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Symmetric spaces were introduced in 1931 by Wilson [6], as metric-like
spaces lacking the triangle inequality. Several fixed point results in such
spaces were obtained. In the same dynamics, cone metric spaces were in-
troduced by Huang [3] and many fixed point results concerning mappings
in these spaces have also been established. In [5], M. A. Khamsi connected
this concept with a generalised form of metric that he named metric type.
Namely, he observed that if d(x, y) is a cone metric, then D(z,y) = ||d(z,y)||
is symmetric with some special properties, particularly in the case when
the underlying cone is normal. Recently in [4], Kazeem et al. discussed
the newly introduced notion of quasi-pseudometric type spaces as a logical
equivalent to metric type spaces when the initial distance-like function is
not symmetric. Some fixed point results of mappings on such spaces were
discussed as well in [4]. It is the aim of this article to continue the study of
quasi-pseudometric spaces by proving several other fixed point and common
fixed point results, hence extending the fixed point results of [4] to a class
of mappings satisfying more general contractive conditions.

In this section, we recall briefly some elementary definitions from the
asymmetric topology which are necessary for a good understanding of the
work below. For recent results and detailed explanations for the concepts in
the theory of asymmetric spaces, the reader is referred to [2, 4, 7, 8].
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Definition 1. Let E be a real Banach space with norm ||.| and P be a
subset of E. Then P is called a cone if and only if

(a) P is closed, nonempty and P # {0}, where 0 is the zero vector in E;

(b) for any a,b >0, and x,y € P, we have ax + by € P;

(¢) forxz e P, if —x € P, then v = 6.

Given a cone P in a Banach space F, we define on E a partial order <
with respect to P by
ry<<=y—xchP

We also write x < y whenever x < y and x # y, while z < y will stand for
y —x € Int(P) (where Int(P) designates the interior of P).

The cone P is called normal if there is a number C' > 0, such that for
all z,y € E, we have

02z 2y =zl < Cllyll

The least positive number satisfying this inequality is called the normal
constant of P. Therefore, we shall then say that P is a K-normal cone to
indicate the fact that the normal constant is K.

Definition 2 (Compare [4]). Let X be a nonempty set. Suppose the
mapping q : X X X — E satisfies
(q1) 0 < q(z,y) for all x,y € X;
(q2) q(x,y) = 0 = q(y, x) if and only if x = y;
(@3) q(x,z) = q(z,y) + q(y,2) for all x,y,z € X.

Then, ¢ is called a quasi-cone metric on X, and (X,q) is called a
quasi-cone metric space.

Definition 3 (Compare [4]). A sequence in a quasi-cone metric space
(X, q) is called
(a) Q-Cauchy or bi-Cauchy if for every c € X with ¢ > 0, there exists
ng € N such that
Vn,m>ng q(xn, o) <

(b) left(right) Cauchy if for every c € X with ¢ > 0, there exists ng € N
such that
Vnm:ng<m<n q(zm,z,) <c(q(zn,zn) < c resp.).
Remark 1. A sequence is Q-Cauchy if and only if it is both left and
right Cauchy.

Definition 4. (a) In a quasi-cone metric space (X, q), we say that the
sequence (xy,) left converges to x € X if for every ¢ € E with < ¢
there exists N such that for alln > N, q(zn,z) < c.
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(b) Similarly, in a quasi-cone metric space (X, q), we say that a sequence
(xn,) right converges to x € X if for every ¢ € E with 8 < c there
exists N such that for alln > N, q(x,z,) < c.

(¢) Finally, in a quasi-cone metric space (X, q), we say that the sequence
(xn,) converges to x € X if for every ¢ € E with 0 < ¢ there exists N
such that for alln > N, q(xn,x) < ¢ and q(z,x,) < c.

Definition 5. A quasi-cone metric space (X, q) is called

(a) left complete (resp. right complete) if every left Cauchy (resp.
right Cauchy) sequence in X left (resp. right) converges.

(b) bicomplete if every Q-Cauchy sequence converges.

Remark 2. A quasi-cone metric space (X, q) is bicomplete if and only
if it is left complete and right complete.

