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ENTIRE AND MEROMORPHIC SOLUTIONS

OF LINEAR DIFFERENCE EQUATIONS

Abstract. In this paper, we shall investigate the existence of
finite order entire and meromorphic solutions of linear difference
equation of the form

fn(z) + p(z)fn−2(z) + L(z, f) = h(z)

where L(z, f) is linear difference polynomial in f(z), p(z) is
non-zero polynomial and h(z) is a meromorphic function of fi-
nite order. We also consider finite order entire solution of linear
difference equation of the form

fn(z) + p(z)L(z, f) = r(z)eq(z)

where r(z) and q(z) are polynomials.
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1. Introduction and main results

In this paper, a meromorphic function always mean it is meromorphic
in the whole complex plane C. We assume that the reader is familiar with
standard notations in the Nevanlinna theory of entire and meromorphic func-
tions as explained in ([5], [6], [14]). The values m(r, f), N(r, f), N(r, f) and
T (r, f) denote the proximity function, the counting function, the reduced
counting function and the characteristic function of f(z), respectively

m(r, f) :=
1

2π

∫ 2π

0
log+ |f(reiθ)|dθ,

N(r, f) :=

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r,
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N(r, f) :=

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r,

T (r, f) = m(r, f) +N(r, f),

where log+ |x| = max(log x, 0) for all x ≥ 0, n(t, f) denotes the number of
poles of f(z) in the disc |z| ≤ t, counting multiplicities; and n(t, f) denotes
the number of poles of f(z) in the disc |z| ≤ t, ignoring multiplicities.

Let f(z) and α(z) be two mermorphic functions. We say that α(z)
is a small function with respect to f(z), if T (r, α(z)) = S(r, f), where
S(r, f) is used to denote any quantity satisfying S(r, f) = o(T (r, f)), as
r →∞, outside of a possible exceptional set E of finite logarithmic measure
limr→∞

∫
(1,r]∩E

dt
t < ∞. The order ρ(f) of a meromorphic function f(z) is

defined as

ρ(f) = lim
r→∞

log T (r, f)

log r
.

The study of the existence and uniqueness of entire solutions of finite
order of non-linear differential equation of the form

L(f)− p(z)fn(z) = h(z)

was started by Yang [11] in 2001, where L(f) is a linear differential polyno-
mial in f(z) with polynomial coefficients, p(z) is a non-vanishing polynomial,
h(z) is an entire function and n ≥ 3 is an integer.

Later on, In 2010, Yang and Laine [12] proved the following Theorem.

Theorem A ([12]). Let n ≥ 4 be an integer, M(z, f) be a linear diffe-
rential-difference polynomial of f(z), not vanishing identically, and h(z) be a
meromorphic function of finite order. Then the differential-difference equa-
tion

fn +M(z, f) = h(z)

possesses atmost one admissible transcendental entire solution of finite order
such that all coefficients of M(z, f) are small functions of f(z). If such a
solution f(z) exists, then f(z) is of the same order as h(z).

Next, X. Qi and L. Yang [9] in 2013 proved the following result for the
existence of finite order meromorphic solution of the difference equation of
the form

(1) fn(z) + L(z, f) = h(z).

Theorem B ([9]). Let L(z, f) = a0f(z)+a1f(z+c1)+· · ·+akf(z+ck) be
a linear difference polynomial in f(z) with small meromorphic functions as
the coefficients and ci are constants, i = 1, 2, · · · , k and h(z) be a meromor-
phic function of finite order. If f(z) is a finite order meromorphic solution
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of the difference equation (1) satisfying N(r, f) = S(r, f) and n ≥ 4 be an
integer, then one of the following statements hold:

(a) Equation (1) has f(z) as its unique transcendental meromorphic so-
lution with finite order such that N(r, f) = S(r, f);

(b) Equation (1) has exactly n transcendental meromorphic solutions fj
(j = 1, 2, · · · , n), with finite order such that N(r, fj) = S(r, fj).

Later, In the year 2014, X. Qi, J. Dou and L. Yang [10] obtained the
following result for the non-linear difference equation of the form

(2) f(z)n + p(z) (∆cf)m = r(z)eq(z)

where ∆cf = f(z + c)− f(z) and c is a non-zero constant.

