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Abstract. In this paper, we extend most of the results proved
in [4]. In particular, we give some topological properties of
the quasi-pseudometric type spaces. Moreover, some fixed point
and common fixed point theorems are obtained in the setting
of quasi-pseudometric spaces, introduced some months ago by
Kazeem et al in [4].
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Symmetric spaces were introduced in 1931 by Wilson [6], as metric-like
spaces lacking the triangle inequality. Several fixed point results in such
spaces were obtained. In the same dynamics, cone metric spaces were in-
troduced by Huang [3] and many fixed point results concerning mappings
in these spaces have also been established. In [5], M. A. Khamsi connected
this concept with a generalised form of metric that he named metric type.
Namely, he observed that if d(x, y) is a cone metric, then D(x, y) = ‖d(x, y)‖
is symmetric with some special properties, particularly in the case when
the underlying cone is normal. Recently in [4], Kazeem et al. discussed
the newly introduced notion of quasi-pseudometric type spaces as a logical
equivalent to metric type spaces when the initial distance-like function is
not symmetric. Some fixed point results of mappings on such spaces were
discussed as well in [4]. It is the aim of this article to continue the study of
quasi-pseudometric spaces by proving several other fixed point and common
fixed point results, hence extending the fixed point results of [4] to a class
of mappings satisfying more general contractive conditions.

In this section, we recall briefly some elementary definitions from the
asymmetric topology which are necessary for a good understanding of the
work below. For recent results and detailed explanations for the concepts in
the theory of asymmetric spaces, the reader is referred to [2, 4, 7, 8].
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Definition 1. Let E be a real Banach space with norm ‖.‖ and P be a
subset of E. Then P is called a cone if and only if

(a) P is closed, nonempty and P 6= {θ}, where θ is the zero vector in E;
(b) for any a, b ≥ 0, and x, y ∈ P , we have ax+ by ∈ P ;
(c) for x ∈ P , if −x ∈ P , then x = θ.

Given a cone P in a Banach space E, we define on E a partial order �
with respect to P by

x � y ⇐⇒ y − x ∈ P.

We also write x ≺ y whenever x � y and x 6= y, while x� y will stand for
y − x ∈ Int(P ) (where Int(P ) designates the interior of P ).

The cone P is called normal if there is a number C > 0, such that for
all x, y ∈ E, we have

θ � x � y =⇒ ‖x‖ ≤ C‖y‖.

The least positive number satisfying this inequality is called the normal
constant of P . Therefore, we shall then say that P is a K-normal cone to
indicate the fact that the normal constant is K.

Definition 2 (Compare [4]). Let X be a nonempty set. Suppose the
mapping q : X ×X → E satisfies

(q1) θ � q(x, y) for all x, y ∈ X;
(q2) q(x, y) = θ = q(y, x) if and only if x = y;
(q3) q(x, z) � q(x, y) + q(y, z) for all x, y, z ∈ X.

Then, q is called a quasi-cone metric on X, and (X, q) is called a
quasi-cone metric space.

Definition 3 (Compare [4]). A sequence in a quasi-cone metric space
(X, q) is called

(a) Q-Cauchy or bi-Cauchy if for every c ∈ X with c� θ, there exists
n0 ∈ N such that

∀ n,m ≥ n0 q(xn, xm)� c;

(b) left(right) Cauchy if for every c ∈ X with c� θ, there exists n0 ∈ N
such that

∀ n,m : n0 ≤ m ≤ n q(xm, xn)� c (q(xn, xm)� c resp.).

Remark 1. A sequence is Q-Cauchy if and only if it is both left and
right Cauchy.

Definition 4. (a) In a quasi-cone metric space (X, q), we say that the
sequence (xn) left converges to x ∈ X if for every c ∈ E with θ � c
there exists N such that for all n > N , q(xn, x)� c.
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(b) Similarly, in a quasi-cone metric space (X, q), we say that a sequence
(xn) right converges to x ∈ X if for every c ∈ E with θ � c there
exists N such that for all n > N , q(x, xn)� c.

