$\rm Nr~56$

2016 DOI:10.1515/fascmath-2016-0004

Yaé Ulrich Gaba

SOME ADVANCES IN THE THEORY OF QUASI-PSEUDOMETRIC TYPE SPACES

ABSTRACT. In this paper, we extend most of the results proved in [4]. In particular, we give some topological properties of the quasi-pseudometric type spaces. Moreover, some fixed point and common fixed point theorems are obtained in the setting of quasi-pseudometric spaces, introduced some months ago by Kazeem et al in [4].

KEY WORDS: quasi-pseudometric type spaces, fixed point, left $K\mbox{-}completeness.$

AMS Mathematics Subject Classification: 47H09.

Symmetric spaces were introduced in 1931 by Wilson [6], as metric-like spaces lacking the triangle inequality. Several fixed point results in such spaces were obtained. In the same dynamics, cone metric spaces were introduced by Huang [3] and many fixed point results concerning mappings in these spaces have also been established. In [5], M. A. Khamsi connected this concept with a generalised form of metric that he named *metric type*. Namely, he observed that if d(x, y) is a cone metric, then D(x, y) = ||d(x, y)||is symmetric with some special properties, particularly in the case when the underlying cone is normal. Recently in [4], Kazeem et al. discussed the newly introduced notion of quasi-pseudometric type spaces as a logical equivalent to metric type spaces when the initial distance-like function is not symmetric. Some fixed point results of mappings on such spaces were discussed as well in [4]. It is the aim of this article to continue the study of quasi-pseudometric spaces by proving several other fixed point and common fixed point results, hence extending the fixed point results of [4] to a class of mappings satisfying more general contractive conditions.

In this section, we recall briefly some elementary definitions from the asymmetric topology which are necessary for a good understanding of the work below. For recent results and detailed explanations for the concepts in the theory of asymmetric spaces, the reader is referred to [2, 4, 7, 8].

Definition 1. Let E be a real Banach space with norm $\|.\|$ and P be a subset of E. Then P is called a cone if and only if

(a) P is closed, nonempty and $P \neq \{\theta\}$, where θ is the zero vector in E;

- (b) for any $a, b \ge 0$, and $x, y \in P$, we have $ax + by \in P$;
- (c) for $x \in P$, if $-x \in P$, then $x = \theta$.

Given a cone P in a Banach space E, we define on E a partial order \leq with respect to P by

$$x \preceq y \iff y - x \in P.$$

We also write $x \prec y$ whenever $x \preceq y$ and $x \neq y$, while $x \ll y$ will stand for $y - x \in Int(P)$ (where Int(P) designates the interior of P).

The cone P is called **normal** if there is a number C > 0, such that for all $x, y \in E$, we have

$$\theta \preceq x \preceq y \Longrightarrow \|x\| \le C\|y\|.$$

The least positive number satisfying this inequality is called the **normal** constant of P. Therefore, we shall then say that P is a K-normal cone to indicate the fact that the normal constant is K.

Definition 2 (Compare [4]). Let X be a nonempty set. Suppose the mapping $q: X \times X \to E$ satisfies

- (q1) $\theta \leq q(x, y)$ for all $x, y \in X$;
- (q2) $q(x,y) = \theta = q(y,x)$ if and only if x = y;
- (q3) $q(x,z) \preceq q(x,y) + q(y,z)$ for all $x, y, z \in X$.

Then, q is called a quasi-cone metric on X, and (X,q) is called a quasi-cone metric space.

Definition 3 (Compare [4]). A sequence in a quasi-cone metric space (X,q) is called

(a) Q-Cauchy or bi-Cauchy if for every $c \in X$ with $c \gg \theta$, there exists $n_0 \in \mathbb{N}$ such that

 $\forall n, m \ge n_0 \quad q(x_n, x_m) \ll c;$

(b) left(right) Cauchy if for every $c \in X$ with $c \gg \theta$, there exists $n_0 \in \mathbb{N}$ such that

 $\forall n, m : n_0 \le m \le n \quad q(x_m, x_n) \ll c \ (q(x_n, x_m) \ll c \ resp.).$

Remark 1. A sequence is *Q*-Cauchy if and only if it is both left and right Cauchy.

Definition 4. (a) In a quasi-cone metric space (X, q), we say that the sequence (x_n) left converges to $x \in X$ if for every $c \in E$ with $\theta \ll c$ there exists N such that for all n > N, $q(x_n, x) \ll c$.

- (b) Similarly, in a quasi-cone metric space (X,q), we say that a sequence (x_n) right converges to $x \in X$ if for every $c \in E$ with $\theta \ll c$ there exists N such that for all n > N, $q(x, x_n) \ll c$.
- (c) Finally, in a quasi-cone metric space (X,q), we say that the sequence (x_n) converges to $x \in X$ if for every $c \in E$ with $\theta \ll c$ there exists N such that for all n > N, $q(x_n, x) \ll c$ and $q(x, x_n) \ll c$.

