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ities involving the familiar Riemann-Liouville fractional integral
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1. Introduction

In 1938, Ostrowski [10] proved the following integral inequality.

Theorem 1. Let f : [a, b] → R be a differentiable mapping on (a, b). If
|f ′ (x)| ≤M for all x ∈ [a, b], then the following inequality holds:

(1)

∣∣∣∣f (x)− 1

b− a

∫ b

a
f (t) dt

∣∣∣∣ ≤M (b− a)

[
1

4
+

(
x− a+b

2

)2
(b− a)2

]
,

for all x ∈ [a, b]. The constant 1
4 is the best possible in the sense that it

cannot be replaced by a smaller constant.

After Ostrowski’s original paper, first papers with applications in nu-
merical integration were appeared about 40 years later (see [8] and [9]), but
much later an explosion on this subject has happened. In recent years, many
generalizations, improvements and variants of the Ostrowski inequality have
appeared in the literature (see, for example [1], [2], [4] and [19]).
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In the present investigation, we focus on some new variants of the Os-
trowski inequality (1), that is, the Ostrowski type inequalities for the frac-
tional integral operators. The Ostrowski type inequalities for the Riemann-
Liouville fractional integrals have been considered by many authors and for
such related results, we refer the reader to the recent works in [12], [13] and
[14]. The inequalities involving more general fractional integral operators
have also been considered in [20]. Since work in this direction has gained
much attention, we attempt to establish a general formulation in this article
such that the essential facts covered by different fractional integrals become
more clear and the implications yield certain new inequalities.

We first give here some definitions and properties of a class of new frac-
tional integral operators which will serve as the fundamental tool for our
investigation. In [11], Raina studied a class of functions defined formally by

(2) Fσρ,λ (x) = Fσ(0),σ(1),···ρ,λ (x) =

∞∑
k=0

σ (k)

Γ (ρk + λ)
xk (ρ, λ > 0; |x| < R) ,

where the coefficients σ (k) (k ∈ N0 = N ∪ {0}) is a bounded sequence of
positive real numbers and R is the set of real numbers. With the help of
(2), Raina defined the following left-sided fractional integral operator:

(3)
(
J σρ,λ,a+;ωϕ

)
(x) =

∫ x

a
(x− t)λ−1Fσρ,λ [ω (x− t)ρ]ϕ (t) dt (x > a) ,

where λ, ρ > 0, ω ∈ R, and ϕ (t) is such that the integral on the right side
exists. In this paper, we define the correspondingly right-sided fractional
integral operator by

(4)
(
J σρ,λ,b−;ωϕ

)
(x) =

∫ b

x
(t− x)λ−1Fσρ,λ [ω (t− x)ρ]ϕ (t) dt (x < b) ,

where λ, ρ > 0, ω ∈ R, and ϕ (t) is such that the integral on the right side
exists.

It is easy to verify that J σρ,λ,a+;ω and J σρ,λ,b−;ω are bounded integral op-
erators on L (a, b), if

(5) M := Fσρ,λ+1 [ω (b− a)ρ] <∞.

In fact, for ϕ ∈ L (a, b), we have

(6)
∥∥J σρ,λ,a+;ωϕ

∥∥
1
≤M (b− a)λ ‖ϕ‖1

and

(7)
∥∥J σρ,λ,b−;ωϕ∥∥1 ≤M (b− a)λ ‖ϕ‖1 ,
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where

‖ϕ‖p :=

(∫ b

a
|ϕ (t)|p dt

) 1
p

.

The importance of these operators stems indeed from their generality.
Many useful fractional integral operators can be obtained by specializing the
coefficient σ (k). Here, we just point out that the classical Riemann-Liouville
fractional integrals Iαa+ and Iαb− of order α defined by (see, [7, p. 69])

(8)
(
Iαa+ϕ

)
(x) :=

1

Γ (α)

∫ x

a
(x− t)α−1 ϕ (t) dt (x > a; α > 0)

and

(9)
(
Iαb−ϕ

)
(x) :=

1

Γ (α)

∫ b

x
(t− x)α−1 ϕ (t) dt (x < b; α > 0)

follow easily by setting

(10) λ = α, σ (0) = 1, and ω = 0

in (3) and (4), and the boundedness of (8) and (9) on L(a, b) is also inherited
from (6) and (7). Other useful fractional integral operators and their related
Ostrowski type inequalities will be considered in Section 3.

2. Osrowski type inequalities for J σ
ρ,λ,a+;ω and J σ

ρ,λ,b−;ω

In order to prove the main theorems, we need the following lemma.

Lemma 1. Let ϕ : [a, b] → R be a differentiable mapping on (a, b) with
a < b such that |ϕ′ (x)| ≤M for every x ∈ [a, b] and λ > 0. Then

[Kσλ (b− x) +Kσλ (x− a)]ϕ (x)(11)

−
[(
J σρ,λ,x+;ωϕ

)
(b) +

(
J σρ,λ,x−;ωϕ

)
(a)
]

=
(
J σρ,λ+1,x−;ωϕ

′) (a)−
(
J σρ,λ+1,x+;ωϕ

′) (b)

and

[Kσλ (b− x) +Kσλ (x− a)]ϕ (x)(12)

−
[(
J σρ,λ,x+;ωϕ

)
(b) +

(
J σρ,λ,x−;ωϕ

)
(a)
]

= (x− a)λ+1
∫ 1

0
tλFσρ,λ+1 [ω (x− a)ρ tρ]ϕ′ (tx+ (1− t) a) dt

− (b− x)λ+1
∫ 1

0
tλFσρ,λ+1 [ω (b− x)ρ tρ]ϕ′ (tx+ (1− t) b) dt,

where, and in what follows, we define

(13) Kσλ (z − y) := (z − y)λFσρ,λ+1 [ω (z − y)ρ] .
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Proof. It is fairly easy to verify that

− d

dt

{
(b− t)λFσρ,λ+1 [ω (b− t)ρ]

}
= (b− t)λ−1Fσρ,λ [ω (b− t)ρ] .

Consequently, by integration by parts, we have

(
J σρ,λ,x+;ωϕ

)
(b) =

∫ b

x
(b− t)λ−1Fσρ,λ [ω (b− t)ρ]ϕ (t) dt(14)

= −
∫ b

x
ϕ (t) d

{
(b− t)λFσρ,λ+1 [ω (b− t)ρ]

}
= − ϕ (t) (b− t)λFσρ,λ+1 [ω (b− t)ρ]

∣∣∣b
x

+

∫ b

x
(b− t)λFσρ,λ+1 [ω (b− t)ρ]ϕ′ (t) dt

= ϕ (x) (b− x)λFσρ,λ+1 [ω (b− x)ρ]

+

∫ b

x
(b− t)λFσρ,λ+1 [ω (b− t)ρ]ϕ′ (t) dt

= ϕ (x) (b− x)λFσρ,λ+1 [ω (b− x)ρ]

+
(
J σρ,λ+1,x+;ωϕ

′) (b) .