Definition 6. Let (X, q) be a quasi-cone metric space. A function f :
X — X is said to be Lipschitzian if there exists some k € R such that

q(f(z), f(y) 2k q(z,y) VaxyeX.

The smallest constant which satisfies the above inequality is called the Lip-
schitiz constant of f and is denoted Lip(f). In particular f is said to be
contractive if Lip(f) € [0,1) and nonexpansive if Lip(f) < 1.

Definition 7 (Compare [1]). Let f and g be self maps on a set X. If
w = fx = gx for some x € X, then x is called a coincidence point of f
and g, and w is called the point of coincidence of f and g.

Definition 8. Let f and g be self maps on a nonempty set X. We say
that f and g are weakly compatible if they commute at their coincidence
point, that is there exists xg € X such that fxg = gxg then gfxo = fgxo.

We also give the following proposition that we take from [1] by omitting
the proof.

Proposition 1 (Compare [1]). Let f and g be weakly compatible self maps
on a set X. If f and g have a unique point of coincidence w = fxr = gz,
then w is the unique common fized point of f and g.

we also have the following important characterization

Lemma 1. Let (X,q) be a quasi-cone metric space, P be a K-normal
cone and () be a sequence in X. Then (x,,) is a bi-Cauchy sequence if
and only if ¢(zp,Tm) — 0 as n,m — oo.

We now connect the notion of quasi-cone metric to the one of quasi-pseudo-
metric type space via the following theorem.
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Theorem 1 (Compare [4] Theorem 28). Let (X, q) be a quasi-cone metric
space over the Banach space E with the K-normal cone P. The mapping
Q: X xX — [0,00) defined by Q(x,y) = ||lq(x,y)| satisfies the following
properties

Q1) Q(xz,z) =0 for any x € X;

(Q2> Q(xa y) < K(Q(xv Zl) + Q(ZI, 22) +ot Q(Zmy))a fO?“ any points

r,y,z € X, 1=1,2,...,n.

We are therefore led to the following definition.

Definition 9 ([4]). Let X be a non empty set, and let the function
D: X x X —[0,00) satisfy the following properties:
(D1) D(z,z) =0 for any x € X;
(D2) D(z,y) < a(D(z,21) + D(21,22) + -+ + D(2y,y)) for any points
x,y,2 € X,1=1,2,...,n and some constant o > 0.
Then (X,D,«) is called a quasi-pseudometric type space. Moreover, if
D(z,y) =0= D(y,x) = x =y, then D is said to be a Ty-quasi-pseudo-
metric type space. The latter condition is referred to as the Ty-condition.

Remark 3. e Let D be a quasi-pseudometric type on X, then the
map D! defined by D~!(z,y) = D(y,x) whenever z,y € X is also a
quasi-pseudometric type on X, called the conjugate of D. We shall also
denote D~! by D! or D.

e It is easy to verify that the function D* defined by D := DV D~! | i.e.
D?(z,y) = max{D(x,y), D(y,z)} defines a metric type (see [5]) on X
whenever D is a Tp-quasi-pseudometric type.

e If we substitute the property (D1) by the following property
(D3) : D(z,y) =0<=x =y,
we obtain a Ty-quasi-pseudometric type space directly. For instance, this
could be done if the map D is obtained from quasi-cone metric.

Moreover, for a = 1, we recover the classical pseudometric, hence quasi-
pseud-metric type spaces generalize quasi-pseudometrics. It is worth men-
tioning that if (X, D, «) is a pseudometric type space, then for any 5 > «,
(X, D, B) is also a pseudometric type space. We give the following example
to illustrate the above comment.

Example 1. Let X = {a, b, ¢} and the mapping D : X x X — [0,00) de-
fined by D(a,b) = D(c,b) = 1/5, D(b,c) = D(b,a) = D(c,a) = 1/4, D(a,c) =
1/2, D(xz,z) = 0 for any z € X and D(z,y) = D(y,x) for any =,y € X.
Since

1 9
-=D D D = —
5 = D(@.0) > D(a,b) + D(b.c) = 5.
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then we conclude that X is not a quasi-pseudometric space. Nevertheless,
with a = 2, it is very easy to check that (X, D,2) is a quasi-pseudometric
type space.