Definition 5. A quasi-cone metric space (X,q) is called

- (a) left complete (resp. right complete) if every left Cauchy (resp.
- right Cauchy) sequence in X left (resp. right) converges.
- (b) **bicomplete** if every Q-Cauchy sequence converges.

Remark 2. A quasi-cone metric space (X, q) is bicomplete if and only if it is left complete and right complete.

Definition 6. Let (X,q) be a quasi-cone metric space. A function $f : X \to X$ is said to be **Lipschitzian** if there exists some $\kappa \in \mathbb{R}$ such that

$$q(f(x), f(y)) \preceq \kappa \ q(x, y) \qquad \forall \ x, y \in X.$$

The smallest constant which satisfies the above inequality is called the **Lip**schitiz constant of f and is denoted Lip(f). In particular f is said to be contractive if $Lip(f) \in [0, 1)$ and nonexpansive if $Lip(f) \leq 1$.

Definition 7 (Compare [1]). Let f and g be self maps on a set X. If w = fx = gx for some $x \in X$, then x is called a **coincidence point** of f and g, and w is called the **point of coincidence** of f and g.

Definition 8. Let f and g be self maps on a nonempty set X. We say that f and g are weakly compatible if they commute at their coincidence point, that is there exists $x_0 \in X$ such that $fx_0 = gx_0$ then $gfx_0 = fgx_0$.

We also give the following proposition that we take from [1] by omitting the proof.

Proposition 1 (Compare [1]). Let f and g be weakly compatible self maps on a set X. If f and g have a unique point of coincidence w = fx = gx, then w is the unique common fixed point of f and g.

we also have the following important characterization

Lemma 1. Let (X,q) be a quasi-cone metric space, P be a K-normal cone and (x_n) be a sequence in X. Then (x_n) is a bi-Cauchy sequence if and only if $q(x_n, x_m) \longrightarrow \theta$ as $n, m \longrightarrow \infty$.

We now connect the notion of quasi-cone metric to the one of quasi-pseudometric type space via the following theorem. **Theorem 1** (Compare [4] Theorem 28). Let (X, q) be a quasi-cone metric space over the Banach space E with the K-normal cone P. The mapping $Q: X \times X \to [0, \infty)$ defined by Q(x, y) = ||q(x, y)|| satisfies the following properties

(Q1) Q(x,x) = 0 for any $x \in X$; (Q2) $Q(x,y) \le K(Q(x,z_1) + Q(z_1,z_2) + \dots + Q(z_n,y))$, for any points $x, y, z_i \in X, i = 1, 2, \dots, n$.

We are therefore led to the following definition.

Definition 9 ([4]). Let X be a non empty set, and let the function $D: X \times X \to [0, \infty)$ satisfy the following properties:

(D1) D(x,x) = 0 for any $x \in X$;

(D2) $D(x,y) \leq \alpha (D(x,z_1) + D(z_1,z_2) + \dots + D(x_n,y))$ for any points $x, y, z_i \in X, i = 1, 2, \dots, n$ and some constant $\alpha > 0$.

Then (X, D, α) is called a quasi-pseudometric type space. Moreover, if $D(x, y) = 0 = D(y, x) \Longrightarrow x = y$, then D is said to be a T₀-quasi-pseudometric type space. The latter condition is referred to as the T₀-condition.

Remark 3. • Let D be a quasi-pseudometric type on X, then the map D^{-1} defined by $D^{-1}(x,y) = D(y,x)$ whenever $x, y \in X$ is also a quasi-pseudometric type on X, called the conjugate of D. We shall also denote D^{-1} by D^t or \overline{D} .

- It is easy to verify that the function D^s defined by $D^s := D \vee D^{-1}$, i.e. $D^s(x,y) = \max\{D(x,y), D(y,x)\}$ defines a **metric type** (see [5]) on X whenever D is a T_0 -quasi-pseudometric type.
- If we substitute the property (D1) by the following property $(D3): D(x, y) = 0 \iff x = y$, we obtain a T_0 -quasi-pseudometric type space directly. For instance, this could be done if the map D is obtained from quasi-cone metric.

Moreover, for $\alpha = 1$, we recover the classical pseudometric, hence quasipseud-metric type spaces generalize quasi-pseudometrics. It is worth mentioning that if (X, D, α) is a pseudometric type space, then for any $\beta \ge \alpha$, (X, D, β) is also a pseudometric type space. We give the following example to illustrate the above comment.

Example 1. Let $X = \{a, b, c\}$ and the mapping $D : X \times X \to [0, \infty)$ defined by D(a, b) = D(c, b) = 1/5, D(b, c) = D(b, a) = D(c, a) = 1/4, D(a, c) = 1/2, D(x, x) = 0 for any $x \in X$ and D(x, y) = D(y, x) for any $x, y \in X$. Since

$$\frac{1}{2} = D(a,c) > D(a,b) + D(b,c) = \frac{9}{20}$$

then we conclude that X is not a quasi-pseudometric space. Nevertheless, with $\alpha = 2$, it is very easy to check that (X, D, 2) is a quasi-pseudometric type space.

