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1. Introduction

In 1922, Banachs contraction principle [2] has become a very popular and
important tool in modern analysis, especially in nonlinear analysis including
its applications to differential and integral equations, variational inequal-
ity theory, complementarity problems, equilibrium problems, minimization
problems and many others. Banach contraction principle was extended for
single-valued contraction on spaces endowed with vector-valued metrics by
Perov in [22], while the case of multi-valued contractions is treated by A.
Petruşel [24].

Beside this one of the most popular generalization of fixed point theorems
is coupled fixed point theorem for continuous and discontinuous operators
introduced in 1987 by D. Guo and V. Lakshmikantham [10] in connection
with coupled quasi solutions of an initial value problem for ordinary differen-
tial equations. In 2006, Gnana-Bhaskar and Lakshmikantham [3] introduced
the concept of mixed monotone property in partially ordered metric space.
Afterward, Lakshmikantham and Ćirić in [21] extended these results by giv-
ing the definition of the g-monotone property. In 2011, Vasile Berinde and
Marin Borcut [5] extended and generalized the results of [3] and introduced
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the concept of a tripled fixed point and the mixed monotone property of a
mapping. For more details on coupled and tripled fixed point results, we
refer to [8, 12, 13, 15, 16, 17, 18, 19] and cited theirin.

It should be noted that through the coupled fixed point technique we
cannot solve a system with the following form:

x3 + 2yz − 6x+ 3 = 0,

y3 + 2xz − 6y + 3 = 0,

z3 + 2yx− 6z + 3 = 0.

On the base of above example we can say that the importance of coupled
fixed point and tripled fixed point theorem is different and depends on the
given problem.

Let X be a nonempty set. A mapping d : X × X → Rm is called a
vector-valued metric on X if the following properties are satisfied:

(a) d(x, y) ≥ 0 for all x, y ∈ X,
(b) d(x, y) = d(y, x) for all x, y ∈ X,
(c) d(x, y) ≤ d(x, z) + d(z, y) for all x, y ∈ X.

If x, y ∈ Rm, x = (x1, . . . , xm) and y = (y1, . . . , ym), then, by definition:
x ≤ y if and only if xi ≤ yi for i ∈ {1, 2, . . . ,m}.

A set endowed with a vector-valued metric d is called generalized metric
space. The notions of convergent sequence, Cauchy sequence, completeness,
open subset and closed subset are similar to those for usual metric spaces.

We denote by Mmm(R+) the set of all m × m matrices with positive
elements and by I the identity m×m matrix.

Notice that we will make an identification between row and column vec-
tors in Rm.

For the proof of the main results we need the following theorems. A
classical result in matrix analysis is the following theorem (see [1], [26],
[29]).

Theorem 1. Let A ∈Mmm(R+). The following assertions are equivalent,
(i) A is convergent towards zero,

(ii) An → 0 as n→∞,
(iii) The eigenvalues of A are in the open unit disc, i.e |λ| < 1, for every
λ ∈ C with

det(A− λI) = 0,

(iv) The matrix (I −A) is nonsingular and

(1) (I −A)−1 = I +A+ · · ·+An + . . . .

(v) The matrix (I − A) is nonsingular and (I − A)−1 has nonnegative
elements
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(vi) Anq → 0 and qAn → 0 as n→∞, for each q ∈ Rm.

We recall now Perov’s fixed point theorem (see [22]).

Theorem 2. Let (X, d) be a complete generalized metric space and the
operator f : X → X with the property that there exists a matrix A ∈
Mmm(R) such that d(f(x), f(y)) ≤ Ad(x, y) for all x, y ∈ X. If A is a
matrix convergent towards zero, then:

(i) Fix(f) = {x∗} (Here Fix(f) denotes the set of fixed points of f),
(ii) the sequence of successive approximations (xn)n∈N, xn = fn(x0) is
convergent and has the limit x∗, for all x0 ∈ X,

(iii) one has the following estimation

(2) d(xn, x
∗) ≤ An(I −A)−1d(x0, x1),

(iv) if g : X → X is an operator such that there exist y∗ ∈ Fix(g) and
ε ∈ (R+

m)∗ with d(f(x), g(x)) ≤ ε, for each x ∈ X, then

d(x∗, y∗) ≤ (I −A)−1ε,

(v) if g : X → X is an operator and there exists ε ∈ (Rm
+ )∗ such that

d(f(x), g(x)) ≤ ε, for all x ∈ X, then for the sequence yn = gn(x0) we
have the following estimation

(3) d(yn, x
∗) ≤ (I −A)−1ε+An(I −A)−1d(x0, x1).