Similarly, using again integration by parts, and noting that

d

dt

{
(t− a)λFσρ,λ+1 [ω (t− a)ρ]

}
= (t− a)λ−1Fσρ,λ [ω (t− a)ρ] ,

we find that

(
J σρ,λ,x−:ωϕ

)
(a) =

∫ x

a
(t− a)λ−1Fσρ,λ [ω (t− a)ρ]ϕ (t) dt(15)

=

∫ x

a
ϕ (t) d

{
(t− a)λFσρ,λ+1 [ω (t− a)ρ]

}
= ϕ (x) (x− a)λFσρ,λ+1 [ω (x− a)ρ]

−
∫ x

a
(t− a)λFσρ,λ+1 [ω (t− a)ρ]ϕ′ (t) dt

= ϕ (x) (x− a)λFσρ,λ+1 [ω (x− a)ρ]

−
(
J σρ,λ+1,x−ωϕ

′) (a) .

From (14) and (15), we obtain (11) immediately.
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The proof of (12) is analogous to that of (11). By applying integrating
by parts, we have∫ 1

0
tλFσρ,λ+1 [ω (x− a)ρ tρ]ϕ′ (tx+ (1− t) a) dt(16)

=

∫ 1

0
tλFσρ,λ+1 [ω (x− a)ρ tρ] d

{
ϕ (tx+ (1− t) a)

x− a

}
= tλFσρ,λ+1 [ω (x− a)ρ tρ]

ϕ (tx+ (1− t) a)

x− a

∣∣∣∣1
0

− 1

x− a

∫ 1

0
ϕ (tx+ (1− t) a) tλ−1Fσρ,λ [ω (x− a)ρ tρ] dt

= Fσρ,λ+1 [ω (x− a)ρ]
ϕ (x)

x− a

− 1

x− a

∫ x

a

(u− a)λ−1

(x− a)λ−1
ϕ (u)Fσρ,λ [ω (u− a)ρ]

du

x− a

= Fσρ,λ+1 [ω (x− a)ρ]
ϕ (x)

x− a

− 1

(x− a)λ+1

∫ x

a
(u− a)λ−1Fσρ,λ [ω (u− a)ρ]ϕ (u) du

= Fσρ,λ+1 [ω (x− a)ρ]
ϕ (x)

x− a
− 1

(x− a)λ+1

(
J σρ,λ,x−;ωϕ

)
(a) ,

which (after rearrangement) gives the following identity:

(x− a)λ+1
∫ 1

0
tλFσρ,λ+1 [ω (x− a)ρ tρ]ϕ′ (tx+ (1− t) a) dt

= (x− a)λFσρ,λ+1 [ω (x− a)ρ]ϕ (x)−
(
J σρ,λ,x−;ωϕ

)
(a) .(17)

The same above evaluation of (17) in similar manner also gives

(b− x)λ+1
∫ 1

0
tλFσρ,λ+1 [ω (b− x)ρ tρ]ϕ′ (tx+ (1− t) a) dt(18)

= − (b− x)λFσρ,λ+1 [ω (b− x)ρ]ϕ (x) +
(
J σρ,λ,x+;ωϕ

)
(b) .

Now adding (17) and (18) and using the notation (13), we obtain the desired
result. This completes the proof. �

We also need the following convexity concept (see [1] and [14]).

Definition 1. A function f : [0,∞) → R is said to be s-convex in the
second sense if

(19) f (λx+ (1− λ) y) ≤ λsf (x) + (1− λ)s f (y)
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for all x, y ∈ [0,∞), λ ∈ [0, 1] and for some fixed s ∈ (0, 1].

Evidently, the s-convexity reduces to the ordinary convexity for s = 1.
Using Lemma 1 and the s-convexity, we obtain the following Ostrowski

type fractional integral inequalities.

Theorem 2. Let ϕ : [a, b]→ R be a differentiable mapping on (a, b) with
a < b such that |ϕ′| ≤M , then for all x ∈ [a, b] and λ > 0:

|[Kσλ (b− x) +Kσλ (x− a)]ϕ (x)(20)

−
[(
J σρ,λ,x+;ωϕ

)
(b) +

(
J σρ,λ,x−;ωϕ

)
(a)
]∣∣

≤M
[
Kσλ+1 (x− a) +Kσλ+1 (b− x)

]
.

If, in addition, |ϕ′| is s-convex in the second sense on [a, b] for some
s ∈ (0, 1], then the following inequality for fractional integral operators with
λ > 0 holds:

|[Kσλ (b− x) +Kσλ (x− a)]ϕ (x)(21)

−
[(
J σρ,λ,x+;ωϕ

)
(b) +

(
J σρ,λ,x−;ωϕ

)
(a)
]∣∣

≤
∣∣ϕ′ (x)

∣∣ [Kσ1λ+s+1 (x− a)

(x− a)s
+
Kσ1λ+s+1 (b− x)

(b− x)s

]
+ Γ (s+ 1)

[∣∣ϕ′ (a)
∣∣ Kσλ+s+1 (x− a)

(x− a)s
+
∣∣ϕ′ (b)∣∣ Kσλ+s+1 (b− x)

(b− x)s

]
,

where σ1 is given by

(22) σ1 ≡ σ1 (k) := σ (k)
Γ (ρk + λ+ s+ 1)

Γ (ρk + λ+ 1)
(k ∈ N0) .

Proof. We first prove the inequality (20). By using (11) and the property
that |ϕ′| ≤M , we have

|[Kσλ (b− x) +Kσλ (x− a)]ϕ (x)(23)

−
[(
J σρ,λ,x+;ωϕ

)
(b) +

(
J σρ,λ,x−;ωϕ

)
(a)
]∣∣

≤
∣∣(J σρ,λ+1,x−;ωϕ

′) (a)
∣∣+
∣∣(J σρ,λ+1,x+;ωϕ

′) (b)
∣∣

≤M
{∫ x

a
(t− a)λFσρ,λ+1 [ω (t− a)ρ] dt

+

∫ b

x
(b− t)λFσρ,λ+1 [ω (b− t)ρ] dt

}
,

where the positivity of Fσρ,λ [ω (t− a)ρ] follows from the constraints imposed
in (2).
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The last two integrals on the right side of (23) can be evaluated by
term-wise integration, and we have∫ x

a
(t− a)λFσρ,λ+1 [ω (t− a)ρ] dt = (x− a)λ+1Fσρ,λ+2 [ω (x− a)ρ](24)

= Kσλ+1 (x− a)

and ∫ b

x
(b− t)λFσρ,λ+1 [ω (b− t)ρ] dt = (b− x)λ+1Fσρ,λ+2 [ω (b− x)ρ](25)

= Kσλ+1 (b− x) .

On substituting (24) and (25) into (23), we obtain the desired inequality
(20).