Definition 10 ([4]). Let (X, D, α) be a quasi-pseudometric space. The convergence of a sequence (x_n) to x with respect to D, called D-convergence or left-convergence and denoted by $x_n \xrightarrow{D} x$, is defined in the following way

(1)
$$x_n \xrightarrow{D} x \Longleftrightarrow D(x, x_n) \longrightarrow 0.$$

Similarly, the convergence of a sequence (x_n) to x with respect to D^{-1} , called D^{-1} -convergence or right-convergence and denoted by $x_n \xrightarrow{D^{-1}} x$, is defined in the following way

(2)
$$x_n \xrightarrow{D^{-1}} x \Longleftrightarrow D(x_n, x) \longrightarrow 0.$$

Finally, in a quasi-pseudometric space (X, D, α) , we shall say that a sequence (x_n) D^s -converges to x if it is both left and right convergent to x, and we denote it as $x_n \xrightarrow{D^s} x$ or $x_n \longrightarrow x$ when there is no confusion. Hence

 $x_n \xrightarrow{D^s} x \iff x_n \xrightarrow{D} x \text{ and } x_n \xrightarrow{D^{-1}} x.$

Definition 11 ([4]). A sequence (x_n) in a quasi-pseudometric type space (X, D, α) is called

(a) left K-Cauchy with respect to D if for every $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$\forall n, k : n_0 \le k \le n \quad D(x_k, x_n) < \epsilon;$$

(b) **right** K-Cauchy with respect to D if for every $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$\forall n, k : n_0 \le k \le n \quad D(x_n, x_k) < \epsilon;$$

(c) D^s -Cauchy if for every $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$\forall n, k \ge n_0 \quad D(x_n, x_k) < \epsilon.$$

Remark 4. • A sequence is left K-Cauchy with respect to d if and only if it is right K-Cauchy with respect to D^{-1} .

• A sequence is d^s -Cauchy if and only if it is both left and right K-Cauchy.

Definition 12 ([4]). A quasi-pseudometric space (X, D, α) is called *left-complete* provided that any left K-Cauchy sequence is D-convergent.

Yaé Ulrich Gaba

Definition 13 ([4]). A quasi-pseudometric space (X, D, α) is called right-complete provided that any right K-Cauchy sequence is D-convergent.

Definition 14 ([4]). A T_0 -quasi-pseudometric space (X, D, α) is called bicomplete provided that the metric D^s on X is complete.

2. First results

In [4], Kazeem et al. proved the following:

Theorem 2. Let (X,q) be a bicomplete quasi-cone metric space, P a K-normal cone. Suppose that a mapping $T: X \to X$ satisfies the contractive condition

 $q(Tx,Ty) \preceq k \ q(x,y)$ for all $x, y \in X$,

where $k \in [0, 1)$. Then T has a unique fixed point. Moreover for any $x \in X$, the orbit $\{T^n x, n \ge 0\}$ converges to the fixed point.

We start by an application of the above the theorem

Theorem 3. Let (X,q) be a bicomplete quasi-cone metric space, P a K-normal cone. Let $T: X \to X$ be a map such that for every $n \in \mathbb{N}$, there is $\lambda_n \in (0,1)$ such that

$$q(T^n x, T^n y) \preceq \lambda_n q(x, y)$$
 for all $x, y \in X$.

and let $\lim_{n\to 0} \lambda_n = 0$. Then T has a unique fixed point $\omega \in X$.

Proof. Take λ such that $0 < \lambda < 1$. Since $\lim_{n \to 0} \lambda_n = 0$, there exists $n_0 \in \mathbb{N}$ such that $\lambda_n < \lambda$ for each $n \geq n_0$. Then $q(T^n x, T^n y) \preceq \lambda_n q(x, y)$ for all $x, y \in X$ whenever $n \geq n_0$. In other words, for any $m \geq n_0, g = T^m$ satisfies

$$q(gx, gy) \preceq k \ q(x, y)$$
 for all $x, y \in X$.

Theorem 2 implies that g has a unique fixed point, say ω . Then $T^m \omega = \omega$, implying that $T^{m+1}\omega = T(T^m\omega) = T^m(T\omega) = T\omega$ and $T\omega$ is also a fixed point of $g = T^m$. Since the fixed point is unique, it follows that $T\omega = \omega$ and ω is the unique fixed point of T.

We now state below a generalization of this theorem.

Theorem 4. Let (X,q) be a bicomplete quasi-cone metric space, P a K-normal cone. Suppose that a mapping $T: X \to X$ is such that for every $n \in \mathbb{N}$, T^n is Lipschitzian and that $\sum_{n=0}^{\infty} Lip(T^n) < \infty$. Then T has a unique fixed point $x^* \in X$.