(c) Finally, in a quasi-cone metric space (X, q), we say that the sequence
(xn) converges to x ∈ X if for every c ∈ E with θ � c there exists N
such that for all n > N , q(xn, x)� c and q(x, xn)� c.

Definition 5. A quasi-cone metric space (X, q) is called
(a) left complete (resp. right complete) if every left Cauchy (resp.
right Cauchy) sequence in X left (resp. right) converges.

(b) bicomplete if every Q-Cauchy sequence converges.

Remark 2. A quasi-cone metric space (X, q) is bicomplete if and only
if it is left complete and right complete.

Definition 6. Let (X, q) be a quasi-cone metric space. A function f :
X → X is said to be Lipschitzian if there exists some κ ∈ R such that

q(f(x), f(y)) � κ q(x, y) ∀ x, y ∈ X.

The smallest constant which satisfies the above inequality is called the Lip-
schitiz constant of f and is denoted Lip(f). In particular f is said to be
contractive if Lip(f) ∈ [0, 1) and nonexpansive if Lip(f) ≤ 1.

Definition 7 (Compare [1]). Let f and g be self maps on a set X. If
w = fx = gx for some x ∈ X, then x is called a coincidence point of f
and g, and w is called the point of coincidence of f and g.

Definition 8. Let f and g be self maps on a nonempty set X. We say
that f and g are weakly compatible if they commute at their coincidence
point, that is there exists x0 ∈ X such that fx0 = gx0 then gfx0 = fgx0.

We also give the following proposition that we take from [1] by omitting
the proof.

Proposition 1 (Compare [1]). Let f and g be weakly compatible self maps
on a set X. If f and g have a unique point of coincidence w = fx = gx,
then w is the unique common fixed point of f and g.

we also have the following important characterization

Lemma 1. Let (X, q) be a quasi-cone metric space, P be a K-normal
cone and (xn) be a sequence in X. Then (xn) is a bi-Cauchy sequence if
and only if q(xn, xm) −→ θ as n,m −→∞.

We now connect the notion of quasi-cone metric to the one of quasi-pseudo-
metric type space via the following theorem.



64 Yaé Ulrich Gaba

Theorem 1 (Compare [4] Theorem 28). Let (X, q) be a quasi-cone metric
space over the Banach space E with the K-normal cone P . The mapping
Q : X × X → [0,∞) defined by Q(x, y) = ‖q(x, y)‖ satisfies the following
properties

(Q1) Q(x, x) = 0 for any x ∈ X;
(Q2) Q(x, y) ≤ K

(
Q(x, z1) + Q(z1, z2) + · · · + Q(zn, y)

)
, for any points

x, y, zi ∈ X, i = 1, 2, . . . , n.

We are therefore led to the following definition.

Definition 9 ([4]). Let X be a non empty set, and let the function
D : X ×X → [0,∞) satisfy the following properties:

(D1) D(x, x) = 0 for any x ∈ X;
(D2) D(x, y) ≤ α

(
D(x, z1) + D(z1, z2) + · · · + D(xn, y)

)
for any points

x, y, zi ∈ X, i = 1, 2, . . . , n and some constant α > 0.
Then (X,D,α) is called a quasi-pseudometric type space. Moreover, if
D(x, y) = 0 = D(y, x) =⇒ x = y, then D is said to be a T0-quasi-pseudo-
metric type space. The latter condition is referred to as the T0-condition.

Remark 3. • Let D be a quasi-pseudometric type on X, then the
map D−1 defined by D−1(x, y) = D(y, x) whenever x, y ∈ X is also a
quasi-pseudometric type on X, called the conjugate of D. We shall also
denote D−1 by Dt or D̄.
• It is easy to verify that the function Ds defined by Ds := D∨D−1 , i.e.
Ds(x, y) = max{D(x, y), D(y, x)} defines a metric type (see [5]) on X
whenever D is a T0-quasi-pseudometric type.
• If we substitute the property (D1) by the following property
(D3) : D(x, y) = 0⇐⇒ x = y,
we obtain a T0-quasi-pseudometric type space directly. For instance, this
could be done if the map D is obtained from quasi-cone metric.