The proof of (21) is similar. By using (12) and the s-convexity of |ϕ′|,
we have

|[Kσλ (b− x) +Kσλ (x− a)]ϕ (x)(26)

−
[(
J σρ,λ,x+;ωϕ

)
(b) +

(
J σρ,λ,x−;ωϕ

)
(a)
]∣∣

≤ (x− a)λ+1
∫ 1

0
tλFσρ,λ+1 [ω (x− a)ρ tρ]

∣∣ϕ′ (tx+ (1− t) a)
∣∣ dt

+ (b− x)λ+1
∫ 1

0
tλFσρ,λ+1 [ω (b− x)ρ tρ]

∣∣ϕ′ (tx+ (1− t) b)
∣∣dt

≤ (x− a)λ+1
∣∣ϕ′ (x)

∣∣ ∫ 1

0
tλ+sFσρ,λ+1 [ω (x− a)ρ tρ] dt

+ (x− a)λ+1
∣∣ϕ′ (a)

∣∣ ∫ 1

0
tλ (1− t)sFσρ,λ+1 [ω (x− a)ρ tρ] dt

+ (b− x)λ+1
∣∣ϕ′ (x)

∣∣ ∫ 1

0
tλ+sFσρ,λ+1 [ω (b− x)ρ tρ] dt

+ (b− x)λ+1
∣∣ϕ′ (b)∣∣ ∫ 1

0
tλ (1− t)sFσρ,λ+1 [ω (b− x)ρ tρ] dt.

It follows upon using the term-wise integration that∫ 1

0
tλ+sFσρ,λ+1 [ω (x− a)ρ tρ] dt =

∞∑
k=0

σ (k)ωk (x− a)ρk

Γ (ρk + λ+ 1)

∫ 1

0
tρk+λ+sdt(27)

=
∞∑
k=0

σ (k)ωk (x− a)ρk

Γ (ρk + λ+ 1)

Γ (ρk + λ+ s+ 1)

Γ (ρk + λ+ s+ 2)

=
∞∑
k=0

σ1 (k)ωk (x− a)ρk

Γ (ρk + λ+ s+ 2)

= Fσ1ρ,λ+s+2 [ω (x− a)ρ] ,
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where the coefficient σ1 is given by (22).∫ 1

0
tλ (1− t)sFσρ,λ+1 [ω (x− a)ρ tρ] dt(28)

=
∞∑
k=0

σ (k)ωk (x− a)ρk

Γ (ρk + λ+ 1)

∫ 1

0
tρk+λ (1− t)s dt

=
∞∑
k=0

σ (k)ωk (x− a)ρk

Γ (ρk + λ+ 1)

Γ (ρk + λ+ 1) Γ (s+ 1)

Γ (ρk + λ+ s+ 2)

= Γ (s+ 1)
∞∑
k=0

σ (k)ωk (x− a)ρk

Γ (ρk + λ+ s+ 2)

= Γ (s+ 1)Fσρ,λ+s+2 [ω (x− a)ρ] .

In an analogous manner by using (2), we are easily lead to

(29)

∫ 1

0
tλ+sFσρ,λ+1 [ω (b− x)ρ tρ] dt = Fσ1ρ,λ+s+2 [ω (b− x)ρ]

and ∫ 1

0
tλ (1− t)sFσρ,λ+1 [ω (b− x)ρ tρ] dt(30)

= Γ (s+ 1)Fσρ,λ+s+2 [ω (b− x)ρ] ,

where σ1 (as before) is given by (22).
From (26) to (30), we get∣∣[Kλ (b− x) +Kλ (x− a)]ϕ (x)−

[(
J σρ,λ,x+;ωϕ

)
(b) +

(
J σρ,λ,x−;ωϕ

)
(a)
]∣∣

≤ (x− a)λ+1
∣∣ϕ′ (x)

∣∣Fσ1ρ,λ+s+2 [ω (x− a)ρ]

+ (x− a)λ+1
∣∣ϕ′ (a)

∣∣Γ (s+ 1)Fσρ,λ+s+2 [ω (x− a)ρ]

+ (b− x)λ+1
∣∣ϕ′ (x)

∣∣Fσ1ρ,λ+s+2 [ω (b− x)ρ]

+ (b− x)λ+1
∣∣ϕ′ (b)∣∣Γ (s+ 1)Fσρ,λ+s+2 [ω (b− x)ρ]

=
∣∣ϕ′ (x)

∣∣ Kσ1λ+s+1 (x− a)

(x− a)s
+ Γ (s+ 1)

∣∣ϕ′ (a)
∣∣ Kσλ+s+1 (x− a)

(x− a)s

+
∣∣ϕ′ (x)

∣∣ Kσ1λ+s+1 (b− x)

(b− x)s
+ Γ (s+ 1)

∣∣ϕ′ (b)∣∣ Kσλ+s+1 (b− x)

(b− x)s
,

which is (21). This completes the proof of our theorem. �
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Theorem 3. Let ϕ : [a, b]→ R be a differentiable mapping on (a, b) such
that |ϕ′| ≤ M and let pi > 1 (i = 1, 2, 3) with 1

p1
+ 1

p2
+ 1

p3
= 1. Then the

following Ostrowski type fractional integral inequality holds:

|[Kσλ (b− x) +Kσλ (x− a)]ϕ (x)(31)

−
[(
J σρ,λ,x+;ωϕ

)
(b) +

(
J σρ,λ,x−;ωϕ

)
(a)
]∣∣

≤ (x− a)
λ+ 1

p2
+ 1
p3

(λp2 + 1)
1
p2

A (x; p3)
∥∥ϕ′∥∥

p1,[a,x]

+
(b− x)

λ+ 1
p2

+ 1
p3

(λp2 + 1)
1
p2

B (x; p3)
∥∥ϕ′∥∥

p1,[x,b]
,

where

(32) A (x; p) =

(∫ 1

0
Fσρ,λ+1 [ω (x− a)ρ tρ]p dt

) 1
p

and

(33) B (x; p) =

(∫ 1

0
Fσρ,λ+1 [ω (b− x)ρ tρ]p dt

) 1
p

.

Moreover, if we require that |ϕ′|q is s-convex in the second sense on [a, b]
for some fixed s ∈ (0, 1] and q > 1, then we have the following inequality:

|[Kσλ (b− x) +Kσλ (x− a)]ϕ (x)(34)

−
[(
J σρ,λ,x+;ωϕ

)
(b) +

(
J σρ,λ,x−;ωϕ

)
(a)
]∣∣

≤ (x− a)λ+1

(1 + λp1)
1
p1

(
1

1 + s

) 1
p3 [∣∣ϕ′ (x)

∣∣p3 +
∣∣ϕ′ (a)

∣∣p3] 1
p3 A (x; p2)

+
(b− x)λ+1

(1 + λp1)
1
p1

(
1

1 + s

) 1
p3 [∣∣ϕ′ (x)

∣∣p3 +
∣∣ϕ′ (b)∣∣p3] 1

p3 B (x; p2) ,

where A (x; p) and B (x; p) are defined, respectively, by (32) and (33).