Theorem C ([10]). Consider the non-linear difference equation of the
form (2), where p(z) 6≡ 0, q(z), r(z) are polynomials, n and m are positive
integers. Suppose that f(z) is a transcendental entire function of finite order,
not of period c. If n > m, then f(z) cannot be a solution of (2).

In this paper, we prove the following theorems for linear difference equa-
tions.

Theorem 1. Let n ≥ 4 be an integer, L(z, y) = a0y(z) + a1y(z + c1) +
· · ·+ aky(z + ck) be a non-zero linear difference polynomial of y(z), h(z) be
a meromorphic function of finite order and p(z) be a non-zero polynomial.
Then, there exists at most one transcendental entire function f(z) of finite
order such that

(3) fn(z) + p(z)fn−2 + L(z, f) = h(z), L(z, f) 6≡ 0

and such that all coefficients aλ of L(z, y) are small functions of f(z) in the
sense that T (r, aλ) = S(r, f) and ci, i = 1, 2, · · · , k are constants. If such
solution f(z) exists than f(z) has same order as h(z).

Theorem 2. Let n ≥ 4 be an integer, L(z, y) be defined as in Theorem 1,
h(z) be a meromorphic function of finite order and p(z) be a non-zero poly-
nomial. If there exists a finite order transcendental meromorphic solution
f(z) of (3) satisfying N(r, f) = S(r, f), then f(z) is an unique solution.

Theorem 3. Let n > 1 be an integer. Let L(z, y) be defined as in
Theorem 1 and p(z) 6≡ 0, q(z) and r(z) be polynomials. Consider the linear
difference equation of the form

(4) f(z)n + p(z)L(z, f) = r(z)eq(z).

Then a transcendental entire function f(z) of finite order cannot be a solu-
tion of (4).
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2. Some lemmas

We need the following lemmas to prove our results.

Lemma 1 ([3]). Let f(z) be a non-constant meromorphic function of
finite order, and c ∈ C and δ < 1. Then

m

(
r,
f(z + c)

f(z)

)
= o

(
T (r, f)

rδ

)
for all r outside of a possible exceptional set E with finite logarithmic mea-
sure.

Lemma 2 ([1]). Let f(z) be a finite order meromorphic function, then
for each ε > 0,

T (r, f(z + c)) = T (r, f(z)) +O(rρ(f)−1+ε) +O(log r)

and
ρ(f(z + c)) = ρ(f(z)).

Thus, if f(z) is a transcendental meromorphic function with finite order,
then

T (r, f(z + c)) = T (r, f) + S(r, f).

Lemma 3 ([12]). Let f(z) be a transcendental meromorphic solution of
finite order ρ(f) of a difference equation of the form

H(z, f)P (z, f) = Q(z, f),

where H(z, f), P (z, f) and Q(z, f) are difference polynomials in f(z) such
that the total degree of H(z, f) in f(z) and its shifts is n, and that the
corresponding total degree of Q(z, f) is ≤ n. If H(z, f) contains just one
term of maximal total degree, then for any ε > 0,

m(r, P (z, f)) = O(rρ(f)−1+ε) + S(r, f),

possibly outside of an exceptional set of finite logarithmic measure.

Yang and Laine in ([12]) further pointed out the following.

Remark 1. If in the above lemma, H(z, f) = fn, then a similar conclu-
sion holds, if P (z, f), Q(z, f) are differential-difference polynomials in f .

Lemma 4 ([14]). Let fj(z)(j = 1, 2, 3) be meromorphic functions that
satisfy

3∑
j=1

fj(z) ≡ 1.
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If f1(z) is not a constant, and

3∑
j=1

N

(
r,

1

fj

)
+ 2

3∑
j=1

N(r, fj) < (λ+ o(1))T (r),

where λ < 1 and T (r) = max1≤j≤3{T (r, fj)}, then either f2(z) ≡ 1 or
f3(z) ≡ 1.

3. Proof of the theorems

Proof. of Theorem 1. We first prove that ρ(h) = ρ(f) for all entire
solutions of finite order of (3). Since the inequality ρ(h) ≤ ρ(f) trivially
holds, now suppose that ρ(h) < σ < ρ(f) = ρ. (3) can be written as

(5) fn−1 =
h

f
− p(z)fn−3 − L(z, f)

f
.