Moreover, for α = 1, we recover the classical pseudometric, hence quasi-
pseud-metric type spaces generalize quasi-pseudometrics. It is worth men-
tioning that if (X,D,α) is a pseudometric type space, then for any β ≥ α,
(X,D, β) is also a pseudometric type space. We give the following example
to illustrate the above comment.

Example 1. Let X = {a, b, c} and the mapping D : X×X → [0,∞) de-
fined byD(a, b) = D(c, b) = 1/5, D(b, c) = D(b, a) = D(c, a) = 1/4, D(a, c) =
1/2, D(x, x) = 0 for any x ∈ X and D(x, y) = D(y, x) for any x, y ∈ X.
Since

1

2
= D(a, c) > D(a, b) +D(b, c) =

9

20
,
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then we conclude that X is not a quasi-pseudometric space. Nevertheless,
with α = 2, it is very easy to check that (X,D, 2) is a quasi-pseudometric
type space.

Definition 10 ([4]). Let (X,D,α) be a quasi-pseudometric space. The
convergence of a sequence (xn) to x with respect to D, called D-convergence

or left-convergence and denoted by xn
D−→ x, is defined in the following

way

(1) xn
D−→ x⇐⇒ D(x, xn) −→ 0.

Similarly, the convergence of a sequence (xn) to x with respect to D−1,

called D−1-convergence or right-convergence and denoted by xn
D−1

−→ x,
is defined in the following way

(2) xn
D−1

−→ x⇐⇒ D(xn, x) −→ 0.

Finally, in a quasi-pseudometric space (X,D,α), we shall say that a se-
quence (xn) Ds-converges to x if it is both left and right convergent to x,

and we denote it as xn
Ds

−→ x or xn −→ x when there is no confusion. Hence

xn
Ds

−→ x ⇐⇒ xn
D−→ x and xn

D−1

−→ x.

Definition 11 ([4]). A sequence (xn) in a quasi-pseudometric type space
(X,D,α) is called

(a) left K-Cauchy with respect to D if for every ε > 0, there exists
n0 ∈ N such that

∀ n, k : n0 ≤ k ≤ n D(xk, xn) < ε;

(b) right K-Cauchy with respect to D if for every ε > 0, there exists
n0 ∈ N such that

∀ n, k : n0 ≤ k ≤ n D(xn, xk) < ε;

(c) Ds-Cauchy if for every ε > 0, there exists n0 ∈ N such that

∀n, k ≥ n0 D(xn, xk) < ε.

Remark 4. • A sequence is left K-Cauchy with respect to d if and
only if it is right K-Cauchy with respect to D−1.
• A sequence is ds-Cauchy if and only if it is both left and right K-Cauchy.

Definition 12 ([4]). A quasi-pseudometric space (X,D,α) is called
left-complete provided that any left K-Cauchy sequence is D-convergent.
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Definition 13 ([4]). A quasi-pseudometric space (X,D,α) is called
right-complete provided that any right K-Cauchy sequence is D-convergent.

Definition 14 ([4]). A T0-quasi-pseudometric space (X,D,α) is called
bicomplete provided that the metric Ds on X is complete.

2. First results

In [4], Kazeem et al. proved the following:

Theorem 2. Let (X, q) be a bicomplete quasi-cone metric space, P a
K-normal cone. Suppose that a mapping T : X → X satisfies the contractive
condition

q(Tx, Ty) � k q(x, y) for all x, y ∈ X,

where k ∈ [0, 1). Then T has a unique fixed point. Moreover for any x ∈ X,
the orbit {Tnx, n ≥ 0} converges to the fixed point.

We start by an application of the above the theorem

Theorem 3. Let (X, q) be a bicomplete quasi-cone metric space, P a
K-normal cone. Let T : X → X be a map such that for every n ∈ N, there
is λn ∈ (0, 1) such that

q(Tnx, Tny) � λn q(x, y) for all x, y ∈ X.

and let lim
n→0

λn = 0. Then T has a unique fixed point ω ∈ X.