Proof. The proofs of inequalities (31) and (34) mainly depend on the
Hölder inequality for three functions, viz.

(35) ‖fgh‖1 ≤ ‖f‖p1 ‖g‖p2 ‖h‖p3 ,

where pi ∈ (1,∞) (i = 1, 2, 3) and

1

p1
+

1

p2
+

1

p3
= 1.
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We first prove the inequality (31). From the identity (12), it is easy to
find that

|[Kσλ (b− x) +Kσλ (x− a)]ϕ (x)(36)

−
[(
J σρ,λ,x+;ωϕ

)
(b) +

(
J σρ,λ,x−;ωϕ

)
(a)
]∣∣

≤
∣∣(J σρ,λ+1,x−;ωϕ

′) (a)
∣∣+
∣∣(J σρ,λ+1,x+;ωϕ

′) (b)
∣∣

≤
∫ x

a
(t− a)λFσρ,λ+1 [ω (t− a)ρ]

∣∣ϕ′ (t)∣∣ dt
+

∫ b

x
(b− t)λFσρ,λ+1 [ω (b− t)ρ]

∣∣ϕ′ (t)∣∣dt
≤
(∫ x

a

∣∣ϕ′ (t)∣∣p1 dt

) 1
p1

(∫ x

a
(t− a)λp2 dt

) 1
p2

×
(∫ x

a
Fσρ,λ+1 [ω (t− a)ρ]p3 dt

) 1
p3

+

(∫ b

x

∣∣ϕ′ (t)∣∣p1 dt

) 1
p1

×
(∫ b

x
(b− t)λp2 dt

) 1
p2
(∫ b

x
Fσρ,λ+1 [ω (b− t)ρ]p3 dt

) 1
p3

=
(x− a)

λ+ 1
p2

(λp2 + 1)
1
p2

∥∥ϕ′∥∥
p1,[a,x]

(∫ x

a
Fσρ,λ+1 [ω (t− a)ρ]p3 dt

) 1
p3

+
(b− x)

λ+ 1
p2

(λp2 + 1)
1
p2

∥∥ϕ′∥∥
p1,[x,b]

(∫ b

x
Fσρ,λ+1 [ω (b− t)ρ]p3 dt

) 1
p3

.

By applying the substitution u = (t− a) / (x− a), we get

(∫ x

a
Fσρ,λ+1 [ω (t− a)ρ]p3 dt

) 1
p3

(37)

= (x− a)
1
p3

(∫ 1

0
Fσρ,λ+1 [ω (x− a)ρ uρ]p3 dt

) 1
p3

= (x− a)
1
p3 A (x; p3) ,

and (in similar manner)

(38)

(∫ b

x
Fσρ,λ+1 [ω (b− t)ρ]p3 dt

) 1
p3

= (b− x)
1
p3 B (x; p3) .

Using (37) and (38) in (36), we obtain the inequality (31).
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Next, we prove the inequality (34). The use of identity (12) and inequality
(35) gives

|[Kσλ (b− x) +Kσλ (x− a)]ϕ (x)(39)

−
[(
J σρ,λ,x+;ωϕ

)
(b) +

(
J σρ,λ,x−;ωϕ

)
(a)
]∣∣

≤ (x− a)λ+1
∫ 1

0
tλFσρ,λ+1 [ω (x− a)ρ tρ]

∣∣ϕ′ (tx+ (1− t) a)
∣∣dt

+ (b− x)λ+1
∫ 1

0
tλFσρ,λ+1 [ω (b− x)ρ tρ]

∣∣ϕ′ (tx+ (1− t) b)
∣∣dt

≤ (x− a)λ+1

(∫ 1

0
tλp1dt

) 1
p1
(∫ 1

0
Fσρ,λ+1 [ω (x− a)ρ tρ]p2 dt

) 1
p2

×
(∫ 1

0

∣∣ϕ′ (tx+ (1− t) a)
∣∣p3 dt

) 1
p3

+ (b− x)λ+1

(∫ 1

0
tλp1dt

) 1
p1
(∫ 1

0
Fσρ,λ+1 [ω (b− x)ρ tρ]p2 dt

) 1
p2

(∫ 1

0

∣∣ϕ′ (tx+ (1− t) b)
∣∣p3 dt

) 1
p3

.

Since |ϕ′|q (q > 1) is s-convex in the second sense, we have(∫ 1

0

∣∣ϕ′ (tx+ (1− t) a)
∣∣p3 dt

) 1
p3

(40)

≤
(∫ 1

0

[
ts
∣∣ϕ′ (x)

∣∣p3 + (1− t)s
∣∣ϕ′ (a)

∣∣p3]dt

) 1
p3

≤
(

1

1 + s

) 1
p3 [∣∣ϕ′ (x)

∣∣p3 +
∣∣ϕ′ (a)

∣∣p3] 1
p3 .

Similarly, we have(∫ 1

0

∣∣ϕ′ (tx+ (1− t) b)
∣∣p3 dt

) 1
p3

(41)

≤
(

1

1 + s

) 1
p3 [∣∣ϕ′ (x)

∣∣p3 +
∣∣ϕ′ (b)∣∣p3] 1

p3 .

Hence, we finally get

|[Kλ (b− x) +Kλ (x− a)]ϕ (x)(42)

−
[(
J σρ,λ,x+;ωϕ

)
(b) +

(
J σρ,λ,x−;ωϕ

)
(a)
]∣∣



16 Ravi P. Agarwal, Min-Jie Luo and R.K. Raina

≤ (x− a)λ+1

(1 + λp1)
1
p1

(
1

1 + s

) 1
p3 [∣∣ϕ′ (x)

∣∣p3 +
∣∣ϕ′ (a)

∣∣p3] 1
p3 A (x; p2)

+
(b− x)λ+1

(1 + λp1)
1
p1

(
1

1 + s

) 1
p3 [∣∣ϕ′ (x)

∣∣p3 +
∣∣ϕ′ (b)∣∣p3] 1

p3 B (x; p2) .

This completes the proof. �

3. Some consequences and applications

In this section, we consider some consequences of Theorems 2 and 3 and
also point out applications of Theorems 4 and 5 to Stolarsky’s means defined
in [17].

It may be observed that many known results involving the familiar Riemann-
Liouville fractional integrals are direct consequences of our main theorems.
Thus, if we set λ = α, σ (0) = 1 and ω = 0 in (3), (4) and (13), and make
use of (2), then we get the following relations:(

J σρ,α,a+;0ϕ
)

(x) =
(
Iαa+ϕ

)
(x) ,

(
J σρ,α,b−;0ϕ

)
(x) =

(
Iαb−ϕ

)
(x) ,

Kσα (z − y) =
(z − y)α

Γ (α+ 1)
, Kσα+s+1 (z − y) =

(z − y)α+s+1

Γ (α+ s+ 2)

and

Kσ1α+s+1 (z − y) =
(z − y)α+s+1

(α+ s+ 1) Γ (α+ 1)
.