Let (X, d) be a metric space. We will focus our attention to the following
system of operatorial equations:

x = T1(x, y, z)

y = T2(x, y, z)

z = T3(x, y, z)

where T1, T2, T3 : X ×X ×X → X are three given operators.
By definition, a solution (x, y, z) ∈ X × X × X of the above system is

called a tripled fixed point for the triple (T1, T2, T3). In a similar way, the
case of an operatorial inclusion (using the symbol ∈ instead of =) could be
considered.

This paper deal with existence and uniqueness of tripled fixed point theo-
rem the approach is based on Perov-type fixed point theorem for contractions
in metric spaces endowed with vector-valued metrics. We are also studying
Ulam-Hyers stability results for the tripled fixed points of a triple of contrac-
tive type single-valued and respectively multi-valued operators on complete
metric spaces. For related results to Perov’s fixed point theorem and for
some generalizations and applications of it we refer to [7], [9], [25].
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2. Existence, uniqueness and stability results
for tripled fixed points

For the proof of our main theorem we need the following notions and
results.

Definition 1. Let (X, d) be a generalized metric space and f : X → X
be an operator. Then, the fixed point equation

(4) x = f(x)

is said to be generalized Ulam-Hyers stable if there exists an increasing func-
tion, ψ : Rm

+ → Rm
+ , continuous at 0 with ψ(0) = 0, such that, for any

ε = (ε1, . . . , εm) with εi > 0 for i ∈ {1, . . . ,m} and any solution y∗ ∈ X of
the in inequality

(5) d(y, f(y)) ≤ ε

there exists a solution x∗ of (4) such that

(6) d(x∗, y∗) ≤ ψ(ε).

In particular, if ψ(t) = Ct, t ∈ Rm
+ , (where C ∈ Mmm(R+)), then the fixed

point equation (4) is called Ulam-Hyers stable.

Our first abstract result is a direct consequence of Perov’s fixed point
theorem.

Theorem 3. Let (X, d) be a generalized metric space and let f : X → X
be an operator with the property that there exists a matrix A ∈ Mmm(R)
such that A converges to zero and

d(f(x), f(y)) ≤ Ad(x, y), for all x, y ∈ X.

Then the fixed point equation

x = f(x), x ∈ X

is Ulam-Hyers stable.

Proof. From Perov’s fixed point theorem we get that Fix(f) = {x∗}.
Let ε = (ε1, . . . , εm) with εi > 0 for each i ∈ {1, . . . ,m} and let y∗ be a
solution of the in equation

d(y, f(y)) ≤ ε.



Ulam-Hyers stability theorem by tripled . . . 81

Then we successively have that

d(x∗, y∗) = d(f(x∗), y∗)

≤ d(f(x∗), f(y∗)) + d(f(y∗), y∗)

≤ Ad(x∗, y∗) + ε.

Thus, using Theorem 2, we get that

d(x∗, y∗) ≤ (I −A)−1ε.