Definition 10 ([4]). Let (X, D,«a) be a quasi-pseudometric space. The
convergence of a sequence (x,,) to x with respect to D, called D-convergence

or left-convergence and denoted by x, 2, x, is defined in the following
way

(1) 2y 2 1= D(z,x,) — 0.

Similarly, the convergence of a sequence () to x with respect to D!,

-1
called D~ -convergence or right-convergence and denoted by x, LN z,
1s defined in the following way

(2) T ZENGMPEEN D(zy,z) — 0.

Finally, in a quasi-pseudometric space (X, D, «), we shall say that a se-
quence (x,) D* converges to x if it is both left and right convergent to x,

and we denote it as x, D xor Ty, — x when there is no confusion. Hence
Ds D D1
Ty — T <— x, — T and T, — .

Definition 11 ([4]). A sequence (x,,) in a quasi-pseudometric type space
(X, D, ) is called

(a) left K-Cauchy with respect to D if for every e > 0, there exists

ng € N such that

Vo k:ng<k<n Dxgz,) <E¢€

(b) right K-Cauchy with respect to D if for every ¢ > 0, there exists
ng € N such that

Vi, k:ing<k<n D(xn,z) <€
(¢) D?-Cauchy if for every e > 0, there exists ng € N such that
Vn,k>ng D(xp,xp) <€

Remark 4. e A sequence is left K-Cauchy with respect to d if and
only if it is right K-Cauchy with respect to D~!.
e A sequence is d°-Cauchy if and only if it is both left and right K-Cauchy.

Definition 12 ([4]). A quasi-pseudometric space (X, D, ) is called
left-complete provided that any left K-Cauchy sequence is D-convergent.
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Definition 13 ([4]). A quasi-pseudometric space (X,D,a) is called
right-complete provided that any right K -Cauchy sequence is D-convergent.

Definition 14 ([4]). A Ty-quasi-pseudometric space (X, D, «) is called
bicomplete provided that the metric D* on X is complete.

2. First results

In [4], Kazeem et al. proved the following:

Theorem 2. Let (X,q) be a bicomplete quasi-cone metric space, P a
K -normal cone. Suppose that a mapping T : X — X satisfies the contractive

condition
q(Tz,Ty) 2k q(z,y) for all z,y € X,

where k € [0,1). Then T has a unique fized point. Moreover for any x € X,
the orbit {T™xz,n > 0} converges to the fized point.

We start by an application of the above the theorem

Theorem 3. Let (X,q) be a bicomplete quasi-cone metric space, P a
K-normal cone. LetT : X — X be a map such that for every n € N, there
is A\n € (0,1) such that

q(T"z, T"y) 2 A q(z,y) for all z,y € X.
and let lin%) A =0. Then T has a unique fixed point w € X.
n—

Proof. Take X such that 0 < A < 1. Since lin}) An = 0, there ex-
n—

ists ng € N such that A\, < X for each n > ng. Then ¢(T"z,T"y) =<
A q(z,y) forall z,y € X whenever n > ng. In other words, for any
m > ng, g = T™ satisfies

q(gz,9y) 2k q(z,y) forall z,yc X.

Theorem 2 implies that g has a unique fixed point, say w. Then T"w = w,
implying that T"w = T(T™w) = T™(Tw) = Tw and Tw is also a fixed
point of g = T™. Since the fixed point is unique, it follows that Tw = w
and w is the unique fixed point of 7. |

We now state below a generalization of this theorem.

Theorem 4. Let (X,q) be a bicomplete quasi-cone metric space, P a
K-normal cone. Suppose that a mapping T : X — X is such that for every
o0
n € N, T" is Lipschitzian and that ) Lip(T™) < co. Then T has a unique

n=0

fixed point z* € X.
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Proof. Since for any n € N, T"™ is Lipschitzian, hence there exists
kp := Lip(T™) > 0 such that

q(T"z, T"y) = ky, q(x,y) for all z,y € X.