Hence, as a consequence of above relations, we get the following corollary
from Theorem 2.

Corollary 1. Let ϕ : [a, b] → R be a differentiable mapping on (a, b)
with a < b such that |ϕ′| ≤M , then for all x ∈ [a, b] and α > 0:∣∣[(b− x)α + (x− a)α]ϕ (x)− Γ (α+ 1)

[(
Iαx+ϕ

)
(b) +

(
Iαx−ϕ

)
(a)
]∣∣(43)

≤ M

α+ 1

[
(x− a)α+1 + (b− x)α+1

]
.

If, in addition, |ϕ′| is s-convex in the second sense on [a, b] for some
s ∈ (0, 1], then the following inequality for fractional integrals with λ > 0
holds:∣∣[(b− x)α + (x− a)α]ϕ (x)− Γ (α+ 1)

[(
Iαx+ϕ

)
(b) +

(
Iαx−ϕ

)
(a)
]∣∣(44)

≤
∣∣ϕ′ (x)

∣∣ [(x− a)α+1 + (b− x)α+1

α+ s+ 1

]

+
Γ (α+ 1) Γ (s+ 1)

Γ (α+ s+ 1)

[
|ϕ′ (a)| (x− a)α+1 + |ϕ′ (b)| (b− x)α+1

α+ s+ 1

]
.
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Remark 1. The inequality (43) was earlier given by Sarikaya and Filiz
[12, p. 188, Theorem 2]. Further, if we impose the condition that |ϕ′ (x)| ≤
M for all x ∈ [a, b], then the inequality (44) can be expressed as∣∣[(b− x)α + (x− a)α]ϕ (x)− Γ (α+ 1)

[(
Iαx+ϕ

)
(b) +

(
Iαx−ϕ

)
(a)
]∣∣(45)

≤M
[
1 +

Γ (α+ 1) Γ (s+ 1)

Γ (α+ s+ 1)

][
(x− a)α+1 + (b− x)α+1

α+ s+ 1

]
,

which was established by Set [14, p. 1150, Theorem 7].
We note that if we choose α = 1 in (43), then it reduces to Ostrowski’s

inequality (1).
On the other hand, for α = 1, the inequality in (45) reduces to∣∣∣∣ϕ (x)− 1

b− a

∫ b

a
ϕ (t) dt

∣∣∣∣ ≤ M

b− a

[
(x− a)2 + (b− x)2

s+ 1

]
,

which is due to M. Alomari et al. in [1, p. 1072, Theorem 2.].

Corollary 2. Let ϕ : [a, b]→ R be a differentiable mapping on (a, b) such
that |ϕ′| ≤ M and pi > 1 (i = 1, 2) with 1

p1
+ 1

p2
= 1. Then, the following

Ostrowski type fractional integral inequality holds:∣∣[(b− x)α + (x− a)α]ϕ (x)− Γ (α+ 1)
[(
Iαx+ϕ

)
(b) +

(
Iαx−ϕ

)
(a)
]∣∣(46)

≤ (x− a)
α+ 1

p2

(αp2 + 1)
1
p2

∥∥ϕ′∥∥
p1,[a,x]

+
(b− x)

α+ 1
p2

(αp2 + 1)
1
p2

∥∥ϕ′∥∥
p1,[x,b]

.

Moreover, if we require that |ϕ′|q is s-convex in the second sense on [a, b]
for some fixed s ∈ (0, 1], q > 1, then we have the following inequality:∣∣[(b− x)α + (x− a)α]ϕ (x)− Γ (α+ 1)

[(
Iαx+ϕ

)
(b) +

(
Iαx−ϕ

)
(a)
]∣∣(47)

≤ (x− a)α+1

(1 + αp1)
1
p1

(
1

1 + s

) 1
p2 [∣∣ϕ′ (x)

∣∣p2 +
∣∣ϕ′ (a)

∣∣p2] 1
p2

+
(b− x)α+1

(1 + αp1)
1
p1

(
1

1 + s

) 1
p2 [∣∣ϕ′ (x)

∣∣p2 +
∣∣ϕ′ (a)

∣∣p2] 1
p2 .

Proof. By setting λ = α, σ (0) = 1 and ω = 0 in (31) and using (3), (4)
and (13), we have∣∣[(b− x)α + (x− a)α]ϕ (x)− Γ (α+ 1)

[(
Iαx+ϕ

)
(b) +

(
Iαx−ϕ

)
(a)
]∣∣(48)

≤ (x− a)
α+ 1

p2
+ 1
p3

(αp2 + 1)
1
p2

∥∥ϕ′∥∥
p1,[a,x]

+
(b− x)

α+ 1
p2

+ 1
p3

(αp2 + 1)
1
p2

∥∥ϕ′∥∥
p1,[x,b]

.
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On letting p3 → ∞, we immediately get (46). The proof of the inequality
(47) is analogous to (46), and hence we omit its details. �

Remark 2. The inequality (46) is actually a result given in [12, p. 189,
Theorem 3]. If we impose an added constraint that |ϕ′ (x)| ≤ M, x ∈ [a, b]
in (47), then∣∣[(b− x)α + (x− a)α]ϕ (x)− Γ (α+ 1)

[(
Iαx+ϕ

)
(b) +

(
Iαx−ϕ

)
(a)
]∣∣

≤ M

(1 + αp1)
1
p1

(
2

1 + s

) 1
p2
[
(x− a)α+1 + (b− x)α+1

]
,

which was proved in [14, p. 1150, Theorem 8].

By considering a very general case, let us put

(49) σ (k) =
Γ (ρ+ λ)

k!

∏p
i=1 Γ (ai + αik)∏q
j=1 Γ (bj + βjk)

in (2), then Fσρ,λ (x) becomes the Fox-Wright function defined by (see [7, pp.
56–57]; see also [6])

(50) pΨq [x] ≡ pΨq

[
(ai, αi)1,p
(bj , βj)1,q

;x

]
:=

∞∑
k=0

∏p
i=1 Γ (ai + αik)∏q
j=1 Γ (bj + βjk)

xk

k!
,

(x, ai, bj ∈ C, αi, βj ∈ R+ (i = 1, . . . , p, j = 1, . . . , q), ∆ :=
∑q

j=1 βj −∑p
i=1 αi ≥ −1) where the equality in the convergence condition holds true

for suitably bounded values of |x| given by

|x| < δ :=

p∏
i=1

|αi|−αi
q∏
j=1

|βj |βj ,

and |x| = δ when

µ :=

q∑
j=1

bj −
p∑
i=1

ai +
p− q

2
>

1

2
.

