefore, By Theorem 4,
f is ω-continuous on X. �

Theorem 6 ([7]). If f : (X, τ) → (Y, σ) is ω-continuous and if g :
(Y, σ)→ (Z, η) is continuous, then g ◦ f is ω-continuous.

Theorem 7. Let g : (X, τ) → (Y, σ) be continuous and h : (X, τ) →
(Z, η) be ω-continuous. Then f : X → Y ×Z defined by f(x) = (g(x), h(x))
is ω-continuous.

Proof. Let A×B be a basic open subset of Y ×Z. Then f−1(A×B) =
g−1(A) ∩ h−1(B). Since g is continuous and h is ω-continuous, g−1(A) is
open and h−1(B) is ω-open. Therefore, f−1(A×B) is ω-open and hence f
is ω-continuous. �
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Remark 1. Every constant function from (X, τ) into (R, σ) is an ω-conti-
nuous function.

Theorem 8. Let g and f , respectively, be continuous and ω-continuous
real valued functions on X. Then each of the following is true:

(1) g+
−
f is an ω-continuous function,

(2) gf is an ω-continuous function,
(3) |f | is an ω-continuous function,
(4) min{f, g} and max{f, g} are ω-continuous functions,
(5) If g(x) 6= 0 for all x ∈ X, then f

g is ω-continuous,

(6) If f(x) 6= 0 for all x ∈ X, then g
f is ω-continuous,

(7) fk is ω-continuous for each positive integer k.

Proof. We prove (1) and (6). h : R×R→ R defined as h(x, y) = x+ y
is continuous. Hence the proof of (1) follows from Theorems 6 and 7. The
proof of (6) follows from the facts that h(x) = 1

x is continuous, that f is
ω-continuous and (2). �

Definition 5. A subset A of a space (X, τ) is said to be an ω-zero set
of X if there exists an ω-continuous function f : (X, τ) → (R, σ) such that
A = {x ∈ X : f(x) = 0} and a subset is coω-zero-set if it is the complement
of an ω-zero-set. Furthermore, if f : (X, τ) → (R, σ) is an ω-continuous
function, then the set ωZ(f) = {x ∈ X : f(x) = 0} is called the ω-zero-set
of f .

Remark 2. (1) Every ω-zero-set of a space is ω-closed and hence ev-
ery coω-zero-set is an ω-open set,

(2) Every zero-set of any space is an ω-zero-set.

Example 1. Let f : (X, τ) → (R, σ) be a function defined by f(x) = 1
for all x ∈ X, where X = {a, b, c} and τ = {∅, X, {a}}. Then the set {b, c}
is an ω-closed set but not ω-zero-set.

Example 2. Let f : (X, τ) → (R, σ) be a function defined by f(a) =
f(b) = 1 and f(c) = 0, where X = {a, b, c} and τ = {∅, X, {a}}. Then
f is ω-continuous but not a continuous function. Hence the set {c} is an
ω-zero-set which is not zero-set.

Lemma 2. If A is an ω-zero-set of a space X, then there exists an
ω-continuous function f : X → R such that f ≥ 0 and AωZ(f).

Proof. Since A = ωZ(g) for some ω-continuous function g : X → R, by
Theorem 8, the function f = |g| ≥ 0 is ω-continuous and A = ωZ(f). �
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Lemma 3. The intersection and union of any finite number of ω-zero-sets
is also an ω-zero-set. If ωZ(f) and ωZ(g) are ω-zero-sets of f and g, then
ωZ(f) ∪ ωZ(g) = ωZ(fg), ωZ(f) ∩ ωZ(g) = ωZ(h), where h = f + g.

Proof. By Theorem 8, it follows that both fg and h = f + g are
ω-continuous. Therefore, ωZ(f)∪ωZ(g) = ωZ(fg), ωZ(f)∩ωZ(g) = ωZ(h)
are ω-zero-sets. �

Lemma 4. If α ∈ R and f : X → R is an ω-continuous function, then
the set A = {x ∈ X : f(x) ≥ α} as well as B = {x ∈ X : f(x) ≤ α} are
ω-zero-sets, and hence the sets {x ∈ X : f(x) < α} and {x ∈ X : f(x) > α}
are coω-zero-sets.