Proof. Take λ such that 0 < λ < 1. Since lim
n→0

λn = 0, there ex-

ists n0 ∈ N such that λn < λ for each n ≥ n0. Then q(Tnx, Tny) �
λn q(x, y) for all x, y ∈ X whenever n ≥ n0. In other words, for any
m ≥ n0, g = Tm satisfies

q(gx, gy) � k q(x, y) for all x, y ∈ X.

Theorem 2 implies that g has a unique fixed point, say ω. Then Tmω = ω,
implying that Tm+1ω = T (Tmω) = Tm(Tω) = Tω and Tω is also a fixed
point of g = Tm. Since the fixed point is unique, it follows that Tω = ω
and ω is the unique fixed point of T . �

We now state below a generalization of this theorem.

Theorem 4. Let (X, q) be a bicomplete quasi-cone metric space, P a
K-normal cone. Suppose that a mapping T : X → X is such that for every

n ∈ N, Tn is Lipschitzian and that
∞∑
n=0

Lip(Tn) <∞. Then T has a unique

fixed point x∗ ∈ X.
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Proof. Since for any n ∈ N, Tn is Lipschitzian, hence there exists
kn := Lip(Tn) ≥ 0 such that

q(Tnx, Tny) � kn q(x, y) for all x, y ∈ X.

Now let x ∈ X. For any n, h ∈ N, we have

(3) q(Tnx, Tn+hx) � kn q(x, T hx) � kn

[
h−1∑
i=0

q(T ix, T i+1x)

]
.

Hence

(4) q(Tnx, Tn+hx) � kn

(
h−1∑
i=0

ki

)
q(x, Tx),

since

q(T i, T i+1x) � ki q(x, Tx), for all i ∈ N.

Since
∞∑
n=0

Lip(Tn) is convergent, then lim
n→0

Lip(Tn) = 0 and therefore in-

equality (4) entails that

(5) ‖q(Tnx, Tn+hx)‖ ≤ Kkn

(
h−1∑
i=0

ki

)
‖q(x, Tx)‖ −→ 0 as n −→∞.

Similarly, one shows that

(6) ‖q(Tn+hx, Tnx)‖ ≤ Kkn

(
h−1∑
i=0

ki

)
‖q(Tx, x)‖ −→ 0 as n −→∞.

From relations (5) and (6), we conclude that (Tnx) is a bi-Cauchy se-
quence. Since (X, q) is bicomplete, there exists x∗ ∈ X such that (Tnx)
converges to x∗. First let us show that x∗ is a fixed point of T .

On one side, we have

q(Tn−1x, x∗) � q(Tn−1x, Tnx) + q(Tnx, x∗)(7)

� kn−1q(x, Tx) + q(Tnx, x∗),

and on the other side

q(x∗, Tn−1x) � q(x∗, Tnx) + q(Tnx, Tn−1x)(8)

� kn−1q(Tx, x) + q(x∗, Tnx),
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From (7), we have that

q(Tx∗, x∗) � q(Tx∗, Tnx) + q(Tnx, x∗)

� k1q(x∗, Tn−1x) + q(Tnx, x∗)→ θ as n→∞,

i.e q(Tx∗, x∗) = θ.

In the same manner, from (8), we have that

q(x∗, Tx∗) = θ.

Hence
q(Tx∗, x∗) = θ = q(x∗, Tx∗).

This implies, using property (q2) that Tx∗ = x∗. So x∗ is a fixed point of T .
Moreover, if z∗ is a fixed point of T , then for all n ≥ 1, we have

q(x∗, z∗) = q(Tnx∗, Tnz∗) � knq(x∗, z∗),

and
q(z∗, x∗) = q(Tnz∗, Tnx∗) � knq(z∗, x∗).

Since lim
n→0

Lip(Tn) = 0, hence ‖q(x∗, z∗)‖ = 0 = ‖q(z∗, x∗)‖ and x∗ = z∗.

Therefore the fixed point is unique. �

In the next section, we give some topological properties of quasi-pseudo-
metric type spaces. Most of them deal with sequences and follow closely the
classical properties of sequences pseudometric spaces.