Then, the left-sided and right-sided fractional integral operators obtainable
from (3) and (4) are given by

(51)
(
Hλ,ρ:(ap,αp)ω,a+:(bq ,βq)

ϕ
)

(x) =

∫ x

a
(x− t)λ−1 pΨq [ω (x− t)ρ]ϕ (t) dt

and

(52)
(
Hλ,ρ:(ap,αp)ω,b−:(bq ,βq)ϕ

)
(x) =

∫ b

x
(t− x)λ−1 pΨq [ω (t− x)ρ]ϕ (t) dt,
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The existence conditions of (51) and (52) follows directly from the con-
vergence conditions of the Fox-Wright function stated above. The integral
operator (51) has been discussed in [11, Section 4].

It may be noted that by employing the substitutions (49), we have in
view of (13) that

Kσλ (z − y) = (z − y)λFσρ,λ+1 [ω (z − y)ρ]

= (z − y)λ
∞∑
k=0

Γ (ρk + λ)

Γ (ρk + λ+ 1)

∏p
i=1 Γ (ai + αik)∏q
j=1 Γ (bi + βjk)

ωk (z − y)ρk

k!

= (z − y)λ p+1Ψq+1

[
(λ, ρ) , (ai, αi)1,p

(λ+ 1, ρ) , (bj , βj)1,q
;ω (z − y)ρ

]
and

Kσ1λ+s+1 (z − y) = (z − y)λ+s+1

× p+2Ψq+2

[
(λ+ s+ 1, ρ) , (λ, ρ) , (ai, αi)1,p

(λ+ 1, ρ) , (λ+ s+ 2, ρ) , (bj , βj)1,q
;ω (z − y)ρ

]
.

Here and throughout below, it is assumed that ai > 0, αi > 0 (i = 1, · · · , p)
and bj > 0, βj > 0 (j = 1, · · · , q).

Thus, in view of (49) – (52), Theorems 2 and 3 yield the following in-
equalities.

Corollary 3. Let ϕ : [a, b] → R be a differentiable mapping on (a, b)
with a < b such that |ϕ′| ≤M , then for all x ∈ [a, b] and λ > 0:∣∣∣∣∣

{
(b− x)λ p+1Ψq+1

[
(λ, ρ) , (ai, αi)1,p

(λ+ 1, ρ) , (bj , βj)1,q
;ω (b− x)ρ

]
(53)

+ (x− a)λ p+1Ψq+1

[
(λ, ρ) , (ai, αi)1,p

(λ+ 1, ρ) , (bj , βj)1,q
;ω (x− a)ρ

]}
ϕ (x)

−
[(
Hλ,ρ:(ap,αp)ω,x+:(bq ,βq)

ϕ
)

(b) +
(
Hλ,ρ:(ap,αp)ω,x−:(bq ,βq)ϕ

)
(a)
] ∣∣∣∣∣

≤M
{

(x− a)λ+1
p+1Ψq+1

[
(λ, ρ) , (ai, αi)1,p

(λ+ 2, ρ) , (bj , βj)1,q
;ω (x− a)ρ

]
+ (b− x)λ+1

p+1Ψq+1

[
(λ, ρ) , (ai, αi)1,p

(λ+ 2, ρ) , (bj , βj)1,q
;ω (b− x)ρ

]}
.

If, in addition, |ϕ′| is s-convex in the second sense on [a, b] for some
s ∈ (0, 1], then the following inequality for fractional integrals with λ > 0
holds: ∣∣∣∣∣

{
(b− x)λ p+1Ψq+1

[
(λ, ρ) , (ai, αi)1,p

(λ+ 1, ρ) , (bj , βj)1,q
;ω (b− x)ρ

]
(54)
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+ (x− a)λ p+1Ψq+1

[
(λ, ρ) , (ai, αi)1,p

(λ+ 1, ρ) , (bj , βj)1,q
;ω (x− a)ρ

]}
ϕ (x)

−
[(
Hλ,ρ:(ap,αp)ω,x+:(bq ,βq)

ϕ
)

(b) +
(
Hλ,ρ:(ap,αp)ω,x−:(bq ,βq)ϕ

)
(a)
] ∣∣∣∣∣

≤
∣∣ϕ′ (x)

∣∣ {(x− a)λ+1
p+2Ψq+2

×
[

(λ+ s+ 1, ρ) , (λ, ρ) , (ai, αi)1,p
(λ+ 1, ρ) , (λ+ s+ 2, ρ) , (bj , βj)1,q

;ω (x− a)ρ
]

+ (b− x)λ+1
p+2Ψq+2

×
[

(λ+ s+ 1, ρ) , (λ, ρ) , (ai, αi)1,p
(λ+ 1, ρ) , (λ+ s+ 2, ρ) , (bj , βj)1,q

;ω (b− x)ρ
]}

+ Γ (s+ 1)
{∣∣ϕ′ (a)

∣∣ (x− a)λ+1
p+1Ψq+1

×
[

(λ, ρ) , (ai, αi)1,p
(λ+ s+ 2, ρ) , (bj , βj)1,q

;ω (x− a)ρ
]

+
∣∣ϕ′ (b)∣∣ (b− x)λ+1

p+1Ψq+1

[
(λ, ρ) , (ai, αi)1,p

(λ+ s+ 2, ρ) , (bj , βj)1,q
;ω (b− x)ρ

]}
.

Corollary 4. Let ϕ : [a, b] → R be a differentiable mapping on (a, b)
such that |ϕ′| ≤ M and pi > 1 with 1

p1
+ 1

p2
+ 1

p3
= 1. Then, the following

Ostrowski type fractional integral inequality holds:∣∣∣∣∣
{

(b− x)λ p+1Ψq+1

[
(λ, ρ) , (ai, αi)1,p

(λ+ 1, ρ) , (bj , βj)1,q
;ω (b− x)ρ

]
(55)

+ (x− a)λ p+1Ψq+1

[
(λ, ρ) , (ai, αi)1,p

(λ+ 1, ρ) , (bj , βj)1,q
;ω (x− a)ρ

]}
ϕ (x)

−
[(
Hλ,ρ:(ap,αp)ω,x+:(bq ,βq)

ϕ
)

(b) +
(
Hλ,ρ:(ap,αp)ω,x−:(bq ,βq)ϕ

)
(a)
] ∣∣∣∣∣

≤ (x− a)
λ+ 1

p2
+ 1
p3

(λp2 + 1)
1
p2

Ã (x; p3)
∥∥ϕ′∥∥

p1,[a,x]

+
(b− x)

λ+ 1
p2

+ 1
p3

(λp2 + 1)
1
p2

B̃ (x; p3)
∥∥ϕ′∥∥

p1,[x,b]
,

where

(56) Ã (x; p) =

(∫ 1

0
p+1Ψq+1

[
(λ, ρ) , (ai, αi)1,p

(λ+ 1, ρ) , (bj , βj)1,q
;ω (b− x)ρ tρ

]p
dt

) 1
p
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and

(57) B̃ (x; p) =

(∫ 1

0
p+1Ψq+1

[
(λ, ρ) , (ai, αi)1,p

(λ+ 1, ρ) , (bj , βj)1,q
;ω (b− x)ρ tρ

]p
dt

) 1
p

.