Consider,

(6) (n− 1)T (r, f) = (n− 1)m(r, f) + (n− 1)N(r, f) = (n− 1)m(r, f)

Using (5), (6) reduces to

(n− 1)T (r, f) ≤ m
(
r,
h

f

)
+m

(
r, p(z)fn−3

)
+m

(
r,
L(z, f)

f

)
+ S(r, f)

From Lemma 1, we deduce

(n− 1)T (r, f) ≤ m(r, h) + T (r, f) + (n− 3)T (r, f) +O
(
rρ−1+ε

)
+ S(r, f)

≤ T (r, h) + T (r, f) + (n− 3)T (r, f) +O
(
rρ−1+ε

)
+ S(r, f)

(7) ⇒ T (r, f) ≤ T (r, h) +O
(
rρ−1+ε

)
+ S(r, f)

Since ρ(h) < σ < ρ(f) = ρ, by definition of order, we have T (r, h) < rσ.
Thus, (7) reduces to

T (r, f) ≤ rσ +O
(
rρ−1+ε

)
+ S(r, f)

≤ rσ+ε +O
(
rρ−1+2ε

)
+ S(r, f)

for all r sufficiently large, outside of an exceptional set of finite logarith-
mic measure, provided ε has been chosen small enough and removing the
exceptional set, we get

ρ(f) ≤ max{ρ− 1 + 2ε, σ + ε} < ρ ⇒ ρ(f) < ρ
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which is a contradiction. Hence, we have proved that ρ(f) = ρ(g) = ρ(h).
Next, we prove that (3) possesses at most one admissible transcendental
entire solution of finite order. Now, assume that f and g are two distinct
finite order transcendental entire solutions of (3). Thus, we have

(8) fn + p(z)fn−2 + L(z, f) = gn + p(z)gn−2 + L(z, g).

Clearly, ρ(f) = ρ(g). Since the difference polynomial L is linear, (8) can be
written as

(fn − gn) + p(z)
(
fn−2 − gn−2

)
= L(z, g)− L(z, f) = L(z, g − f)

Let

F =
fn − gn

f − g
+ p(z)

fn−2 − gn−2

f − g
=
−L(z, f − g)

f − g
(9)

⇒ F =
fn − gn

f − g
+ p(z)

fn−2 − gn−2

f − g

=
n−1∏
p=1

(f − ηpg) + p(z)
n−3∏
m=1

(f − γmg) =
−L(z, f − g)

f − g

is an entire function, here η1, η2, · · · , ηn−1 are the distinct roots 6= 1 of the
equation zn = 1 and γ1, γ2, · · · , γn−3 are distinct roots 6= 1 of the equation
zn−2 = 1. From (9) and Lemma 1, we obtain

T (r, F ) = m(r, F ) +N(r, F ) = m(r, F ) = m

(
r,
L(z, g − f)

f − g

)
= O

(
rρ(f−g)−1+ε

)
+ S(r, f) + S(r, g)

≤ O
(
rρ(f)−1+ε

)
+ S(r, f) = Sρ(r, f)

where ε > 0 is arbitrary and sufficiently small.

⇒ N

(
r,

1

F

)
= Sρ(r, f)

⇒
n−1∑
p=1

N

(
r,

1

f − ηpg

)
= Sρ(r, f) and

n−3∑
m=1

N

(
r,

1

f − γmg

)
= Sρ(r, f)

⇒ N

(
r,

1

f − ηpg

)
= Sρ(r, f) and N

(
r,

1

f − γmg

)
= Sρ(r, f)

holds for all p = 1, 2, · · · , n−1 and m = 1, 2, · · · , n−3. Since 1
f
g
−ηp

= g 1
f−ηpg

and 1
f
g
−γm

= g 1
f−γmg , we obtain

N

(
r,

1
f
g − ηp

)
= Sρ(r, f) and N

(
r,

1
f
g − γm

)
= Sρ(r, f)
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holds for all p = 1, 2, · · · , n − 1 and m = 1, 2, · · · , n − 3. Using n ≥ 4 and
applying the Second main theorem ([14], Theorem 1.8) for ψ = f

g , we get

(n− 3)T

(
r,
f

g

)
≤

n−1∑
p=1

N

(
r,

1
f
g − ηp

)
+ S

(
r,
f

g

)