Proof. Since for any $n \in \mathbb{N}$, T^n is Lipschitzian, hence there exists $k_n := Lip(T^n) \ge 0$ such that

$$q(T^n x, T^n y) \preceq k_n q(x, y)$$
 for all $x, y \in X$.

Now let $x \in X$. For any $n, h \in \mathbb{N}$, we have

(3)
$$q(T^n x, T^{n+h} x) \preceq k_n q(x, T^h x) \preceq k_n \left[\sum_{i=0}^{h-1} q(T^i x, T^{i+1} x) \right].$$

Hence

(4)
$$q(T^n x, T^{n+h} x) \preceq k_n \left(\sum_{i=0}^{h-1} k_i\right) q(x, Tx),$$

since

$$q(T^i, T^{i+1}x) \preceq k_i \ q(x, Tx), \text{ for all } i \in \mathbb{N}.$$

Since $\sum_{n=0}^{\infty} Lip(T^n)$ is convergent, then $\lim_{n\to 0} Lip(T^n) = 0$ and therefore inequality (4) entails that

(5)
$$\|q(T^n x, T^{n+h} x)\| \le Kk_n \left(\sum_{i=0}^{h-1} k_i\right) \|q(x, Tx)\| \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

Similarly, one shows that

(6)
$$\|q(T^{n+h}x,T^nx)\| \le Kk_n\left(\sum_{i=0}^{h-1}k_i\right)\|q(Tx,x)\| \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

From relations (5) and (6), we conclude that $(T^n x)$ is a bi-Cauchy sequence. Since (X, q) is bicomplete, there exists $x^* \in X$ such that $(T^n x)$ converges to x^* . First let us show that x^* is a fixed point of T.

On one side, we have

(7)
$$q(T^{n-1}x, x^*) \leq q(T^{n-1}x, T^nx) + q(T^nx, x^*) \\ \leq k_{n-1}q(x, Tx) + q(T^nx, x^*),$$

and on the other side

(8)
$$q(x^*, T^{n-1}x) \preceq q(x^*, T^n x) + q(T^n x, T^{n-1}x) \\ \preceq k_{n-1}q(Tx, x) + q(x^*, T^n x),$$

From (7), we have that

$$q(Tx^*, x^*) \preceq q(Tx^*, T^n x) + q(T^n x, x^*)$$
$$\preceq k_1 q(x^*, T^{n-1} x) + q(T^n x, x^*) \to \theta \quad \text{as} \quad n \to \infty,$$

i.e

$$q(Tx^*, x^*) = \theta.$$

In the same manner, from (8), we have that

$$q(x^*, Tx^*) = \theta.$$

Hence

$$q(Tx^*, x^*) = \theta = q(x^*, Tx^*).$$

This implies, using property (q^2) that $Tx^* = x^*$. So x^* is a fixed point of T. Moreover, if z^* is a fixed point of T, then for all $n \ge 1$, we have

$$q(x^*, z^*) = q(T^n x^*, T^n z^*) \leq k_n q(x^*, z^*),$$

and

$$q(z^*, x^*) = q(T^n z^*, T^n x^*) \preceq k_n q(z^*, x^*).$$

Since $\lim_{n\to 0} Lip(T^n) = 0$, hence $||q(x^*, z^*)|| = 0 = ||q(z^*, x^*)||$ and $x^* = z^*$. Therefore the fixed point is unique.

In the next section, we give some topological properties of quasi-pseudometric type spaces. Most of them deal with sequences and follow closely the classical properties of sequences pseudometric spaces.

3. Topology on Quasi-pseudometric type spaces and fixed point results

3.1. Some topological properties. Let (X, D, α) be a quasi-pseudometric type space. Then for each $x \in X$ and $\epsilon > 0$, the set

$$B_D(x,\epsilon) = \{y \in X : D(x,y) < \epsilon\}$$

denotes the open ϵ -ball at x with respect to D. It should be noted that the collection

$$\{B_D(x,\epsilon): x \in X, \epsilon > 0\}$$

yields a base for the topology $\tau(D)$ induced by D on X. In a similar manner, for each $x \in X$ and $\epsilon \ge 0$, we define

$$C_D(x,\epsilon) = \{ y \in X : D(x,y) \le \epsilon \},\$$

known as the closed ϵ -ball at x with respect to D.

Also the collection

$$\{D_{d^{-1}}(x,\epsilon): x \in X, \epsilon > 0\}$$

yields a base for the topology $\tau(D^{-1})$ induced by D^{-1} on X. The set $C_D(x,\epsilon)$ is $\tau(D^{-1})$ -closed, but not $\tau(D)$ -closed in general.

The balls with respect to D are often called *forward balls* and the topology $\tau(D)$ is called *forward topology*, while the balls with respect to D^{-1} are often called *backward balls* and the topology $\tau(D^{-1})$ is called *backward topology*.