Now let x € X. For any n,h € N, we have

(3) q(T”x,T”+h$) =< kn q(x,Thx) <k, }fq(Tix,THlx)
=0

Hence

(4) q(T"z, T ) (Zk) xz,Tx),

since

(T, T ) < k; q(x, Tz), forall ieN.
Since Zsz(T ") is convergent, then hm Lip(T™) = 0 and therefore in-
=0
equahty (4) entails that

h—1

(5) Tz, T )| < Kk, (Zk’> llg(x, Tx)|| — 0 as n — oc.
i=0

Similarly, one shows that
6) (T, T")|| < Kky (Zk) lg(Ta, )| — 0 as n — oo,

From relations (5) and (6), we conclude that (T™z) is a bi-Cauchy se-
quence. Since (X,q) is bicomplete, there exists * € X such that (7"z)
converges to z*. First let us show that z* is a fixed point of 7.

On one side, we have

(7) q(T" 'z, 2*) = q(T" 2, T") + q(T"x, 2*)
= knfl(I(ﬂC, Tx) + CI(T”»T’ .CL‘*),

and on the other side

(8) q(z*, T '2) < q(z*, T"x) + q(T™x, T" ')
j kn—lQ(T% LL') + Q(ﬁ*a Tnx)a
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From (7), we have that

q(Tz*,2*) 2 q(Tx*, T"z) + q(T"z,x™)
< kyq(z*, T 'z) + q(T"z, 2*) — 0 as n — oo,

ie q(Tx*,x*) = 0.
In the same manner, from (8), we have that
q(z*,Tz*) = 6.

H
enee q(Tx*,z*) =0 = q(z*, Tz").

This implies, using property (¢2) that Tax* = x*. So z* is a fixed point of T'.
Moreover, if z* is a fixed point of T, then for all n > 1, we have
q(z*, 2") = q(T"x", T"2") = knq(z7, 2%),
and
q(z*,2%) = q(T"2*,T"x") < knq(z*, x™).
Since lir% Lip(T™) = 0, hence ||g(z*, 2%)|| = 0 = ||¢(z*, 2*)|| and z* = 2*.
n—
Therefore the fixed point is unique. |

In the next section, we give some topological properties of quasi-pseudo-
metric type spaces. Most of them deal with sequences and follow closely the
classical properties of sequences pseudometric spaces.

3. Topology on Quasi-pseudometric type spaces
and fixed point results

3.1. Some topological properties. Let (X, D, ) be a quasi-pseudometric
type space. Then for each x € X and € > 0, the set

Bp(z,e) ={y € X : D(x,y) < €}

denotes the open e-ball at  with respect to D. It should be noted that the
collection
{Bp(z,€):x € X,e >0}

yields a base for the topology 7(D) induced by D on X. In a similar manner,
for each x € X and ¢ > 0, we define

Cp(z,e) ={y € X : D(z,y) < €},

known as the closed e-ball at = with respect to D.
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Also the collection
{Dg-1(z,€) : x € X,e > 0}

yields a base for the topology 7(D~!) induced by D~! on X. The set
Cp(z,€) is 7(D~1)-closed, but not 7(D)-closed in general.

The balls with respect to D are often called forward balls and the topology
7(D) is called forward topology, while the balls with respect to D~! are often
called backward balls and the topology 7(D~1) is called backward topology.

The topology 7(D) of a quasi-pseudometric type space (X, D, «) can be
defined starting with starting from the family IIp(z) of neighbourhoods of
an arbitrary point x € X.

V ellp(z) <= 3 € > 0 such that Bp(x,e) CV
<= 3 ¢ > 0 such that Cp(x,e) C V.

To see the equivalence in the above definition, we can take for instance
e =¢/3.

The following proposition contains some simple properties of convergent
sequernces.

Proposition 2. Let (x,,) be a sequence in quasi-pseudometric type space
(X, D, ).
(a) If (z,) is D-convergent to x and D~-convergent toy, then D(x,y) = 0.
(b) If (xy) is D-convergent to x and D(y,x) = 0, then (x,) is also
D-convergent to y.

Proof.
(a) Letting n — oo in the inequality

D(z,y) < a[D(x,2n) + D(xn, y)],

one obtains D(z,y) = 0.
(b) The result follows from the relations

D(zp,y) < a[D(y,z) + D(x,z,)] = aD(z,z,) — 0.

Also, the following simple remarks concerning sequences in quasi-pseudo-
metric type spaces are true.