≤
n−1∑
p=1

N

(
r,

1
f
g − ηp

)
+

n−3∑
m=1

N

(
r,

1
f
g − γm

)
+ S

(
r,
f

g

)
≤ Sρ(r, f) + S

(
r,
f

g

)
⇒ T

(
r,
f

g

)
= Sρ(r, f)

⇒ T (r, ψ) = T

(
r,
f

g

)
= Sρ(r, f)

Now consider,

T (r, f) = T

(
r,
f

g
g

)
≤ T

(
r,
f

g

)
+ T (r, g)

⇒ T (r, f) ≤ T (r, g) + Sρ(r, f)

⇒ T (r, f) = T (r, g) + Sρ(r, f)(10)

From (9), we have

F = gn−1
n−1∏
p=1

(
f

g
− ηp

)
+ p(z)gn−3

n−3∏
m=1

(
f

g
− γm

)

⇒ gn−1 =
F∏n−1

p=1

(
f
g − ηp

) − p(z)gn−3
∏n−3
m=1

(
f
g − γm

)
∏n−1
p=1

(
f
g − ηp

)(11)

provided ψ is not identically equal to ηp and γm, for p = 1, 2, · · · , n− 1 and
m = 1, 2, · · · , n− 3. From (10) and (11), we obtain

(n− 1)T (r, f) = (n− 1)T (r, g) + Sρ(r, f)

≤ T (r, F ) + T

r, n−1∏
p=1

(
f

g
− ηp

)
−1

+ T (r, p(z))

+ (n− 3)T (r, g) + T

(
r,
n−3∏
m=1

(
f

g
− γm

))

+ T

r, n−1∏
p=1

(
f

g
− ηp

)−1+ Sρ(r, f)
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(12) ⇒ (n− 1)T (r, f) ≤ (n− 3)T (r, g) + Sρ(r, f) + S(r, f)

Since ρ(f) = ρ(g) which implies T (r, f) = T (r, g). Equation (12) reduces to

(n− 1)T (r, f) ≤ (n− 3)T (r, f) + Sρ(r, f) + S(r, f)

⇒ 2T (r, f) ≤ Sρ(r, f)

⇒ T (r, f) = Sρ(r, f)

which is a contradiction. Therefore, we must have ψ = ηp for some p =
1, 2, · · · , n − 1 and ψ = γm for some m = 1, 2, · · · , n − 3, which implies
f = ηpg and f = γmg which again implies fn + p(z)fn−2 = gn + p(z)gn−2

and L(z, f) = L(z, g). Since f = ηpg and by the linearity of the difference
polynomial L, we get L(z, f) = ηpL(z, g), since ηp 6= 1, we get a contra-
diction to L(z, f) = L(z, g). Hence (3) possesses atmost one admissible
transcendental entire solution of finite order such that all coefficients of
L(z, f) are small functions of f(z). �

Proof. of Theorem 2. Suppose f1(z) and f2(z) are two distinct fi-
nite order transcendental meromorphic solutions of (3) such that N(r, fi) =
S(r, fi) (i = 1, 2). From (3), we obtain

G(z) =
fn1 − fn2 + p(z)

(
fn−21 − fn−22

)
f1 − f2

(13)

=
L (z, f2)− L (z, f1)

f1 − f2
=
L (z, f1)− L (z, f2)

f2 − f1

⇒ G(z) =
n−1∏
p=1

(f1 − ηpf2) + p(z)
n−3∏
m=1

(f1 − γmf2)

where,

G(z) = (f1 − η1f2) (f1 − η2f2) · · · (f1 − ηn−1f2)
+ p(z) (f1 − γ1f2) (f1 − γ2f2) · · · (f1 − γn−3f2) .