The topology $\tau(D)$ of a quasi-pseudometric type space (X, D, α) can be defined starting with starting from the family $\Pi_D(x)$ of neighbourhoods of an arbitrary point $x \in X$.

$$V \in \Pi_D(x) \iff \exists \epsilon > 0 \text{ such that } B_D(x,\epsilon) \subset V$$
$$\iff \exists \epsilon' > 0 \text{ such that } C_D(x,\epsilon) \subset V.$$

To see the equivalence in the above definition, we can take for instance $\epsilon' = \epsilon/3$.

The following proposition contains some simple properties of convergent sequences.

Proposition 2. Let (x_n) be a sequence in quasi-pseudometric type space (X, D, α) .

(a) If (x_n) is D-convergent to x and D⁻¹-convergent to y, then D(x, y) = 0.
(b) If (x_n) is D-convergent to x and D(y, x) = 0, then (x_n) is also D-convergent to y.

Proof.

(a) Letting $n \to \infty$ in the inequality

$$D(x,y) \le \alpha [D(x,x_n) + D(x_n,y)],$$

one obtains D(x, y) = 0.

(b) The result follows from the relations

$$D(x_n, y) \le \alpha [D(y, x) + D(x, x_n)] = \alpha D(x, x_n) \to 0.$$

Also, the following simple remarks concerning sequences in quasi-pseudometric type spaces are true.

Proposition 3. Let (x_n) be as sequence in a quasi-pseudometric type space (X, D, α) .

(a) If (x_n) is left K-Cauchy and has a subsequence which is $\tau(D)$ -convergent to x, then (x_n) is $\tau(D)$ -convergent to x.

(b) If (x_n) is left K-Cauchy and has a subsequence which is $\tau(D^{-1})$ -convergent to x, then (x_n) is $\tau(D^{-1})$ -convergent to x.

Proof. (a) Suppose that (x_n) is left K-Cauchy and (x_{n_k}) is a subsequence of (x_n) such that $\lim_{k\to\infty} D(x, x_{n_k}) = 0$. For $\epsilon > 0$ choose n_0 such that $n_0 \leq m \leq n$ implies $D(x_m, x_n) < \epsilon/\alpha$, and let $k_0 \in \mathbb{N}$ be such that $n_{k_0} \geq n_0$ and $D(x, x_{n_k}) < \epsilon/\alpha$ for all $k \geq k_0$. Then, for $n \geq n_{k_0}$, $D(x, x_n) \leq \alpha [D(x, x_{n_{k_0}} + D(x_{n_{k_0}}, x_n)] < 2\epsilon$.

(b) Reasoning similarly, for $n \ge n_{k_0}$ let $k \in \mathbb{N}$ such that $n_k \ge n$. Then $D(x_n, x) \le \alpha [D(x_n, x_{n_k}) + D(x_{n_k}, x)] < 2\epsilon$.

The proof f the following proposition is trivial and shall then be omitted.

Proposition 4. If a sequence (x_n) in a quasi-pseudometric type space (X, D, α) , satisfies

$$\sum_{n=0}^{\infty} D(x_n, x_{n+1}) < \infty,$$

then (x_n) is left K-Cauchy.

Definition 15. A subset Y of a quasi-pseudometric type space (X, D, α) is called precompact if for every $\epsilon > 0$ there exists a finite subset Z of Y such that

(9)
$$Y \subset \cup \{B_D(z,\epsilon) : z \in Z\}$$

If for every $\epsilon > 0$ there exists a finite subset Z of X such that (9) holds, then the set Y is called outside precompact. One obtains the same notions if one works with closed balls $C_D(z, \epsilon) z \in Z$.

Obviously a precompact set is outside precompact, but the converse is not true. We then have the following characterization.

Proposition 5. Let (X, D, α) be a quasi-pseudometric type space. A subset Y of X is precompact if and only if for every $\epsilon > 0$ there is a finite subset $\{x_1, x_2, \dots, x_n\} \subset X$ such that $Y \subset \bigcup_{i=1}^n B_D(x_i, \epsilon)$ and $Y \cap B_{D^{-1}}(x_i, \epsilon) \neq \emptyset$ for all $i = 1, 2, \dots, n$.

Proof. For $\epsilon > 0$, let $\{x_1, x_2, \dots, x_n\} \subset X$ such that the conditions hold for $\epsilon/2\alpha$. If $y_i \in Y \cap B_{D^{-1}}(x_i, \epsilon/2\alpha), i = 1, 2, \dots, n$, then $Y \subset \bigcup_{i=1}^n B_D(x_i, \epsilon)$.

Indeed, for any $y \in Y$ there exists $k \in \{1, 2, \dots, n\}$ such that $D(x_k, y) < \epsilon/2\alpha$, implying

$$D(y_k, y) \le \alpha [D(y_k, x_k) + D(x_k, y)] = \alpha [D^{-1}(x_k, y_k) + D(x_k, y)] < \epsilon.$$

3.2. Fixed point results. We start with the following lemma and repeat the proof as it is in [4].

Lemma 2 (Compare [4] Lemma 38). Let (y_n) be a sequence in a quasipseudometric type space (X, D, α) such that

(10)
$$D(y_n, y_{n+1}) \le \lambda D(y_{n-1}, y_n)$$

for some $\lambda > 0$ with $\lambda < \min\{1, 1/\alpha\}$. Then (y_n) is left K-Cauchy.