Moreover, if we require that |ϕ′|q is s-convex in the second sense on [a, b]
for some fixed s ∈ (0, 1] (q > 1), then we have the following inequality:∣∣∣∣∣

{
(b− x)λ p+1Ψq+1

[
(λ, ρ) , (ai, αi)1,p

(λ+ 1, ρ) , (bj , βj)1,q
;ω (b− x)ρ

]
(58)

+ (x− a)λ p+1Ψq+1

[
(λ, ρ) , (ai, αi)1,p

(λ+ 1, ρ) , (bj , βj)1,q
;ω (x− a)ρ

]}
ϕ (x)

−
[(
Hλ,ρ:(ap,αp)ω,x+:(bq ,βq)

ϕ
)

(b) +
(
Hλ,ρ:(ap,αp)ω,x−:(bq ,βq)ϕ

)
(a)
] ∣∣∣∣∣

≤ (x− a)λ+1

(1 + λp1)
1
p1

(
1

1 + s

) 1
p3 [∣∣ϕ′ (x)

∣∣p3 +
∣∣ϕ′ (a)

∣∣p3] 1
p3 Ã (x; p2)

+
(b− x)λ+1

(1 + λp1)
1
p1

(
1

1 + s

) 1
p3 [∣∣ϕ′ (x)

∣∣p3 +
∣∣ϕ′ (b)∣∣p3] 1

p3 B̃ (x; p2) ,

where Ã (x; p) and B̃ (x; p) are, respectively, defined by (56) and (57).

Remark 3. By choosing parameters suitably in (51) and (52), many
important fractional integral operators including those involving the gener-
alized Mittag-Leffler function as kernel (see [15], [16] and [18]) can be easily
obtained and corresponding to these integral operators related inequalities
from the Corollaries 3 and 4 can be deduced.

Finally, let us consider a pair of integral operators which are not evidently
reducible from (3) and (4).

In [20], Yildirim and Kirtay prove new generalizations for Ostrowski type
inequalities by using the following fractional integral operators:

(59)
(
Iα,ηa+ f

)
(x) :=

(1 + η)1−α

Γ (α)

∫ x

a

(
xη+1 − tη+1

)α−1
tηf (t) dt (x > a)

and

(60)
(
Iα,ηb− f

)
(x) :=

(1 + η)1−α

Γ (α)

∫ b

x

(
tη+1 − xη+1

)α−1
tηf (t) dt (b > x) ,

where α > 0 and η ≥ 0. The integral operator (59) was considered by
Katugampola in [5]. It may be pointed out here that (59) and (60) are special



22 Ravi P. Agarwal, Min-Jie Luo and R.K. Raina

cases of the operators discussed in [7, Section 2.5]. When η = 0 in (59)
and (60), we get the left-sided and right-sided familiar Riemann-Liouville
fractional integral operators.

We now examine how (3) and (4) can reduce to (59) and (60).

Lemma 2. Corresponding to (10), the integral operators (3) and (4) in
view of (2) yield the following relationships:

(61)
(
J σρ,α,aη+1+:0ϕ

) (
xη+1

)
= (η + 1)α

(
Iα,ηa+ ϕ ◦ g

)
(x)

and

(62)
(
J σρ,α,bη+1−:0ϕ

) (
xη+1

)
= (η + 1)α

(
Iα,ηb− ϕ ◦ g

)
(x) ,

where g (t) = tη+1 and ϕ is chosen such that the right-hand sides of (61)
and (62) exist.

Proof. From the definition of J σρ,λ,a+:ω given by (3) and using (10) in
conjunction with (2), we have

(63)
(
J σρ,λ,aη+1+:ω

) (
xη+1

)
=

1

Γ (α)

∫ xη+1

aη+1

(
xη+1 − t

)α−1
ϕ (t) dt.

The substitution t = uη+1 then leads to(
J σρ,λ,aη+1+:ω

) (
xη+1

)
=
η + 1

Γ (α)

∫ x

a

(
xη+1 − uη+1

)α−1
uηϕ

(
uη+1

)
du(64)

= (η + 1)α
(η + 1)1−α

Γ (α)

∫ x

a

(
xη+1 − uη+1

)α−1
uηϕ̃ (u) du

= (η + 1)α
(
Iα,ηa+ ϕ̃

)
(x) ,

where ϕ̃ (u) := (ϕ ◦ g) (u) = ϕ
(
uη+1

)
. This completes the proof of the first

relationship. The second relationship can be proved similarly. �

By using Lemma 2 and performing elementary calculations, we obtain
the following results.

Theorem 4. Let ϕ : [aη+1, bη+1] → R be a differentiable mapping on
(aη+1, bη+1) with a < b such that |(ϕ′ ◦ g) (x)| ≤ M , then for all x ∈ [a, b]
and α > 0:∣∣∣∣∣

(
bη+1 − xη+1

)α
+
(
xη+1 − aη+1

)α
(η + 1)α

(ϕ ◦ g) (x)(65)

− Γ (α+ 1)
[(
Iα,ηx+ ϕ ◦ g

)
(b) +

(
Iα,ηx− ϕ ◦ g

)
(a)
] ∣∣∣∣∣

≤ M

α+ 1

[(
xη+1 − aη+1

)α+1
+
(
bη+1 − xη+1

)α+1

(η + 1)α

]
.
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If, in addition, |ϕ′| is s-convex in the second sense on [aη+1, bη+1] for
some s ∈ (0, 1], then the following inequality for fractional integrals with
λ > 0 holds:∣∣∣∣∣

(
bη+1 − xη+1

)α
+
(
xη+1 − aη+1

)α
(η + 1)α

(ϕ ◦ g) (x)(66)

− Γ (α+ 1)
[(
Iα,ηx+ ϕ ◦ g

)
(b) +

(
Iα,ηx− ϕ ◦ g

)
(a)
] ∣∣∣∣∣

≤
∣∣(ϕ′ ◦ g) (x)

∣∣ [(xη+1 − aη+1
)α+1

+
(
bη+1 − xη+1

)α+1

(α+ s+ 1) (η + 1)α

]

+
Γ (α+ 1) Γ (s+ 1)

Γ (α+ s+ 1)

[
|(ϕ′ ◦ g) (a)|

(
xη+1 − aη+1

)α+1

(α+ s+ 1) (η + 1)α

+
|(ϕ′ ◦ g) (b)|

(
bη+1 − xη+1

)α+1

(α+ s+ 1) (η + 1)α

]
.