Here ηp 6= 1(p = 1, 2, · · · , n− 1) are the distinct nth roots of the unity and
γm 6= 1(m = 1, 2, · · · , n − 3) are the distinct (n − 2)th roots of the unity.
Using (13) and Lemma 1, we obtain

m(r,G) = m

(
r,
L (z, f1)− L (z, f2)

f2 − f1

)
= m

(
r,
L (z, f1 − f2)
f2 − f1

)
= S(r, f1) + S(r, f2)

Since by hypothesis N(r, fi) = S(r, fi)(i = 1, 2), it follows that N(r,G) =
S(r, f1) + S(r, f2). Hence, we get

(14) T (r,G) = m(r,G) +N(r,G) = S(r, f1) + S(r, f2)
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Now, we will discuss the following two cases for G(z).

Case 1. If G(z) ≡ 0. From (13), we get

L(z, f1)− L(z, f2) = 0 ⇒ L(z, f1) = L(z, f2)

⇒ a0f1(z) + a1(z)f1 (z + c1) + · · ·+ ak(z)f1 (z + ck)(15)

= a0f2(z) + a1(z)f2 (z + c1) + · · ·+ ak(z)f2 (z + ck) .

Let h = f1
f2

, then substituting f1 = hf2, equation (15) can be written as

a0(z)f2(z)(h(z)− 1) + a1(z)f2 (z + c1) (h (z + c1)− 1)

+ · · ·+ ak(z)f2 (z + ck) (h (z + ck)− 1) = 0

⇒ h(z) ≡ 1 and h (z + ci) ≡ 1, where ci = 1, 2, · · · , k.
⇒ f1(z) ≡ f2(z) and f1 (z + ci) ≡ f2 (z + ci) , where ci = 1, 2, · · · , k.

that is, f1 = f2. Thus (3) has an unique solution.

Case 2. If G(z) 6≡ 0. Consider,

G(z) = (f1 − η1f2) (f1 − η2f2) · · · (f1 − ηn−1f2)
+ p(z) (f1 − γ1f2) (f1 − γ2f2) · · · (f1 − γn−3f2)

⇒ G(z) = fn−12 Q1

(
f1
f2

)
+ p(z)fn−32 Q2

(
f1
f2

)
(16)

where Q1

(
f1
f2

)
is a polynomial in f1

f2
of degree n − 1 and Q2

(
f1
f2

)
is a

polynomial in f1
f2

of degree n − 3 with constant coefficients. (16) can be
written as

G(z) = fn−12

[
Q1

(
f1
f2

)
+
p(z)

f22
Q2

(
f1
f2

)]
⇒ G(z)

fn−12

=

[
Q1

(
f1
f2

)
+
p(z)

f22
Q2

(
f1
f2

)]

(17) ⇒ T

(
r,Q1

(
f1
f2

)
+
p(z)

f22
Q2

(
f1
f2

))
= T

(
r,
G(z)

fn−12

)
.

Using (14), (17) deduces to

(18) (2n− 4)T

(
r,
f1
f2

)
= (n− 3)T (r, f2) + S (r, f1) + S (r, f2) .
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Similarly, we can write

(19) (2n− 4)T

(
r,
f2
f1

)
= (n− 3)T (r, f1) + S (r, f1) + S (r, f2) .

From (18) and (19), we obtain

(20) T (r, f1) + S (r, f1) = T (r, f2) + S (r, f2) .

Since ρ(f1) = ρ(f2), (20) reduces to

(21) S (r, f1) = S (r, f2) .

Using (21), (18) reduces to

2(n− 2)T

(
r,
f2
f1

)
= (n− 3)T (r, f2) + S (r, f2)

⇒ S

(
r,
f2
f1

)
= S (r, f2)

From (14) and First Fundamental Theorem ([14], Theorem 1.2), we can
write

N

(
r,

1

G

)
= S(r, f2)

⇒
n−1∑
p=1

N

(
r,

1

f1 − ηpf2

)
= S(r, f2) and

n−3∑
m=1

N

(
r,

1

f1 − γmf2

)
= S(r, f2)

⇒ N

(
r,

1

f1 − ηpf2

)
= S(r, f2) and N

(
r,

1

f1 − γmf2

)
= S(r, f2)

holds for all p = 1, 2, · · · , n − 1 and m = 1, 2, · · · , n − 3. Since 1
f1
f2
−ηp