Proof. Let $m < n \in \mathbb{N}$. From the condition (D2) in the definition of a quasi-pseudometric type, we can write:

$$D(y_m, y_n) \le \alpha [D(y_m, y_{m+1}) + D(y_{m+1}, y_n)]$$

$$\le \alpha D(y_m, y_{m+1}) + \alpha^2 D(y_{m+1}, y_{m+2}) + \alpha^2 D(y_{m+2}, y_n)$$

$$\vdots$$

$$\le \alpha D(y_m, y_{m+1}) + \alpha^2 D(y_{m+1}, y_{m+2}) + \cdots$$

$$+ \alpha^{n-m-1} D(y_{n-2}, y_{n-1}) + \alpha^{n-m} D(y_{n-1}, y_n).$$

From (10) and $\lambda < \frac{1}{\alpha}$, the above becomes

$$D(y_m, y_n) \leq (\alpha \lambda^m + \alpha^2 \lambda^{m+1} + \dots + \alpha^{n-m} \lambda^{n-1}) D(y_0, y_1)$$

$$\leq \alpha \lambda^m (1 + \alpha \lambda + \dots + (\alpha \lambda)^{n-1-m}) D(y_0, y_1)$$

$$\leq \frac{\alpha \lambda^m}{1 - \alpha \lambda} D(y_0, y_1) \longrightarrow 0 \text{ as } m \longrightarrow \infty.$$

It follows that (y_n) is left K-Cauchy. Similarly,

Lemma 3. Let (y_n) be a sequence in a quasi-pseudometric type space (X, D, α) such that

(11)
$$D^{-1}(y_n, y_{n+1}) \le \lambda D^{-1}(y_{n-1}, y_n)$$

for some $\lambda > 0$ with $\lambda < \min\{1, 1/\alpha\}$. Then (y_n) is right K-Cauchy.

We now state our first fixed point result.

Theorem 5. Let (X, D, α) be a T_0 -quasi-pseudometric type space. Suppose that $f, g: X \to X$ are mappings such that

(12)
$$D(fx, fy) \le k \ D(gx, gy) \text{ for all } x, y \in X,$$

where $k < \min\{1, 1/\alpha\}$. If the range of g contains the range of f and g(X) is bicomplete, then f and g have a unique point of coincidence. Moreover if f and g are weakly compatible, then f and g have a unique common fixed point.

Yaé Ulrich Gaba

Proof. Take an arbitrary $x_0 \in X$. Choose a point x_1 in X such that $f(x_0) = g(x_1)$. This can be done, since $f(X) \subset g(X)$. Iterating this process, once x_n is chosen in X, we can obtain x_{n+1} in X such that $f(x_n) = g(x_{n+1})$. Then

$$D(gx_n, gx_{n+1}) = D(fx_{n-1}, fx_n) \le kD(gx_{n-1}, gx_n)$$

$$\le k^2 D(gx_{n-2}, gx_{n-1}) \le \dots \le k^n D(gx_0, gx_1).$$

i.e.

$$D(gx_n, gx_{n+1}) \le k^n D(gx_0, gx_1).$$

Similarly,

$$D(gx_{n+1}, gx_n) \le k^n D(gx_1, gx_0).$$

Hence (gx_n) is a bi-Cauchy sequence. Since g(X) is bicomplete, there exists $x^* \in g(X)$ such that $(gx_n) D^s$ -converges to x^* . In other words, there is a $p^* \in X$ such that (gx_n) converges to $g(p^*) = x^*$.

Moreover

$$D(gx_n, fp^*) = D(fx_{n-1}, fp^*) \le kD(gx_{n-1}, gp^*) \longrightarrow 0, \text{ as } n \longrightarrow,$$

In the same way, we establish that $D(fp^*, gx_n) \longrightarrow 0$ as $n \longrightarrow \infty$, to then conclude that $gx_n \longrightarrow fp^*$. The uniqueness of the limit implies that $fp^* = gp^*$. We finish the proof by showing that f and g have a unique point of coincidence. For this, assume $z^* \in X$ is a point such that $fz^* = gz^*$.

Now

$$D(gz^*, gp^*) = D(fz^*, fp^*) \le kD(gz^*, gp^*),$$

which gives $D(gz^*, gp^*) = 0$. On the other hand, by the same reasoning, it also clear that $D(gp^*, gz^*) = 0$. By property the T_0 -condition, $gz^* = gp^*$. From Proposition 1, f and g have a unique common fixed point.