Proposition 3. Let (x,) be as sequence in a quasi-pseudometric type
space (X, D, ).
(a) If (zn) is left K-Cauchy and has a subsequence which is T(D)-conver-
gent to x, then (xy) is 7(D)-convergent to x.
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(b) If (zn) is left K -Cauchy and has a subsequence which is 7(D~1)-conver-
gent to x, then (zy,) is T(D~1)-convergent to x.

Proof. (a) Suppose that (x,,) is left K-Cauchy and (x,, ) is a subsequence
of (x,) such that klirn D(x,xy,,) = 0. For € > 0 choose ng such that ng <
—00

m < n implies D(zp,xy,) < €/c, and let ky € N be such that ng, > ng and
D(z,zn,) < €/aforall k > ko. Then, for n > ny,, D(z,z,) < a[D(z,zn, +
D(@n,,, xn)] < 2e.

(b) Reasoning similarly, for n > ny, let £ € N such that ny > n. Then
D(xy,z) < alD(zp, zn,) + D(xy,, )] < 2e. [ |

The proof f the following proposition is trivial and shall then be omitted.

Proposition 4. If a sequence (x,) in a quasi-pseudometric type space
(X, D, ), satisfies

o0
Z D(xp, xpy1) < 00,
n=0

then (z,) is left K-Cauchy.

Definition 15. A subset Y of a quasi-pseudometric type space (X, D, «)
1s called precompact if for every € > 0 there exists a finite subset Z of Y
such that

9) Y C U{Bp(z,¢€):z € Z}.

If for every € > 0 there exists a finite subset Z of X such that (9) holds,
then the set Y is called outside precompact. One obtains the same notions
if one works with closed balls Cp(z,€) z € Z.

Obviously a precompact set is outside precompact, but the converse is
not true. We then have the following characterization.

Proposition 5. Let (X, D, «) be a quasi-pseudometric type space. A sub-
setY of X s precompact if and only if for every € > 0 there is a finite subset
{z1,29, -+ , 20} C X such thatY C U Bp(z;,€) and Y N Bp-1(xj,€) # 0
foralli=1,2,--- n.

Proof. For € > 0, let {z1,z2, -+ ,z,} C X such that the conditions hold
fore/2a. Ify; € YNBp-1(xi,€/20),i=1,2,--- ,n,then Y C U ;Bp(x;,¢).

Indeed, for any y € Y there exists k € {1,2,--- ,n} such that D(xy,y) <
€/2a, implying

Dy, y) < a[D(ye, zx) + D(xg,y)] = a[D™ (@, yi) + D(wp, y)] < €.
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3.2. Fixed point results. We start with the following lemma and repeat
the proof as it is in [4].

Lemma 2 (Compare [4] Lemma 38). Let (y,) be a sequence in a quasi-
pseudometric type space (X, D, a) such that

(10) D(yn, yn+1) < AD(Yn—1,Yn)
for some X\ > 0 with A\ < min{1,1/a}. Then (y,) is left K-Cauchy.
Proof. Let m < n € N. From the condition (D2) in the definition of a
quasi-pseudometric type, we can write:
D(ym,yn) < D (Ym, Ym+1) + D(Ym+1,Yn)]
< aD(Ym, Ym+1) + 2D (Yms1, Ym+2) + &*D (Y2, Yn)

< aD(Ym, Ymr1) + QQD(ym+1a Ymy2) + -
+ Oén_m_lD(yana ynfl) + an_mD(ynflv yn)

From (10) and A < 1, the above becomes
D(Ym,yn) < (@A™ + X 44 oA D(yo, y1)
< aA™(1+aX+---+ (@) ™) D(yo, y1)

m

<
—1—a)

D(yo,y1) — 0 as m — oc.

It follows that (y,,) is left K-Cauchy. Similarly,

Lemma 3. Let (y,) be a sequence in a quasi-pseudometric type space
(X, D, «) such that

(11) D_l(ynayn+1) < )\D_l(ynflyyn)
for some X\ > 0 with A\ < min{1,1/a}. Then (y,) is right K-Cauchy.
We now state our first fixed point result.