=

f2
1

f1−ηpf2 and 1
f1
f2
−γm

= f2
1

f1−γmf2 , we obtain

(22) N

(
r,

1
f1
f2
− ηp

)
= S(r, f2) and N

(
r,

1
f1
f2
− γm

)
= S(r, f2)
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holds for all p = 1, 2, · · · , n− 1 and m = 1, 2, · · · , n− 3. From (22) and the
Second main theorem ([14], Theorem 1.8), we obtain

(n− 3)T

(
r,
f1
f2

)
≤

n−1∑
p=1

N

(
r,

1
f1
f2
− ηp

)
+ S

(
r,
f1
f2

)

≤
n−1∑
p=1

N

(
r,

1
f1
f2
− ηp

)
+

n−3∑
m=1

N

(
r,

1
f1
f2
− γm

)
+ S

(
r,
f1
f2

)
≤ S (r, f2) + S

(
r,
f1
f2

)
= S

(
r,
f1
f2

)
⇒ (n− 3)T

(
r,
f1
f2

)
≤ S

(
r,
f1
f2

)
which is a contradiction to n ≥ 4.

Hence (3) has f(z) as its unique transcendental meromorphic solution
with finite order such that N(r, f) = S(r, f). �

Proof. of Theorem 3. First we consider two cases for q(z) and r(z).

Case 1. If q(z) is a constant or r(z) ≡ 0. Then (4) can be reduced to
f(z)n + p(z)L(z, f) = Q(z), where Q(z) is a polynomial.

⇒ f(z)n = Q(z)− p(z)L(z, f)

f(z)
.f(z)

⇒ nT (r, f(z)) ≤ T (r,Q(z)) + T (r, p(z)) + T

(
r,
L(z, f)

f(z)

)
+ T (r, f(z)) + S(r, f) ≤ T (r, f(z)) + S(r, f)

⇒ (n− 1)T (r, f(z)) ≤ S(r, f), which is a contradiction to n > 1.

Hence, if q(z) is a constant or r(z) ≡ 0 then transcendental entire function
f(z) of finite order cannot be solution of (4).

Case 2. If q(z) is a non-constant polynomial and r(z) 6≡ 0. Assume
that transcendental entire function f(z) of finite order is a solution of (4).
Differentiating (4), we get

(23) nf(z)n−1f
′
+ p(z)L

′
(z, f) + p

′
(z)L(z, f) =

[
r(z)q

′
(z) + r

′
(z)
]
eq(z).

From (23) and (4), we get

nf(z)n−1f
′
(z) + p(z)L

′
(z, f) + p

′
(z)L(z, f)

f(z)n + p(z)L(z, f)
=

[
r(z)q

′
(z) + r

′
(z)
]
eq(z)

r(z)eq(z)
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⇒ nf(z)n−1f
′
(z) + p(z)L

′
(z, f) + p

′
(z)L(z, f)

=

[
q
′
(z) +

r
′
(z)

r(z)

]
f(z)n +

[
q
′
(z) +

r
′
(z)

r(z)

]
p(z)L(z, f)

⇒ f(z)n−1

[
nf

′
(z)−

(
q
′
(z) +

r
′
(z)

r(z)

)
f(z)

]
(24)

=

(
q
′
(z) +

r
′
(z)

r(z)

)
p(z)L(z, f)− p(z)L′

(z, f)− p′(z)L(z, f).

If nf
′
(z) −

(
q
′
(z) + r

′
(z)

r(z)

)
f(z) ≡ 0, then integrating and simplifying, we

get f(z)n = Br(z)eq(z) implies f(z) = g(z)e
q(z)
n where g(z)n = Br(z), B is

a non-zero constant. Thus, (4) can be written as

(25) (B − 1)r(z)eq(z) + p(z)L(z, f) ≡ 0.

Notice that if B = 1, then L(z, f) ≡ 0, which contradicts the hypothesis.

Thus, B 6≡ 1, substituting f(z) = g(z)e
q(z)
n in L(z, f) and considering h(z) =

e
q(z)
n , then L(z, f) can be expressed as

L(z, f) = a0g(z)h(z) +

k∑
s=1

as(z)g (z + cs)h (z + cs) .