�

Definition 2. Let (X, d) be a metric space and let T1, T2, T3 : X ×X ×
X → X be three operators. Then the system of operatorial equations

x = T1(x, y, z)

y = T2(x, y, z)

z = T3(x, y, z)

(7)

is said to be Ulam-Hyers stable if there exist c1, c2, c3, c4, c5, c6, c7, c8, c9 > 0
such that for each ε1, ε2, ε3 > 0 and each triple (u∗, v∗, w∗) ∈ X × X × X
such that

d(u∗, T1(u
∗, v∗, w∗)) ≤ ε1

d(v∗, T2(u
∗, v∗, w∗)) ≤ ε2

d(w∗, T3(u
∗, v∗, w∗)) ≤ ε3

(8)

there exists a solution (x∗, y∗, z∗) ∈ X ×X ×X of (8) such that

d(u∗, x∗) ≤ c1ε1 + c2ε2 + c3ε3

d(v∗, y∗) ≤ c4ε1 + c5ε2 + c6ε3

d(w∗, z∗) ≤ c7ε1 + c8ε2 + c9ε3

 .(9)

For examples and other considerations regarding Ulam-Hyers stability
and generalized Ulam-Hyers stability of the operatorial equations and inclu-
sions see I.A. Rus [27], Bota-Petruşel [6], Petru-Petruşel-Yao [23].

Our first main result is the following existence, uniqueness, data de-
pendence and Ulam-Hyers stability theorem for the tripled fixed point of
single-valued operators (T1, T2, T3). The conclusions (i)-(ii) are originally
proved by R. Precup [25], but for the sake of completeness we recall here
the whole proof.
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Theorem 4. Let (X, d) be a complete metric space, T1, T2, T3 : X×X×
X → X be three operators such that

d(T1(x, y, z), T1(u, v, w)) ≤ k1d(x, u) + k2d(y, v) + k3d(z, w)

d(T2(x, y, z), T2(u, v, w)) ≤ k4d(x, u) + k5d(y, v) + k6d(z, w)

d(T3(x, y, z), T3(u, v, w)) ≤ k7d(x, u) + k8d(y, v) + k9d(z, w)

(10)

for all (x, y, z), (u, v, w) ∈ X ×X ×X. We suppose that

A =

 k1 k2 k3

k4 k5 k6

k7 k8 k9


converges to zero. Then,

(i) there exists a unique element (x∗, y∗, z∗) ∈ X ×X ×X such that

x∗ = T1(x
∗, y∗, z∗)

y∗ = T2(x
∗, y∗, z∗)

z∗ = T3(x
∗, y∗, z∗)

(11)

(ii) the sequence (Tn
1 (x, y, z), Tn

2 (x, y, z), Tn
3 (x, y, z)), n ∈ N converges to

(x∗, y∗, z∗) as n→∞, where

Tn+1
1 (x, y, z) = Tn

1 (T1(x, y, z), T2(x, y, z), T3(x, y, z))

Tn+1
2 (x, y, z) = Tn

2 (T1(x, y, z), T2(x, y, z), T3(x, y, z))

Tn+1
3 (x, y, z) = Tn

3 (T1(x, y, z), T2(x, y, z), T3(x, y, z))

(12)

for all n ∈ N ,
(iii) we have the following estimation: d(Tn

1 (x0, y0, z0), x
∗)

d(Tn
2 (x0, y0, z0), y

∗)

d(Tn
3 (x0, y0, z0), z

∗)

 ≤ An(I −A)−1

d(x0, T1(x0, y0, z0))

d(y0, T2(x0, y0, z0))

d(z0, T3(x0, y0, z0))

(13)

(iv) let F1, F2, F3 : X ×X ×X → X be three operators such that, there
exist ε1, ε2, ε3 > 0 with

d(T1(x, y, z), F1(x, y, z)) ≤ ε1

d(T2(x, y, z), F2(x, y, z)) ≤ ε2

d(T3(x, y, z), F3(x, y, z)) ≤ ε3



Ulam-Hyers stability theorem by tripled . . . 83

for all (x, y, z) ∈ X ×X ×X. If (a∗, b∗, c∗)inX ×X ×X is such that

a∗ = F1(a
∗, b∗, c∗)

b∗ = F2(a
∗, b∗, c∗)

c∗ = F3(a
∗, b∗, c∗)

(14)

then  d(a∗, x∗)

d(b∗, y∗)

d(c∗, z∗)