Theorem 6. Let (X, D, α) be a T_0 -quasi-pseudometric type space. Suppose that $f, g : X \to X$ are mappings such that Suppose that mappings $f, g : X \to X$ satisfy the contractive condition

$$D(fx, fy) \le k \left[D(fx, gy) + D(gx, fy) \right]$$
 for all $x, y \in X$,

where $k \ge 0$ such that $\frac{k}{1-k} < \min\{1, 1/\alpha\}$. If the range of g contains the range of f and g(X) is bicomplete, then f and g have a unique coincidence point in X. Moreover if f and g are weakly compatible, then f and g have a unique common fixed point.

Take an arbitrary $x_0 \in X$. Choose a point x_1 in X such that $f(x_0) = g(x_1)$. This can be done, since $f(X) \subset g(X)$. Iterating this process, once x_n is chosen in X, we can obtain x_{n+1} in X such that $f(x_n) = g(x_{n+1})$. Then

$$D(gx_n, gx_{n+1}) = D(fx_{n-1}, fx_n) \le k[D(fx_{n-1}, gx_n) + D(gx_{n-1}, fx_n)]$$

$$\le kD(gx_{n-1}, gx_{n+1})$$

$$\le k[D(gx_{n-1}, gx_n) + D(gx_n, gx_{n+1})],$$

which entails that

$$D(gx_n, gx_{n+1}) \le \frac{k}{1-k}(gx_{n-1}, gx_n).$$

Similarly,

$$D(gx_{n+1}, gx_n) \le \frac{k}{1-k}D(gx_n, gx_{n-1}).$$

Hence (gx_n) is a bi-Cauchy sequence. Since g(X) is bicomplete, there exists $x^* \in g(X)$ such that $(gx_n) D^s$ -converges to x^* . In other words, there is a $p^* \in X$ such that (gx_n) converges to $g(p^*) = x^*$.

Moreover since

$$D(gx_n, fp^*) = D(fx_{n-1}, fp^*) \le k[D(fx_{n-1}, gp^*) + D(gx_{n-1}, fp^*)],$$

we get that

$$D(gp^*, fp^*) \le kD(gp^*, fp^*)$$

which implies that $D(gp^*, fp^*) = 0$.

In the same way, we establish that $D(fp^*, gp^*) = 0$, to then conclude that $fp^* = gp^*$.

We finish the proof by showing that f and g have a unique point of coincidence. For this, assume $z^* \in X$ is a point such that $fz^* = gz^*$. Now

$$D(gz^*, gp^*) = D(fz^*, fp^*) \le k[D(fz^*, gp^*) + D(gz^*, fp^*)] \le 2kD(gz^*, gp^*),$$

which gives $D(gz^*, gp^*) = 0$. On the other hand, by the same reasoning, it also clear that $D(gp^*, gz^*) = 0$. Therefore $gz^* = gp^*$. From Proposition 1, f and g have a unique common fixed point.

Theorem 7. Let (X, D, α) be a T_0 -quasi-pseudometric type space. Suppose that $f, g: X \to X$ are mappings such that

(13)
$$D(fx, fy) \le \lambda D(gx, gy) + \gamma D(fx, gy)$$
 for all $x, y \in X$.

where λ, γ are positive constants such that $\lambda + 2\gamma < \min\{1, 1/\alpha\}$. If the range of g contains the range of f and g(X) is bicomplete, then f and g have a unique coincidence point in X. Moreover if f and g are weakly compatible, then f and g have a unique common fixed point.

Proof. Take an arbitrary $x_0 \in X$. Choose a point x_1 in X such that $f(x_0) = g(x_1)$. This can be done, since $f(X) \subset g(X)$. Iterating this process, once x_n is chosen in X, we can obtain x_{n+1} in X such that $f(x_n) = g(x_{n+1})$. Then

$$D(gx_n, gx_{n+1}) = D(fx_{n-1}, fx_n) \le \lambda D(gx_{n-1}, gx_n) + \gamma D(fx_{n-1}, gx_n) \le \lambda D(gx_{n-1}, gx_n).$$

Therefore (gx_n) is a left K-Cauchy sequence. In a similar manner, we establish that (gx_n) is also a right K-Cauchy sequence. Hence (gx_n) is a bi-Cauchy sequence. Since g(X) is bicomplete, there exists $x^* \in g(X)$ such that (gx_n) D^s -converges to x^* . In other words, there is a $p^* \in X$ such that (gx_n) converges to $g(p^*) = x^*$.

Moreover since

$$D(gx_n, fp^*) = D(fx_{n-1}, fp^*) \le \lambda D(gx_{n-1}, gp^*) + \gamma D(fx_{n-1}, gp^*)$$

we get that $D(gp^*, fp^*) = 0$. On the other hand, by the same reasoning, it is also clear that $D(fp^*, gp^*) = 0$. Hence $fp^* = gp^*$.