Proof. By using Theorem 8, it is easy to see thatA = ωZ(min{f(x)\α, 0})
and B = ωZ(max{f(x)\α, 0}) are ω-zero-sets. �

Lemma 5. If A and B are disjoint ω-zero-sets the space X, then there
exist disjoint coω-zero-sets U and V containing A and B, respectively.

Proof. Let A = ωZ(f) and B = ωZ(g) Then the function h : X → R

given by h(x) = f(x)
f(x)+g(x) is well defined and in view of Theorem 8 it is

ω-continuous, h(A) = {0} and h(B) = {1}. Then by Lemma 4, the sets
{x ∈ X : h(x) > 1

2} and {x ∈ X : h(x) < 1
4} are the required coω-zero

(hence ω-open) sets. �

Definition 6. A topological space (X, τ) is said to be ω?-normal if for
any pair of disjoint ω-closed subsets F1 and F2 of X, there exist disjoint
ω-open sets U and V such that F1 ⊂ U and F2 ⊂ V . That is, a topological
space (X, τ) is ω?-normal if and only if (X, τω) is a normal space.

It is not difficult to prove the following, characterization of an ω?-normal
space:

Theorem 9. A topological space (X, τ) is an ω?-normal space if for each
pair of ω-open sets U and V in X such that X = U ∩V , there exist ω-closed
sets A and B which are contained in U and V , respectively and X = A∪B.

Theorem 10. If (X, τ) is any topological space, then the following state-
ments are equivalent:

(1) The space X is ω?-normal.
(2) For each ω-closed set A in X and each ω-open set G in X containing
A, there is an ω-open set U such that A ⊆ U ⊆ ωCl(U) ⊆ G.

(3) For each ω-closed set A and each ω-open set G containing A, there
exist ω-open sets {Un, n ∈ N} such that A ⊆ ∪{Un : n ∈ N} and
ωCl(Un) ⊆ G for each n ∈ N .
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Now, we can establish the following Urysohn’s type lemma of ω?-normality
which is important characterization of the ω?-normal space:

Theorem 11. Let (X, τ) be any topological space. Then the following
statements are equivalent:

(1) X is an ω?-normal space,
(2) For each ω-closed subset A and ω-open subset B of X such that A ⊆
B, there exists an ω-continuous function f : X → I such that f(A) = {0}
and f(X\B) = {1},

(3) For each pair of disjoint ω-closed subsets F and H of X, there ex-
ists an ω-continuous function f : X → I such that f(F ) = {0} and
f(H) = {1}.

Proof. (1)⇒ (2): Suppose that B is an ω-open subset of an ω?-normal
space X containing an ω-closed subset A of X. Then by Theorem 10, there
exists an ω-open set which we denote by U 1

2
such that A ⊆ U 1

2
⊆ ωCl(U 1

2
) ⊆

B. Then U 1
2

and B are ω-open subsets of X containing the ω-closed sets

A and ωCl(U 1
2
), respectively. In the same way, there exist ω-open sets,

say U 1
4

and U 3
4

such that A ⊆ U 1
4
⊆ ωCl(U 1

4
) ⊆ U 1

2
and ωCl(U 1

2
) ⊆

U 3
4
⊆ ωCl(U 3

4
) ⊆ B. Continuing in this process, for each rational number

in the open interval (0, 1) of the form t = m
2n , where n = 1, 2, . . . and

m = 1, 2, . . . , 2n−1, we obtain ω-open sets of the form Ut such that for each
s < t then A ⊆ Us ⊆ ωCl(Us) ⊆ Ut ⊆ ωCl(Ut). We denote the set of all
such rational numbers of Ψ, and define f : X → I as follows:

f(x) =

{
1 if x ∈ X\B,

inf{t : t ∈ Ψ and x ∈ Ut}

f(X\B) = {1} and if x ∈ A, then x ∈ Ut for all t ∈ Ψ. Therefore, by
the definition of f , we have f(x) = inf Ψ = 0. Hence f(B) = {0} and
f(x) ∈ I for all x ∈ X. It remains only to show that f is an ω-continuous
function since the intervals of the form [0, a) and (b, 1], where a, b ∈ (0, 1)
form an open subbase of the space I. If x ∈ Ut for some t < a, then
f(x) = inf{s : s ∈ ψ and x ∈ Us} = r ≤ t < a. Thus 0 ≤ f(x) < a.
If f(x) = 0, then x ∈ Ut for all t ∈ Ψ. Hence x ∈ Ut for some t < u. If
0 < f(x) < a, by definition of f we have f(x) = {s : s ∈ Ψ and x ∈ Us} < a{
since a < 1}. Thus f(x) = t for some t < a, and hence x ∈ Ut for some t < a.
Therefore, we conclude that 0 ≤ f(x) < a if and only if x ∈ Ut for some
t < a. Hence f−1([0, a)) = ∪{Ut : t ∈ Psi and x ∈ Ut} which is an ω-open
subset of X. Also it is easy to assert that: 0 ≤ f(x) ≤ b if and only if x ∈ Ut
for all t > b. Let x ∈ X such that 0 ≤ f(x) ≤ b. It is evident that f(x) < t
for all t > b which implies that x ∈ Ut for all t > b. For the converse, let
x ∈ Ut for all t > b. Then f(x) ≤ t for all t > b. Thus f(x)‘b and it is clear
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form the definition of f , that f(x) ≥ 0. This proves our assertion. Since
for all t > b, there is r ∈ Ψ such that t > r > b. Then ωCl(Ur) ⊆ Ut.
Consequently we have ∩{Ut : t ∈ Ψ and t > b} = ∩{ωCl(Ur) : r ∈ Ψ and
r > b}. Therefore, f−1([0, b]) = {x : 0 ≤ f(x) ≤ b} = ∩{Ut : t ∈ Ψ and
t > b} = ∩{ωCl(Ur) : r ∈ Ψ and r > b}. Since f−1((0, 1]) = f−1(I\[0, b]) =
X\f−1([0, b]) = ∪{X\ωCl(Ur) : r ∈ Ψ and r > b} which is ω-open, and this
completes the proof of this part.

(2)⇒ (3): Obvious.
(3) ⇒ (1): Let A and B be two disjoint ω-closed subsets of X. Then

by hypothesis, there exists an ω-continuous function f : X → I such that
f(A) = {0} and f(B) = {1}. Then the disjoint open sets [0, 1

2) and (1
2 , 1] in

I containing f(A) and f(B), respectively. The ω-continuity of f gives that
f−1([0, 1

2)) and f−1((1
2 .1]) are disjoint ω-open sets in X containing A and

B, respectively. �

In virtue of Theorem 5, Theorem 11 and the fact that every bounded
closed intervals of R are homeomorphic, we can generalize the Tietze Ex-
tension Theorem to ω?-normality which is also an important characterization
of ω?-normal space.

Theorem 12. A space X is ω?-normal if and only if every ω-continuous
function g on an ω-closed subset of X into any closed interval [a, b] has an
ω-continuous extension f over X into [a, b].

The following result contains the relationship between ω?-normal and an
ω-zero-set:

Proposition 1. Let X be a space. Then
(1) An ω-zero-set of X is ω-closed and it is the intersection of many
countable ω-open sets,

(2) Let H be an ω-closed subset of X which is the intersection of many
countable ω-open sets. If X is ω?-normal, then H is an ω-zero-set.

Proof. (1). Let F be an ω-zero-set of a space X. Then by Remark 2, F
is an ω-closed subset of X. Then by Lemma 2, there exists an ω-continuous
function f : X → R such that f ≥ 0 and F = ωZ(f). Hence F = ∩{Un :
n ∈ Z+}, where Un = {x ∈ X : f(x) < 1

n}.
(2). Let H be an ω-closed subset of an ω?-normal space X such that H =

∩{Un : n ∈ Z+}, where Un is an ω-open set for each n ∈ Z+. Since H ⊆ Un
for each n ∈ Z+ and X is an ω?-normal space, for each n ∈ Z+, there
exists an ω-continuous function fn : X → [0, 1

3n ] such that fn(H) = {0}

and fn(X\Un) = { 1
3n } by Theorem 11. Since

∞∑
n=0

fn(x) ≤
∞∑
n=0

1
3n and the

series
∞∑
n=0

1
3n is absolutely convergent, the function f : X → R given by
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f(x) =
∞∑
n=0

fn(x) for each x ∈ X is an ω-continuous function and H = ωZ(f)

by Theorem 5. �

Definition 7. (1) (i) A filter base Λ is said to be ω-convergent to a
point x in X if for any U ∈ ω(τ) containing x, there exists B ∈ Λ such
that B ⊂ U .
(ii) A filter base Λ is said to be convergent to a point x in X if for any
open set U of X containing x, there exists B ∈ Λ such that B ⊂ U .