 ≤ (I −A)−1ε(15)

where

ε =

 ε1

ε2

ε3


(v) let F1, F2, F3 : X × X × X → X be three operators such that, there
exist ε1, ε2, ε3 > 0 with

d(T1(x, y, z), F1(x, y, z)) ≤ ε1

d(T2(x, y, z), F2(x, y, z))≤ ε2

d(T3(x, y, z), F3(x, y, z))≤ ε3

(16)

for all (x, y, z) ∈ X ×X ×X. If we consider the sequence

(Fn
1 (x, y, z), Fn

2 (x, y, z), Fn
3 (x, y, z)), n ∈ N,

given by

Fn+1
1 (x, y, z) = Fn

1 (F1(x, y, z), F2(x, y, z), F3(x, y, z))

Fn+1
2 (x, y, z) = Fn

2 (F1(x, y, z), F2(x, y, z), F3(x, y, z))

Fn+1
3 (x, y, z) = Fn

3 (F1(x, y, z), F2(x, y, z), F3(x, y, z))

(17)

for all n ∈ N and

ε =

 ε1

ε2

ε3

 ,

thend(Fn
1 (x0, y0, z0), x

∗)

d(Fn
2 (x0, y0, z0), y

∗)

d(Fn
3 (x0, y0, z0), z

∗)

 ≤ An(I −A)−1

d(x0, F1(x0, y0, z0))

d(y0, F2(x0, y0, z0))

d(z0, F3(x0, y0, z0))
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(vi) the system of operatorial equations

x = T1(x, y, z)

y = T2(x, y, z)

z = T3(x, y, z)

(18)

is Ulam-Hyers stable.

Proof. For (i)-(ii) let us define T : X ×X ×X → X ×X ×X by

T (x, y, z) =

T1(x, y, z)T2(x, y, z)

T3(x, y, z)

 = (T1(x, y, z), T2(x, y, z), T3(x, y, z)).

Denote Z = X ×X ×X and consider d̃ : Z × Z → R3
+,

d̃((x, y, z), (u, v, w)) =

 d(x, u)

d(y, v)

d(z, w)

 .

Then we have

d̃(T (x, y, z), T (u, v, w)) = d̃


T1(x, y, z)

T2(x, y, z)

T3(x, y, z)

 ,

T1(u, v, w)

T2(u, v, w)

T3(u, v, w)


(19)

=

 d(T1(x, y, z), T1(u, v, w))

d(T2(x, y, z), T2(u, v, w))

d(T3(x, y, z), T3(u, v, w))


≤

 k1d(x, u) + k2d(y, v) + k3d(z, w)

k4d(x, u) + k5d(y, v) + k6d(z, w)

k7d(x, u) + k8d(y, v) + k9d(z, w)


=

 k1 k2 k3

k4 k5 k6

k7 k8 k9


 d(x, u)

d(y, v)

d(z, w)


= Ad̃((x, y, z), (u, v, w)).

If we denote (x, y, z) = α, (u, v, w) = β, we get that

d̃(T (α), T (β)) ≤ Ad̃(α, β).
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Applying Perov’s fixed point Theorem 1 (i), we get that there exists a unique
element (x∗, y∗, z∗) ∈ X ×X ×X such that

(x∗, y∗, z∗) = T (x∗, y∗, z∗)

and is equivalent with
x∗ = T1(x

∗, y∗, z∗)

y∗ = T2(x
∗, y∗, z∗)

z∗ = T3(x
∗, y∗, z∗)

 .

Moreover, for each α ∈ X × X × X, we have that T (α) → α∗ as n → ∞,
where

T 0(α) = α, T 1(α) = T (x, y, z) = (T1(x, y, z), T2(x, y, z), T3(x, y, z))

T 2(α) = T (T1(x, y, z), T2(x, y, z), T3(x, y, z))

= (T 2
1 (x, y, z), T 2

2 (x, y, z), T 2
3 (x, y, z))

and generally

Tn+1
1 (α)= Tn

1 (T1(x, y, z), T2(x, y, z), T3(x, y, z))