We finish the proof by showing that f and g have a unique point of coincidence. For this, assume $z^* \in X$ is a point such that $fz^* = gz^*$. Now

$$D(gz^*, gp^*) = D(fz^*, fp^*) \le \lambda D(gz^*, gp^*) + \gamma D(fz^*, gp^*) \le (\lambda + \gamma) D(gz^*, gp^*),$$

which gives $D(qz^*, qp^*) = 0$. On the other hand, by the same reasoning, it also clear that $D(qp^*, qz^*) = 0$. Hence $qz^* = qp^*$. From Proposition 1, f and g have a unique common fixed point.

We now give an example to illustrate Theorems 5, 7.

Example 2. Let $X = \mathbb{R}$, $D(x, y) = \max\{x - y, 0\}$ whenever $x, y \in \mathbb{R}$, $f(x) = 2x^2 + 4x + 1$ and $g(x) = 3x^2 + 6x + 2$. Then it easy to see that

$$f(X) = g(X) = [1, \infty)$$
 is bicomplete.

All the conditions of Theorems 5, 7 are satisfied. Indeed:

- for Theorem 5, take $k \in \left[\frac{2}{3}, 1\right)$ for Theorem 7, take $\lambda \in \left[\frac{2}{3}, 1\right)$, $\gamma = 0$.

f and g become weakly compatible and we obtain a unique point of coincidence and a unique common fixed point -1 = f(-1) = g(-1).

Corollary 1. Let (X, D, α) be a T_0 -quasi-pseudometric type space. Suppose that mappings $f, g: X \to X$ satisfy the contractive condition

(14)
$$D(fx, fy) \le \alpha [D(gx, gy) + D(fx, gy)]$$
 for all $x, y \in X$.

where $0 < \alpha < \min\{1, 1/3\alpha\}$. If the range of g contains the range of f and g(X) is bicomplete, then f and g have a unique coincidence point in X. Moreover if f and g are weakly compatible, then f and g have a unique common fixed point.

Theorem 8. Let (X, D, α) be a T_0 -quasi-pseudometric type space. Suppose that $f, g: X \to X$ are mappings such that

(15)
$$D(fx, fy) \le \lambda D(gx, gy) + \gamma D(gx, fy)$$
 for all $x, y \in X$.

where λ, γ are positive constants such that $\lambda + 2\gamma < \min\{1, 1/\alpha\}$. If the range of g contains the range of f and g(X) is bicomplete, then f and g have a unique coincidence point in X. Moreover if f and g are weakly compatible, then f and g have a unique common fixed point.

Corollary 2. Let (X, D, α) be a T_0 -quasi-pseudometric type space. Suppose that mappings $f, g: X \to X$ satisfy the contractive condition

(16)
$$D(fx, fy) \le \lambda [D(gx, gy) + D(gx, fy)]$$
 for all $x, y \in X$.

where $0 < \lambda < \min\{1, 1/3\alpha\}$. If the range of g contains the range of f and g(X) is bicomplete, then f and g have a unique coincidence point in X. Moreover if f and g are weakly compatible, then f and g have a unique common fixed point.

References

- ABBAS M., JUNGCK G., Common fixed point results for noncommuting mappings without continuity in come metric spaces, J. Math. Anal. App., 341(2008), 416-420.
- [2] GABA Y.U., Startpoints and (α, γ) -contractions in quasi-pseudometric spaces, Journal of Mathematics, Vol. 2014 (2014), Article ID 709253, 8 pages. http://dx.doi.org/10.1155/2014/709253.
- [3] HUANG L.-G., ZHANG X., Cone metric spaces and fixed point theorems of contractive mappings, *Journal of Mathematical Analysis and Applications*, 332(2)(2007), 1468-1476.
- [4] KAZEEM E.F., AGYINGI C.A., GABA Y.U., On quasi-pseudometric type spaces, *Chinese Journal of Mathematics*, 2014, Article ID 198685, 7 pages, 2014. doi:10.1155/2014/198685.

- [5] KHAMSI M.A., Remarks on cone metric spaces and fixed point theorems of contractive mappings, *Fixed Point Theorem and Application*, 2010(2010), 7 pages, doi:10.1155/2010/315398.
- [6] WILSON W.A., On semi-metric spaces, American Journal of Mathematics, 53(2)(1931), 361-373.
- [7] WLODARCZYK K., PLEBANIAK R., Asymmetric structures, discontinuous contractions and iterative approximation of fixed and periodic points, *Fixed Point Theory and Applications*, 2013 (2013) 128, 1-18. http://dx.doi.org /10.1186/1687-1812-2013-128.
- [8] WŁODARCZYK K., PLEBANIAK R., New completeness and periodic points of discontinuous contractions of Banach type in quasi-gauge spaces without Hausdorff property, *Fixed Point Theory and Applications*, 2013 (2013) 289, 1-27. http://dx.doi.org/10.1186/1687-1812-2013-289.

YAÉ ULRICH GABA DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS, UNIVERSITY OF CAPE TOWN RONDEBOSCH 7701, SOUTH AFRICA *e-mail:* gabayae2@gmail.com

Received on 14.08.2015 and, in revised form, on 13.04.2016.