Theorem 13. If a function f : (X, τ)→ (Y, σ) is ω-continuous, then for
each point x ∈ X and each filter base Λ in X ω-converging to x, the filter
base f(Λ) is convergent to f(x).

Proof. Let x ∈ X and Λ be any filter base in X ω-converging to x.
Since f is ω-continuous, then for any open set V of (Y, σ) containing f(x),
there exists U ∈ ωO(X,x) such that f(U) ⊂ V . Since Λ is ω-converging to
x, there exists a B ∈ Λ such that B ⊂ U . This means that f(B) ⊂ V and
hence the filter base f(Λ) is convergent to f(x). �

Let {Xα : α ∈ Λ} and {Yα : α ∈ Λ} be two families of topological spaces
with the same index set Λ. The product space of {Xα : α ∈ Λ} is denoted
by Π {Xα:α ∈ Λ} (or simply ΠXα). Let fα: Xα → Yα be a function for
each α ∈ Λ. The product function f : ΠXα → ΠYα is defined by f({xα}) =
{fα(xα)} for each {xα} ∈ ΠXα.

Theorem 14. If a function f : X → ΠYα is ω-continuous, then Pα ◦ f :
X → Yα is ω-continuous for each α ∈ Λ, where Pα is the projection of ΠYα
onto Yα.

Proof. Let Vα be any open set of Yα. Then, P−1
α (Vα) is open in ΠYα and

hence (Pα ◦ f)−1 (Vα) = f−1(P−1
α (Vα)) is ω-open in X. Therefore, Pα ◦ f is

ω-continuous. �

Theorem 15. If a function f : ΠXα → ΠYα is ω-continuous, then fα :
Xα → Yα is ω-continuous for each α ∈ Λ.

Proof. Let Vα be any open set of Yα. Then P−1
α (Vα) is open in ΠYα and

f−1(P−1
α (Vα)) = f−1

α (Vα) × Π{Xα : α ∈ Λ \ {α}}. Since f is ω-continuous,
f−1(P−1

α (Vα)) is ω-open in ΠXα. Since the projection Pα of ΠXα onto Xα is
open continuous, f−1

α (Vα) is ω-open in Xα and hence fα is ω-continuous. �

Theorem 16. Let {Xα : α ∈ Σ} be a family of spaces. Let X = ΠΣXα

and let Γ be a finite nonempty subset of Σ. For each α ∈ Γ, let gα : Xα → Yα
be ω-continuous. Then g : X → ΠΓYα defined by g(x) = (gα(Pα(x))) is
ω-continuous, where Pα is the projection from X to Xα.
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Proof. Let ΠΓVα be a basic open subset of ΠΓYα. Then g−1(ΠΓVα) =

∩
α∈Γ

P−1
α (g−1

α Vα). Since for each α ∈ Γ, gα : Xα → Yα is ω-continuous,

g−1(ΠΓVα) is a ω-open in X. Therefore g is ω-continuous. �

Theorem 17. Let {Xα : α ∈ Σ} be a family of topological spaces and Γ
be a nonempty and finite subfamily of Σ. For each α ∈ Γ, let gα : Xα → R
be ω-continuous. Let X = ΠΣXα. Then for each of the following cases,
λ : X → R, as defined, is ω-continuous.

(1) λ(x) = Σα∈Γgα ◦ Pα(x).
(2) λ(x) = Πα∈Γgα ◦ Pα(x).
(3) λ(x) = max{gα ◦ Pα(x) : α ∈ Γ}.
(4) λ(x) = min{gα ◦ Pα(x) : α ∈ Γ}.

Proof. We shall give the proof of (3). The proofs of (1), (2) and (4)
can be done similarly. Proof of (3). Let Yα = R for each α ∈ Γ. Then
the function h : ΠYα → R is defined by h(x) = max{Pα(x) : α ∈ Γ} is
continuous. If g is defined as in Theorem 16 above, then for each x ∈ x,
(h ◦ g)(x) = h((gα ◦ Pα(x))) = max{gα ◦ Pα(x) : α ∈ Γ} = λ(x). In view of
Theorem 16, g is ω-continuous. Hence λ is ω-continuous. �

Theorem 18. Let {Xα : α ∈ Σ} be a collection of spaces with the
property that if Fα ⊆ Xα is closed and xα ∈ Xα\Fα. Then there is an
ω-continuous function gα : Xα → [0, 1] such that gα(xα) = 0 and gα(Fα) =
1. Let X = ΠΣXα. Then for each closed set F ⊆ X and x ∈ X\F , there is
a ω-continuous function g : X → [0, 1] such that g(x) = 0 and g(F ) = 1.