3. Topology on Quasi-pseudometric type spaces
and fixed point results

3.1. Some topological properties. Let (X,D,α) be a quasi-pseudometric
type space. Then for each x ∈ X and ε > 0, the set

BD(x, ε) = {y ∈ X : D(x, y) < ε}

denotes the open ε-ball at x with respect to D. It should be noted that the
collection

{BD(x, ε) : x ∈ X, ε > 0}

yields a base for the topology τ(D) induced by D on X. In a similar manner,
for each x ∈ X and ε ≥ 0, we define

CD(x, ε) = {y ∈ X : D(x, y) ≤ ε},

known as the closed ε-ball at x with respect to D.
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Also the collection

{Dd−1(x, ε) : x ∈ X, ε > 0}

yields a base for the topology τ(D−1) induced by D−1 on X. The set
CD(x, ε) is τ(D−1)-closed, but not τ(D)-closed in general.

The balls with respect toD are often called forward balls and the topology
τ(D) is called forward topology, while the balls with respect to D−1 are often
called backward balls and the topology τ(D−1) is called backward topology.

The topology τ(D) of a quasi-pseudometric type space (X,D,α) can be
defined starting with starting from the family ΠD(x) of neighbourhoods of
an arbitrary point x ∈ X.

V ∈ ΠD(x)⇐⇒ ∃ ε > 0 such that BD(x, ε) ⊂ V
⇐⇒ ∃ ε′ > 0 such that CD(x, ε) ⊂ V.

To see the equivalence in the above definition, we can take for instance
ε′ = ε/3.

The following proposition contains some simple properties of convergent
sequences.

Proposition 2. Let (xn) be a sequence in quasi-pseudometric type space
(X,D,α).

(a) If (xn) is D-convergent to x and D−1-convergent to y, then D(x, y) = 0.
(b) If (xn) is D-convergent to x and D(y, x) = 0, then (xn) is also
D-convergent to y.

Proof.
(a) Letting n→∞ in the inequality

D(x, y) ≤ α[D(x, xn) +D(xn, y)],

one obtains D(x, y) = 0.
(b) The result follows from the relations

D(xn, y) ≤ α[D(y, x) +D(x, xn)] = αD(x, xn)→ 0.

�

Also, the following simple remarks concerning sequences in quasi-pseudo-
metric type spaces are true.

Proposition 3. Let (xn) be as sequence in a quasi-pseudometric type
space (X,D,α).

(a) If (xn) is left K-Cauchy and has a subsequence which is τ(D)-conver-
gent to x, then (xn) is τ(D)-convergent to x.
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(b) If (xn) is left K-Cauchy and has a subsequence which is τ(D−1)-conver-
gent to x, then (xn) is τ(D−1)-convergent to x.

Proof. (a) Suppose that (xn) is leftK-Cauchy and (xnk
) is a subsequence

of (xn) such that lim
k→∞

D(x, xnk
) = 0. For ε > 0 choose n0 such that n0 ≤

m ≤ n implies D(xm, xn) < ε/α, and let k0 ∈ N be such that nk0 ≥ n0 and
D(x, xnk

) < ε/α for all k ≥ k0. Then, for n ≥ nk0 , D(x, xn) ≤ α[D(x, xnk0
+

D(xnk0
, xn)] < 2ε.

(b) Reasoning similarly, for n ≥ nk0 let k ∈ N such that nk ≥ n. Then
D(xn, x) ≤ α[D(xn, xnk

) +D(xnk
, x)] < 2ε. �

The proof f the following proposition is trivial and shall then be omitted.

Proposition 4. If a sequence (xn) in a quasi-pseudometric type space
(X,D,α), satisfies

∞∑
n=0

D(xn, xn+1) <∞,

then (xn) is left K-Cauchy.

Definition 15. A subset Y of a quasi-pseudometric type space (X,D,α)
is called precompact if for every ε > 0 there exists a finite subset Z of Y
such that

(9) Y ⊂ ∪{BD(z, ε) : z ∈ Z}.