Theorem 5. Let (X, D, «) be a Ty-quasi-pseudometric type space. Sup-
pose that f,g: X — X are mappings such that

(12) D(fz, fy) <k D(gz,gy) for all z,ye€ X,

where k < min{1, 1/a}. If the range of g contains the range of f and g(X)
1s bicomplete, then f and g have a unique point of coincidence. Moreover if
f and g are weakly compatible, then f and g have a unique common fized
point.
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Proof. Take an arbitrary xy € X. Choose a point z1 in X such that
f(zo) = g(x1). This can be done, since f(X) C g(X). Iterating this process,
once x,, is chosen in X, we can obtain x4 in X such that f(z,) = g(xn11)-
Then

D(gxn, gtnt1) = D(frn—1, frn) < kD(gxn—1,92y)
< E*D(gxn_2,92n-1) < ... < K"D(gwo, gz1)-

i.e.
D(gzn, gxnt1) < E"D(gxo, g1).

Similarly,

D(gxn+1> gxn) < knD(gxb g:BO)'

Hence (gx,) is a bi-Cauchy sequence. Since g(X) is bicomplete, there
exists z* € g(X) such that (gz,) D*-converges to z*. In other words, there
is a p* € X such that (gz,,) converges to g(p*) = z*.

Moreover

D(gzp, fp*) = D(frn-1, fP*) < kD(92p-1,9p") — 0, as n —,

In the same way, we establish that D(fp*, gz,) — 0 asn — oo, to
then conclude that gx,, — fp*. The uniqueness of the limit implies that
fp* = gp*. We finish the proof by showing that f and ¢ have a unique point
of coincidence. For this, assume z* € X is a point such that fz* = gz*.

Now

D(gz*,gp") = D(fz", fp*) < kD(gz", gp"),

which gives D(gz*, gp*) = 0. On the other hand, by the same reasoning, it
also clear that D(gp*,gz*) = 0. By property the Tp-condition, gz* = gp*.
From Proposition 1, f and g have a unique common fixed point. |

Theorem 6. Let (X, D, «) be a Ty-quasi-pseudometric type space. Sup-
pose that f,g : X — X are mappings such that Suppose that mappings
f,9: X — X satisfy the contractive condition

D(fz, fy) <k [D(fx,gy) + D(gz, fy)] for all x,y€ X,

where k > 0 such that ﬁ < min{l,1/a}. If the range of g contains the
range of f and g(X) is bicomplete, then f and g have a unique coincidence
point in X. Moreover if f and g are weakly compatible, then f and g have
a unique common fized point.
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Take an arbitrary zp € X. Choose a point 1 in X such that f(zg) =
g(x1). This can be done, since f(X) C g(X). Iterating this process, once z,,
is chosen in X, we can obtain x,1 in X such that f(x,) = g(zn+1). Then

D(gﬂjna gxn—i-l) = D(fxn—lv fxn) < k[D(fxn—lv gxn) + D(gxn—l’ fxn)]
< kD(gxn—la ngn-‘rl)
< k[D(gIﬂn_l,gIEn) + D(gl’n, g$n+1)]7

which entails that
k
D(gzn, gTni1) < ﬂ(g%’n—hgl‘n)-

Similarly,

k
D(g:cn+1,g:cn) < m (gxnagxn—l)-

Hence (gx,) is a bi-Cauchy sequence. Since g(X) is bicomplete, there
exists z* € g(X) such that (gz,) D*-converges to z*. In other words, there
is a p* € X such that (gz,) converges to g(p*) = z*.

Moreover since

D(gan, fp*) = D(fon—1, fp") < k[D(f2n-1,90") + D(g2n-1, fD")],
we get that
D(gp™, fp*) < kD(gp*, fp")
which implies that D(gp*, fp*) = 0.

In the same way, we establish that D(fp*, gp*) = 0, to then conclude

that fp* = gp*.
We finish the proof by showing that f and ¢ have a unique point of
coincidence. For this, assume z* € X is a point such that fz* = gz*. Now

D(gz*,gp") = D(f2", fp") < k[D(f2",gp") + D(gz", fp*)]
< 2kD(gz", gp™),

which gives D(gz*, gp*) = 0. On the other hand, by the same reasoning, it
also clear that D(gp*, gz*) = 0. Therefore gz* = gp*. From Proposition 1,
f and g have a unique common fixed point.