Consider,

T (r, L(z, f)) = m(r, L(z, f)) +N(r, L(z, f)) = m(r, L(z, f))

= m

(
r,
L(z, f)

h(z)
h(z)

)
≤ m

(
r,
L(z, f)

h(z)

)
+m(r, h(z)) + S(r, h).

Using Lemma 1, we deduce

(26) T (r, L(z, f)) ≤ T (r, h(z)) + S(r, h(z)).

From (25), we get

T
(
r, (1−B)r(z)eq(z)

)
= T (r, (1−B)r(z)h(z)n) = T (r, p(z)L(z, f))(27)

≤ T (r, p(z)) + T (r, L(z, f)) + S(r, h).

Since polynomial p(z) is small function with respect to transcendental entire
function h(z), we have T (r, p(z)) = S(r, h). Using (26), (27) reduces to

(n− 1)T (r, h(z)) ≤ S(r, h)
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which is contradiction to n > 1. Hence nf
′
(z)− (q

′
+ r

′
(z)

r(z) )f(z) 6≡ 0.

Now, we consider the following two subcases for n.

Subcase 1. If n > 2, (24) can be deduced to

f(z)n−2

[
nf

′
(z)−

(
q
′
(z) +

r
′
(z)

r(z)

)
f(z)

]
(28)

=

(
q
′
(z) +

r
′
(z)

r(z)

)
p(z)

L(z, f)

f(z)
− p(z)L

′
(z, f)

f(z)
− p

′
(z)

L(z, f)

f(z)

and

fn−3(z)

[
f(z)

(
nf

′
(z)−

(
q
′
(z) +

r
′
(z)

r(z)

)
f(z)

)]
(29)

=

(
q
′
(z) +

r
′
(z)

r(z)

)
p(z)

L(z, f)

f(z)
− p(z)L

′
(z, f)

f(z)
− p′(z)L(z, f)

f(z)
.

Applying Lemma 3 and Remark 1 to (28) and (29), we get

(30) m

(
r, nf

′
(z)−

(
q
′
(z) +

r
′
(z)

r(z)

)
f(z)

)
= S(r, f)

and

(31) m

(
r, f(z)

(
nf

′
(z)−

(
q
′
(z) +

r
′
(z)

r(z)

)
f(z)

))
= S(r, f).

Since f(z) is an entire function and from (30) and (31), we get

(32) T

(
r, nf

′
(z)−

(
q
′
(z) +

r
′
(z)

r(z)

)
f(z)

)
= S(r, f)

and

(33) T

(
r, f(z)

(
nf

′
(z)−

(
q
′
(z) +

r
′
(z)

r(z)

)
f(z)

))
= S(r, f).

Now consider,

T (r, f(z)) = T

r, f(z)

(
nf

′
(z)−

(
q
′
(z) + r

′
(z)

r(z)

)
f(z)

)
nf ′(z)−

(
q′(z) + r′ (z)

r(z)

)
f(z)


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⇒ T (r, f(z)) ≤ T

(
r, f(z)

(
nf

′
(z)−

(
q
′
(z) +

r
′
(z)

r(z)

)
f(z)

))
(34)

+ T

(
r, nf

′
(z)−

(
q
′
(z) +

r
′
(z)

r(z)

)
f(z)

)
+ S(r, f).

From (32) and (33), (34) reduces to

T (r, f(z)) ≤ S(r, f)

⇒ T (r, f(z)) = S(r, f), a contradiction.

Subcase 2. If n = 2, (4) and (24) can be reduced to

(35) f(z)2 + p(z)L(z, f) = r(z)eq(z)

f(z)

[
2f

′
(z)−

(
q
′
(z) +

r
′
(z)

r(z)

)
f(z)

]
(36)

=

(
q
′
(z) +

r
′
(z)

r(z)

)
p(z)L(z, f)− p(z)L′

(z, f)− p′(z)L(z, f).

Let G(z) = 2f
′
(z)−

(
q
′
(z) + r

′
(z)

r(z)

)
f(z). Then, (36) reduces to

(37) G(z) =

(
q
′
(z) +

r
′
(z)

r(z)

)
p(z)

L(z, f)

f(z)
− p(z)L

′
(z, f)

f(z)
− p′(z)L(z, f)

f(z)
.