If for every ε > 0 there exists a finite subset Z of X such that (9) holds,
then the set Y is called outside precompact. One obtains the same notions
if one works with closed balls CD(z, ε) z ∈ Z.

Obviously a precompact set is outside precompact, but the converse is
not true. We then have the following characterization.

Proposition 5. Let (X,D,α) be a quasi-pseudometric type space. A sub-
set Y of X is precompact if and only if for every ε > 0 there is a finite subset
{x1, x2, · · · , xn} ⊂ X such that Y ⊂ ∪ni=1BD(xi, ε) and Y ∩BD−1(xi, ε) 6= ∅
for all i = 1, 2, · · · , n.

Proof. For ε > 0, let {x1, x2, · · · , xn} ⊂ X such that the conditions hold
for ε/2α. If yi ∈ Y ∩BD−1(xi, ε/2α), i = 1, 2, · · · , n, then Y ⊂ ∪ni=1BD(xi, ε).

Indeed, for any y ∈ Y there exists k ∈ {1, 2, · · · , n} such that D(xk, y) <
ε/2α, implying

D(yk, y) ≤ α[D(yk, xk) +D(xk, y)] = α[D−1(xk, yk) +D(xk, y)] < ε.

�
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3.2. Fixed point results. We start with the following lemma and repeat
the proof as it is in [4].

Lemma 2 (Compare [4] Lemma 38). Let (yn) be a sequence in a quasi-
pseudometric type space (X,D,α) such that

(10) D(yn, yn+1) ≤ λD(yn−1, yn)

for some λ > 0 with λ < min{1, 1/α}. Then (yn) is left K-Cauchy.

Proof. Let m < n ∈ N. From the condition (D2) in the definition of a
quasi-pseudometric type, we can write:

D(ym, yn) ≤ α[D(ym, ym+1) +D(ym+1, yn)]

≤ αD(ym, ym+1) + α2D(ym+1, ym+2) + α2D(ym+2, yn)

...

≤ αD(ym, ym+1) + α2D(ym+1, ym+2) + · · ·
+ αn−m−1D(yn−2, yn−1) + αn−mD(yn−1, yn).

From (10) and λ < 1
α , the above becomes

D(ym, yn) ≤ (αλm + α2λm+1 + · · ·+ αn−mλn−1)D(y0, y1)

≤ αλm(1 + αλ+ · · ·+ (αλ)n−1−m)D(y0, y1)

≤ αλm

1− αλ
D(y0, y1) −→ 0 as m −→∞.

�

It follows that (yn) is left K-Cauchy. Similarly,

Lemma 3. Let (yn) be a sequence in a quasi-pseudometric type space
(X,D,α) such that

(11) D−1(yn, yn+1) ≤ λD−1(yn−1, yn)

for some λ > 0 with λ < min{1, 1/α}. Then (yn) is right K-Cauchy.

We now state our first fixed point result.

Theorem 5. Let (X,D,α) be a T0-quasi-pseudometric type space. Sup-
pose that f, g : X → X are mappings such that

(12) D(fx, fy) ≤ k D(gx, gy) for all x, y ∈ X,

where k < min{1, 1/α}. If the range of g contains the range of f and g(X)
is bicomplete, then f and g have a unique point of coincidence. Moreover if
f and g are weakly compatible, then f and g have a unique common fixed
point.
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Proof. Take an arbitrary x0 ∈ X. Choose a point x1 in X such that
f(x0) = g(x1). This can be done, since f(X) ⊂ g(X). Iterating this process,
once xn is chosen in X, we can obtain xn+1 in X such that f(xn) = g(xn+1).
Then

D(gxn, gxn+1) = D(fxn−1, fxn) ≤ kD(gxn−1, gxn)

≤ k2D(gxn−2, gxn−1) ≤ . . . ≤ knD(gx0, gx1).

i.e.

D(gxn, gxn+1) ≤ knD(gx0, gx1).

Similarly,

D(gxn+1, gxn) ≤ knD(gx1, gx0).

Hence (gxn) is a bi-Cauchy sequence. Since g(X) is bicomplete, there
exists x∗ ∈ g(X) such that (gxn) Ds-converges to x∗. In other words, there
is a p∗ ∈ X such that (gxn) converges to g(p∗) = x∗.