Theorem 7. Let (X, D, «) be a Ty-quasi-pseudometric type space. Sup-
pose that f,g: X — X are mappings such that

(13) D(fz, fy) < AD(gz,gy) +vD(fx,gy) for all z,y € X.

where A,y are positive constants such that A+2~y < min{1,1/a}. If the range
of g contains the range of f and g(X) is bicomplete, then f and g have a
unique coincidence point in X. Moreover if f and g are weakly compatible,
then f and g have a unique common fixed point.
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Proof. Take an arbitrary xy € X. Choose a point z1 in X such that
f(zo) = g(x1). This can be done, since f(X) C g(X). Iterating this process,
once x,, is chosen in X, we can obtain x4 in X such that f(z,) = g(xn11)-
Then

D(g:En, g$n+1) = D(fxnfla fl‘n) < /\D(gl‘nfla gﬂjn) + 'YD(f"Unfla g:L‘n)
< AD(gxnflagxn)-

Therefore (gz,) is a left K-Cauchy sequence. In a similar manner, we es-
tablish that (gz,) is also a right K-Cauchy sequence. Hence (gz,) is a
bi-Cauchy sequence. Since g(X) is bicomplete, there exists * € g(X) such
that (gz,) D3-converges to z*. In other words, there is a p* € X such that
(g9xn) converges to g(p*) = x*.

Moreover since

D(gzn, [p*) = D(fzp-1, fp*) < AD(92n—1,9p") + YD (fTn-1,9p")

we get that D(gp*, fp*) = 0. On the other hand, by the same reasoning, it
is also clear that D(fp*, gp*) = 0. Hence fp* = gp*.

We finish the proof by showing that f and ¢ have a unique point of
coincidence. For this, assume 2z* € X is a point such that fz* = gz*. Now

D(gz*,gp*) = D(fz", fp*) < AD(g2",gp") +yvD(fz", gp*)

<
< (A+7)D(gz", gp*),

which gives D(gz*,gp*) = 0. On the other hand, by the same reasoning,
it also clear that D(gp*,gz*) = 0. Hence gz* = gp*. From Proposition 1,
f and g have a unique common fixed point. |

We now give an example to illustrate Theorems 5, 7.

Example 2. Let X = R, D(x,y) = max{z — y,0} whenever x,y € R,
f(z) =222 + 4z + 1 and g(z) = 32 + 62 + 2. Then it easy to see that

f(X) =g(X)=[1,00) is bicomplete.

All the conditions of Theorems 5, 7 are satisfied. Indeed:

e for Theorem 5, take k € [2, 1)
e for Theorem 7, take A\ € [g, 1) , v=0.

f and g become weakly compatible and we obtain a unique point of coinci-
dence and a unique common fixed point —1 = f(—1) = g(—1).
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Corollary 1. Let (X, D, «) be a Ty-quasi-pseudometric type space. Sup-
pose that mappings f,g: X — X satisfy the contractive condition

(14) D(fz, fy) < a[D(gz,gy) + D(fx,gy)] for all z,y € X.

where 0 < o < min{l,1/3a}. If the range of g contains the range of f
and g(X) is bicomplete, then f and g have a unique coincidence point in
X. Moreover if f and g are weakly compatible, then f and g have a unique
common fixed point.

Theorem 8. Let (X, D, «) be a Ty-quasi-pseudometric type space. Sup-
pose that f,g: X — X are mappings such that

(15) D(fz, fy) < AD(gx, gy) +vD(gz, fy) for all x,y € X.

where A,y are positive constants such that A+2~y < min{1,1/a}. If the range
of g contains the range of f and g(X) is bicomplete, then f and g have a
unique coincidence point in X. Moreover if f and g are weakly compatible,
then f and g have a unique common fixed point.

Corollary 2. Let (X, D, «) be a Ty-quasi-pseudometric type space. Sup-
pose that mappings f,g9 : X — X satisfy the contractive condition

(16) D(fx, fy) < A[D(gz, gy) + D(gz, fy)] for all z,y € X.

where 0 < A < min{l,1/3a}. If the range of g contains the range of f
and g(X) is bicomplete, then f and g have a unique coincidence point in
X. Moreover if f and g are weakly compatible, then f and g have a unique
common fixed point.
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