Since f(z) is an entire function and from Lemma 1 and the Lemma on the
logarithmic derivative ([14], page no. 16), (37) deduces to

(38) T (r,G(z)) = m(r,G(z)) + S(r, f) = S(r, f).

Differentiating G(z), we get

2f
′′
(z)−

(
q
′
(z) +

r
′
(z)

r(z)

)′

f(z)−

(
q
′
(z) +

r
′
(z)

r(z)

)
f

′
(z) =

G
′
(z)

G(z)
G(z)

⇒ 2f
′′
(z) −

(
q
′
(z) +

r
′
(z)

r(z)
+ 2

G
′
(z)

G(z)

)
f

′
(z)

−

q′′(z)− G
′
(z)

G(z)
q
′
(z) +

(
r
′
(z)

r(z)

)′

− G
′
(z)

G(z)

r
′
(z)

r(z)

 f(z) = 0
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⇒ 2

(f ′
(z)

f(z)

)′

+

(
f

′
(z)

f(z)

)2
−(q′(z) +

r
′
(z)

r(z)
+ 2

G
′
(z)

G(z)

)
f

′
(z)

f(z)
(39)

−

q′′(z)− q′(z)G′
(z)

G(z)
+

(
r
′
(z)

r(z)

)′

− G
′
(z)

G(z)
· r

′
(z)

r(z)

 = 0.

Suppose that z0 is a zero of f(z) with multiplicity p. If z0 is a zero of r(z)

as well, then the contribution of z0 to N
(
r, 1f

)
is S(r, f). Assume that z0

is not a zero of r(z), we now discuss the following two Subcases:

Subcase A. Suppose z0 is a zero of G(z) with multiplicity k. From (39),
we obtain that p = 1 + k ≤ 2k, by (38) implies that the contribution of z0

to N
(
r, 1f

)
is S(r, f).

Subcase B. Suppose z0 is not a zero of G(z). By (39), we obtain
p2 − p = 0, then such a zero of f(z) must be simple and we notice that

q
′
+ r

′

r +2G
′

G must vanish at z0. Thus, by (38) implies that the contribution of

z0 to N
(
r, 1f

)
is S(r, f). Hence, N

(
r, 1f

)
= S(r, f). Thus, by Hadamard’s

factorization theorem, f(z) can be expressed as f(z) = B(z)ed(z), where

B(z) is an entire function satisfying N
(
r, 1
B(z)

)
= S(r, f) and d(z) is

non-constant polynomial. Substituting f(z) in (35), we get

B(z)2e2d(z) + p(z)a0(z)B(z)ed(z)

+ p(z)
k∑
j=1

aj(z)B (z + cj) e
d(z+cj) = r(z)eq(z)

⇒ −B(z)ed(z)

p(z)a0(z)
+

r(z)eq(z)

p(z)a0(z)B(z)ed(z)

−
∑k

j=1 aj(z)B (z + cj) e
d(z+cj)

a0(z)B(z)ed(z)
= 1

⇒ f1 + f2 + f3 = 1

where

f1 = −B(z)ed(z)

p(z)a0(z)
, f2 =

r(z)eq(z)

p(z)a0(z)B(z)ed(z)
,

f3 = −
∑k

j=1 aj(z)B (z + cj) e
d(z+cj)

a0(z)B(z)ed(z)
.



58 Renukadevi S. Dyavanal and Madhura M. Mathai

Notice that f1 = −B(z)ed(z)

p(z)a0(z)
is not a constant and we deduce that

3∑
l=1

N

(
r,

1

fl

)
+ 2

3∑
l=1

N (r, fl) ≤ S(r, f) < (λ+ o(1))T (r).

Thus, by Lemma 4, we get either f2(z) ≡ 1 or f3(z) ≡ 1. If f2(z) ≡ 1, then
by (35), we deduce T (r, f) ≤ S(r, f), which is a contradiction. If f3(z) ≡ 1,
then we get L(z, f) ≡ 0, by hypothesis, we again get a contradiction. Hence,
transcendental entire function of finite order cannot be a solution of (4). �
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