Moreover

D(gxn, fp
∗) = D(fxn−1, fp

∗) ≤ kD(gxn−1, gp
∗) −→ 0, as n −→,

In the same way, we establish that D(fp∗, gxn) −→ 0 as n −→ ∞, to
then conclude that gxn −→ fp∗. The uniqueness of the limit implies that
fp∗ = gp∗. We finish the proof by showing that f and g have a unique point
of coincidence. For this, assume z∗ ∈ X is a point such that fz∗ = gz∗.

Now

D(gz∗, gp∗) = D(fz∗, fp∗) ≤ kD(gz∗, gp∗),

which gives D(gz∗, gp∗) = 0. On the other hand, by the same reasoning, it
also clear that D(gp∗, gz∗) = 0. By property the T0-condition, gz∗ = gp∗.
From Proposition 1, f and g have a unique common fixed point. �

Theorem 6. Let (X,D,α) be a T0-quasi-pseudometric type space. Sup-
pose that f, g : X → X are mappings such that Suppose that mappings
f, g : X → X satisfy the contractive condition

D(fx, fy) ≤ k [D(fx, gy) +D(gx, fy)] for all x, y ∈ X,

where k ≥ 0 such that k
1−k < min{1, 1/α}. If the range of g contains the

range of f and g(X) is bicomplete, then f and g have a unique coincidence
point in X. Moreover if f and g are weakly compatible, then f and g have
a unique common fixed point.
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Take an arbitrary x0 ∈ X. Choose a point x1 in X such that f(x0) =
g(x1). This can be done, since f(X) ⊂ g(X). Iterating this process, once xn
is chosen in X, we can obtain xn+1 in X such that f(xn) = g(xn+1). Then

D(gxn, gxn+1) = D(fxn−1, fxn) ≤ k[D(fxn−1, gxn) +D(gxn−1, fxn)]

≤ kD(gxn−1, gxn+1)

≤ k[D(gxn−1, gxn) +D(gxn, gxn+1)],

which entails that

D(gxn, gxn+1) ≤
k

1− k
(gxn−1, gxn).

Similarly,

D(gxn+1, gxn) ≤ k

1− k
D(gxn, gxn−1).

Hence (gxn) is a bi-Cauchy sequence. Since g(X) is bicomplete, there
exists x∗ ∈ g(X) such that (gxn) Ds-converges to x∗. In other words, there
is a p∗ ∈ X such that (gxn) converges to g(p∗) = x∗.

Moreover since

D(gxn, fp
∗) = D(fxn−1, fp

∗) ≤ k[D(fxn−1, gp
∗) +D(gxn−1, fp

∗)],

we get that
D(gp∗, fp∗) ≤ kD(gp∗, fp∗)

which implies that D(gp∗, fp∗) = 0.
In the same way, we establish that D(fp∗, gp∗) = 0, to then conclude

that fp∗ = gp∗.
We finish the proof by showing that f and g have a unique point of

coincidence. For this, assume z∗ ∈ X is a point such that fz∗ = gz∗. Now

D(gz∗, gp∗) = D(fz∗, fp∗) ≤ k[D(fz∗, gp∗) +D(gz∗, fp∗)]

≤ 2kD(gz∗, gp∗),

which gives D(gz∗, gp∗) = 0. On the other hand, by the same reasoning, it
also clear that D(gp∗, gz∗) = 0. Therefore gz∗ = gp∗. From Proposition 1,
f and g have a unique common fixed point.

Theorem 7. Let (X,D,α) be a T0-quasi-pseudometric type space. Sup-
pose that f, g : X → X are mappings such that

(13) D(fx, fy) ≤ λD(gx, gy) + γD(fx, gy) for all x, y ∈ X.

where λ, γ are positive constants such that λ+2γ < min{1, 1/α}. If the range
of g contains the range of f and g(X) is bicomplete, then f and g have a
unique coincidence point in X. Moreover if f and g are weakly compatible,
then f and g have a unique common fixed point.
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Proof. Take an arbitrary x0 ∈ X. Choose a point x1 in X such that
f(x0) = g(x1). This can be done, since f(X) ⊂ g(X). Iterating this process,
once xn is chosen in X, we can obtain xn+1 in X such that f(xn) = g(xn+1).
Then

D(gxn, gxn+1) = D(fxn−1, fxn) ≤ λD(gxn−1, gxn) + γD(fxn−1, gxn)

≤ λD(gxn−1, gxn).