Proof. Let {Xα : α ∈ Σ} be a collection of spaces satisfying the hypoth-
esis of the theorem and let X = ΠΣXα. Let F ⊆ X be a closed subset and
x ∈ X\F . There is a nonempty finite Γ ⊆ Σ and for each α ∈ Γ, an open sub-
set Vα of Xα such that x ∈ ∩

Γ
P−1
α (Vα) ⊆ X\F . For each α ∈ Γ, Pα(x) ∈ Vα

and Xα\Vα is a closed subset of Xα. Hence there is a ω-continuous function
gα : Xα → [0, 1] such that gα(Pα(x)) = 0 and gα(Xα\Vα) = 1. Let λ : X →
[0, 1] be defined as λ(y) = max{gα ◦Pα(y) : α ∈ Γ}. Then λ is ω-continuous,
in view of Theorem 17. Moreover, λ(x) = max{gα ◦ Pα(x) : α ∈ Γ} = 0.
Suppose y ∈ F . Since y /∈ X = \f , there is a µ ∈ Γ such that y /∈ P−1

µ (Vµ),
since y /∈ ∩

Γ
P−1
α (Vα). For such a µ, Pµ(y) /∈ Vµ. Hence gµ ◦ Pµ(y) = 1 and

λ(y) = 1. �

Recall that for a function f : (X, τ)→ (Y, σ), the subset {(x, f(x)) : x ∈
X} ⊂ X × Y is called the graph of f and is denoted by G(f).

Definition 8 ([4]). A graph G(f) of a function f : (X, τ)→ (Y, σ) is said
to be ω-closed if for each (x, y) ∈ (X ×Y )\G(f), there exists U ∈ ωO(X,x)
and a closed set V of Y containing y such that (U × V ) ∩ G(f) = ∅.
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Lemma 6. A graph G(f) of a function f : (X, τ) → (Y, σ) is ω-closed
in X × Y if and only if for each (x, y) ∈ (X × Y ) \ G(f), there exist U ∈
ω(τ) containing x and a closed set V of Y containing y such that f(U)∩ V
= ∅.

Proof. The proof is an immediate consequence of Definition 8. �

Theorem 19. If f : (X, τ) → (Y, σ) is an ω-continuous function and
(Y, σ) is a T1-space, then G(f) is ω-closed.

Proof. Let (x, y) ∈ (X × Y ) \ G(f). Then y 6= f(x). Since Y is T1,
there exists an open set V in Y such that f(x) ∈ V and y /∈ V . Since f is
ω-continuous, there exists U ∈ ωO(X,x) such that f(U) ⊂ V . Therefore,
f(U) ∩ (Y \V ) = ∅ and Y \V is a closed subset of Y containing y. This
shows that G(f) is ω-closed. �

Now, we recall the following definitions.

Definition 9. A space (X, τ) is said to be
(1) ω-compact [7], [4] if every ω-open cover of X has a finite subcover;
(1) ω-compact relative to X if every cover of A by ω-open sets of X has
a finite subcover.

Theorem 20. [4]If a function f : (X, τ) → (Y, σ) is ω-continuous and
A is ω-compact relative to X, then f(A) is compact in Y .

Proof. Let {Hα : α ∈ I} be any cover of f(A) by open sets of the
subspace f(A). For each α ∈ I, there exists a open set Aα of Y such that
Hα = Kα ∩ f(A). For each x ∈ A, there exists αx ∈ I such that f(x) ∈
Aαx and there exists Ux ∈ ω(τ) containing x such that f(Ux) ⊂ Aαx . Since
the family {Ux : x ∈ K} is a cover of A by ω-open sets of K, there exists
a finite subset A0 of A such that A ⊂ {Ux : x ∈ A0}. Therefore, we obtain
f(A) ⊂ ∪{f(Ux) : x ∈ A0} which is a subset of ∪{Aαx : x ∈ A0}. Thus,
f(A) = ∪{Aαx : x ∈ A0} and hence f(A) is compact. �

Definition 10. A space (X, τ) is said to be:
(1) countably ω-compact if every ω-open countably cover of X has a finite
subcover;

(2) ω-Lindelof if every ω-open cover of X has a countable subcover;
(3) ω-closed compact if every ω-closed cover of X has a finite subcover;
(4) countably ω-closed compact if every countably cover of X by ω-closed
sets has a finite subcover.