Theorem 5. Let ϕ : [aη+1, bη+1] → R be a differentiable mapping on
(aη+1, bη+1) such that |(ϕ′ ◦ g) (x)| ≤ M for x ∈ [a, b] and pi > 1 (i = 1, 2)
with 1

p1
+ 1

p2
= 1. Then, the following Ostrowski type fractional integral

inequality holds:∣∣∣∣∣
(
bη+1 − xη+1

)α
+
(
xη+1 − aη+1

)α
(η + 1)α

(ϕ ◦ g) (x)(67)

− Γ (α+ 1)
[(
Iα,ηx+ ϕ ◦ g

)
(b) +

(
Iα,ηx− ϕ ◦ g

)
(a)
] ∣∣∣∣∣

≤
(
xη+1 − aη+1

)α+ 1
p2 ‖ϕ′‖p1,[aη+1,xη+1]

(η + 1)α (αp2 + 1)
1
p2

+

(
bη+1 − xη+1

)α+ 1
p2 ‖ϕ′‖p1,[xη+1,bη+1]

(η + 1)α (αp2 + 1)
1
p2

.

Moreover, if we require that |ϕ′|q is s-convex in the second sense on
[aη+1, bη+1] for some fixed s ∈ (0, 1], q > 1, then we have the following
inequality: ∣∣∣∣∣

(
bη+1 − xη+1

)α
+
(
xη+1 − aη+1

)α
(η + 1)α

(ϕ ◦ g) (x)(68)

− Γ (α+ 1)
[(
Iα,ηx+ ϕ ◦ g

)
(b) +

(
Iα,ηx− ϕ ◦ g

)
(a)
] ∣∣∣∣∣
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≤
(
xη+1 − aη+1

)α+1

(η + 1)α (1 + αp1)
1
p1

×
(

1

1 + s

) 1
p2 [∣∣(ϕ′ ◦ g) (x)

∣∣p2 +
∣∣(ϕ′ ◦ g) (a)

∣∣p2] 1
p2

+

(
bη+1 − xη+1

)α+1

(η + 1)α (1 + αp1)
1
p1

×
(

1

1 + s

) 1
p2 [∣∣(ϕ′ ◦ g) (x)

∣∣p2 +
∣∣(ϕ′ ◦ g) (b)

∣∣p2] 1
p2 .

The structure of the inequalities stated in Theorems 4 and 5 indicates
their connection with Stolarsky’s means defined by (see [17, p. 88, Eq. (7)];
see also [3, p. 519]):

(69) Sp (x, y) :=

[
xp − yp

p (x− y)

] 1
p−1

, p ∈ R \ {−1, 0}.

By setting p = η + 1 in (69) and rearranging the resulting equation, we get
a more convenient form given by

(70)

[
xη+1 − yη+1

η + 1

] 1
η

= (x− y)
1
η Sη+1 (x, y) , x ≥ y.

We will just consider here the inequality (65) and similar analysis can
easily be applied to other inequalities (66)–(68). If we set α = 1

η in (65), we
get

∣∣∣∣∣
(bη+1 − xη+1

) 1
η

(η + 1)
1
η

+

(
xη+1 − aη+1

) 1
η

(η + 1)
1
η

 (ϕ ◦ g) (x)(71)

− Γ

(
1

η
+ 1

)[(
I

1
η
,η

x+ ϕ ◦ g
)

(b) +

(
I

1
η
,η

x− ϕ ◦ g
)

(a)

] ∣∣∣∣∣
≤ Mη

η + 1

(xη+1 − aη+1
) 1
η

(η + 1)
1
η

(
xη+1 − aη+1

)

+

(
bη+1 − xη+1

) 1
η

(η + 1)
1
η

(
bη+1 − xη+1

) .
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Applying now (70), we get the following inequality:∣∣∣∣∣ [(b− x)
1
η Sη+1 (b, x) + (x− a)

1
η Sη+1 (x, a)

]
(ϕ ◦ g) (x)(72)

− Γ

(
1

η
+ 1

)[(
I

1
η
,η

x+ ϕ ◦ g
)

(b) +

(
I

1
η
,η

x− ϕ ◦ g
)

(a)

] ∣∣∣∣∣
≤ Mη

η + 1

[
(x− a)

1
η Sη+1 (x, a)

(
xη+1 − aη+1

)
+ (b− x)

1
η Sη+1 (b, x)

(
bη+1 − xη+1

)]
.

If we set

x = 2
1
η+1a and b = 3

1
η+1a

in (72), we have∣∣∣∣∣
[(

3
1
η+1 − 2

1
η+1

) 1
η
a

1
ηSη+1

(
3

1
η+1a, 2

1
η+1a

)
(73)

+
(

2
1
η+1 − 1

) 1
η
a

1
ηSη+1

(
2

1
η+1a, a

)]
(ϕ ◦ g)

(
2

1
η+1a

)
− Γ

(
1

η
+ 1

)[(
I

1
η
,η

2
1
η+1 a+

ϕ ◦ g
)(

3
1
η+1a

)
+

(
I

1
η
,η

2
1
η+1 a−

ϕ ◦ g
)

(a)

] ∣∣∣∣∣
≤ Mη

η + 1

[(
3

1
η+1 − 2

1
η+1

) 1
η
a

1
ηSη+1

(
3

1
η+1a, 2

1
η+1a

)
+
(

2
1
η+1 − 1

) 1
η
a

1
ηSη+1

(
2

1
η+1a, a

)]
aη+1.

Simplifying this inequality by using the homogeneous property of Stolarsky’s
means that

Sp (λx, λy) = λSp (x, y) (λ ≥ 0) ,

we finally get∣∣∣(ϕ ◦ g)
(

2
1
η+1a

)
(74)

−
Γ
(
1
η + 1

)[(
I

1
η
,η

2
1
η+1 a+

ϕ ◦ g
)(

3
1
η+1a

)
+

(
I

1
η
,η

2
1
η+1 a−

ϕ ◦ g
)

(a)

]
a

1
η
+1
[(

3
1
η+1 − 2

1
η+1

) 1
η
Sη+1

(
3

1
η+1 , 2

1
η+1

)
+
(

2
1
η+1 − 1

) 1
η
Sη+1

(
2

1
η+1 , 1

)]
∣∣∣∣∣∣∣∣

≤ Mη

η + 1
aη+1.
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Since

Γ

(
3

2

)
=

1

2

√
π,

if we put η = 2 in (74), then we obtain the following inequality:∣∣∣∣∣∣∣∣(ϕ ◦ g)
(

2
1
3a
)
−

√
π

[(
I

1
2
,2

2
1
3 a+

ϕ ◦ g
)(

3
1
3a
)

+

(
I

1
2
,2

2
1
3 a−

ϕ ◦ g
)

(a)

]
2a

3
2

[(
3

1
3 − 2

1
3

) 1
2
S3

(
3

1
3 , 2

1
3

)
+
(

2
1
3 − 1

) 1
2
S3

(
2

1
3 , 1
)]
∣∣∣∣∣∣∣∣(75)

≤ 2

3
a3M.
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