Therefore (gxn) is a left K-Cauchy sequence. In a similar manner, we es-
tablish that (gxn) is also a right K-Cauchy sequence. Hence (gxn) is a
bi-Cauchy sequence. Since g(X) is bicomplete, there exists x∗ ∈ g(X) such
that (gxn) Ds-converges to x∗. In other words, there is a p∗ ∈ X such that
(gxn) converges to g(p∗) = x∗.

Moreover since

D(gxn, fp
∗) = D(fxn−1, fp

∗) ≤ λD(gxn−1, gp
∗) + γD(fxn−1, gp

∗)

we get that D(gp∗, fp∗) = 0. On the other hand, by the same reasoning, it
is also clear that D(fp∗, gp∗) = 0. Hence fp∗ = gp∗.

We finish the proof by showing that f and g have a unique point of
coincidence. For this, assume z∗ ∈ X is a point such that fz∗ = gz∗. Now

D(gz∗, gp∗) = D(fz∗, fp∗) ≤ λD(gz∗, gp∗) + γD(fz∗, gp∗)

≤ (λ+ γ)D(gz∗, gp∗),

which gives D(gz∗, gp∗) = 0. On the other hand, by the same reasoning,
it also clear that D(gp∗, gz∗) = 0. Hence gz∗ = gp∗. From Proposition 1,
f and g have a unique common fixed point. �

We now give an example to illustrate Theorems 5, 7.

Example 2. Let X = R, D(x, y) = max{x − y, 0} whenever x, y ∈ R,
f(x) = 2x2 + 4x+ 1 and g(x) = 3x2 + 6x+ 2. Then it easy to see that

f(X) = g(X) = [1,∞) is bicomplete.

All the conditions of Theorems 5, 7 are satisfied. Indeed:

• for Theorem 5, take k ∈
[
2
3 , 1
)

• for Theorem 7, take λ ∈
[
2
3 , 1
)
, γ = 0.

f and g become weakly compatible and we obtain a unique point of coinci-
dence and a unique common fixed point −1 = f(−1) = g(−1).
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Corollary 1. Let (X,D,α) be a T0-quasi-pseudometric type space. Sup-
pose that mappings f, g : X → X satisfy the contractive condition

(14) D(fx, fy) ≤ α[D(gx, gy) +D(fx, gy)] for all x, y ∈ X.

where 0 < α < min{1, 1/3α}. If the range of g contains the range of f
and g(X) is bicomplete, then f and g have a unique coincidence point in
X. Moreover if f and g are weakly compatible, then f and g have a unique
common fixed point.

Theorem 8. Let (X,D,α) be a T0-quasi-pseudometric type space. Sup-
pose that f, g : X → X are mappings such that

(15) D(fx, fy) ≤ λD(gx, gy) + γD(gx, fy) for all x, y ∈ X.

where λ, γ are positive constants such that λ+2γ < min{1, 1/α}. If the range
of g contains the range of f and g(X) is bicomplete, then f and g have a
unique coincidence point in X. Moreover if f and g are weakly compatible,
then f and g have a unique common fixed point.

Corollary 2. Let (X,D,α) be a T0-quasi-pseudometric type space. Sup-
pose that mappings f, g : X → X satisfy the contractive condition

(16) D(fx, fy) ≤ λ[D(gx, gy) +D(gx, fy)] for all x, y ∈ X.

where 0 < λ < min{1, 1/3α}. If the range of g contains the range of f
and g(X) is bicomplete, then f and g have a unique coincidence point in
X. Moreover if f and g are weakly compatible, then f and g have a unique
common fixed point.
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