Theorem 21. Let f : (X, τ) → (Y, σ) be an ω-continuous surjective
function. Then the following statements hold:

(1) If X is ω-Lindelof, then Y is Lindelof;
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(2) If X is countably ω-compact, then Y is countably compact.

Proof. (1). Let {Vα : α ∈ I} be an open cover of Y . Since f is
ω-continuous, then {f−1(Vα) : α ∈ I} is an ω-open cover of X. Since
X is ω-Lindelof, there exists a countable subset I0 of I such that X =
∪{f−1(Vα) : α ∈ I0}. Thus, Y = ∪{Vα : α ∈ I0} and hence Y is Lindelof.

(2). Similar to (1). �

Theorem 22. Let f : (X, τ) → (Y, σ) be an ω-continuous surjective
function. Then the following statements hold

(1) If X is ω-closed compact, then Y is compact;
(2) If X is ω-closed Lindelof, then Y is Lindelof;
(13) If X is countably ω-closed compact, then Y is countably compact.

Proof. The proof is similar to Theorem 21. �

Definition 11. A space (X, τ) is said to be:
(i) ω-T1 [3], [5] if for each pair of distinct points x and y of X, there exist
ω-open sets U and V containing x and y, respectively such that y /∈ U
and x /∈ V .

(2) ω-T2 [3], [5] if for each pair of distinct points x and y in X, there
exist disjoint ω-open sets U and V in X such that x ∈ U and y ∈ V .

Recall, that a subset Bx of a topological space (X, τ) is said to be an
ω-neighbourhood of a point x ∈ X [7] if there exists an ω-open set U such
that x ∈ U ⊂ Bx.

Theorem 23 ([4]). If an injective function f : (X, τ) → (Y, σ) is
ω-continuous and Y is a T1-space, then X is an ω-T1-space.

Proof. Suppose that Y is T1. For any distinct points x and y in X,
there exist open sets V and W such that f(x) ∈ V , f(y) /∈ V , f(x) /∈ W
and f(y) ∈ W . Since f is ω-continuous, f−1(V ) and f−1(W ) are ω-open
subsets of (X, τ) such that x ∈ f−1(V ), y /∈ f−1(V ), x /∈ f−1(W ) and
y ∈ f−1(W ). This shows that X is ω-T1. �

Theorem 24 ([4]). If f : (X, τ) → (Y, σ) is an ω-continuous injective
function and (Y, σ) is a T2-space, then (X, τ) is ω-T2-space.

Proof. For any pair of distinct points x and y in X, there exist disjoint
open sets U and V in Y such that f(x) ∈ U and f(y) ∈ V . Since f is
ω-continuous, f−1(U) and f−1(V ) are ω-open subsets of (X, τ) containing
x and y, respectively. Therefore, f−1(U)∩ f−1(V ) = ∅ because U ∩V = ∅.
This shows that X is ω-T2. �

Lemma 7 ([7]). The intersection of an open and ω-open subset of (X, τ)
is ω-open in (X, τ).
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Theorem 25. If f : (X, τ) → (Y, σ) is a continuous function and g :
(X, τ)→ (Y, σ) is a ω-continuous function and Y is a T2-space, then the set
E = {x ∈ X : f(x) = g(x)} is ω-closed set in X.

Proof. If x ∈ X\E, then it follows that f(x) 6= g(x). Since Y is T2, there
exist disjoint open sets V and W of Y such that f(x) ∈ V and g(x) ∈ W .
Since f is continuous and g is ω-continuous, then f−1(V ) is open and g−1(W )
is ω-open in X with x ∈ f−1(V ) and x ∈ g−1(W ). Put A = f−1(V ) ∩
g−1(W ). By Lemma 7, A is ω-open in X. Therefore, f(A) ∩ g(A) = ∅ and
it follows that x /∈ ωCl(E). This shows that E is ω-closed in X. �
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