Tn+1
2 (α)= Tn

2 (T 2
1 (x, y, z), T 2

2 (x, y, z), T 2
3 (x, y, z))

Tn+1
3 (α)= Tn

3 (T 2
1 (x, y, z), T 2

2 (x, y, z), T 2
3 (x, y, z))

 .(20)

We obtain that T (α) = (T1(α), T2(α), T3(α))→ α∗ = (x∗, y∗, z∗) as n→∞,
for all α = (x, y, z) ∈ X ×X ×X. So, for all (x, y, z) ∈ X ×X ×X, we have
that

T1(x, y, z)→ x∗ as n→∞
T2(x, y, z)→ y∗ as n→∞
T3(x, y, z)→ z∗ as n→∞

 .(21)

(iii) By Perov’s theorem (iii) we successively have d(Tn
1 (x0, y0, z0), x

∗)

d(Tn
2 (x0, y0, z0), y

∗)

d(Tn
3 (x0, y0, z0), z

∗)

 = d̃((Tn(x0, y0, z0)), (x
∗, y∗, z∗))

≤ An(I −A)−1d̃((x0, y0, z0), (T1(x0, y0, z0), T2(x0, y0, z0), T3(x0, y0, z0)))

≤ An(I −A)−1

 d(x0, T1(x0, y0, z0))

d(y0, T2(x0, y0, z0))

d(z0, T3(x0, y0, z0))

 .
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(iv) If we consider F : X ×X ×X → X ×X ×X such that

F (x, y, z) =

F1(x, y, z)

F2(x, y, z)

F3(x, y, z)

(22)

and

d̃(T (x, y, z), F (x, y, z)) = d̃


T1(x, y, z)

T2(x, y, z)

T3(x, y, z)

 ,

F1(x, y, z)

F2(x, y, z)

F3(x, y, z)


(23)

=

 d(T1(x, y, z), F1(x, y, z))

d(T2(x, y, z), F2(x, y, z))

d(T3(x, y, z), F3(x, y, z))

 ≤ ε
then, applying Perov‘s fixed point theorem 2 (iv) we get

d̃((x∗, y∗, z∗), (a∗, b∗, c∗)) ≤ (I −A)−1ε.(24)

(v) By (23) we get that

d̃(T (x, y, z), F ((x, y, z)) ≤ ε.

Notice that Fn(x, y, z) = F (Fn−1(x, y, z)), for all (x, y, z) ∈ X ×X ×X.
Using the assertion (iii) of this theorem, we can successively write:

d̃(Fn(x0, y0, z0), (x
∗, y∗, z∗)) ≤ d̃(Fn(x0, y0, z0), T

n(x0, y0, z0))

+ d̃(Tn(x0, y0, z0), (x
∗, y∗, z∗))

≤ d̃(Fn(x0, y0, z0), T
n(x0, y0, z0))

+ An(I −A)−1d̃(T (x0, y0, z0), (x0, y0, z0)).

On the other hand, we have

d̃(Fn(x0, y0, z0), T
n(x0, y0, z0))(25)

= d̃(F (Fn−1(x0, y0, z0), T (Tn−1(x0, y0, z0))

≤ d̃(F (Fn−1(x0, y0, z0), T (Fn−1(x0, y0, z0))

+ d̃(T (Fn−1(x0, y0, z0), T (Tn−1(x0, y0, z0))

≤ ε+Ad̃((Fn−1(x0, y0, z0), T
n−1(x0, y0, z0))

≤ ε+A[ε+A.d̃((Fn−2(x0, y0, z0), T
n−2(x0, y0, z0))]

≤ · · · ≤ εε(I +A+A2 + · · ·+An + . . . )

= ε(I −A)−1.
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Thus, we finally get the conclusion

d̃(Fn(x0, y0, z0), (x
∗, y∗, z∗)) ≤ ε(I −A)−1

+ An(I −A)−1d̃(T (x0, y0, z0), (x0, y0, z0)).

(vi) By (i) and (ii) there exists a unique element (x∗, y∗, z∗) ∈ X×X×X
such that (x∗, y∗, z∗) is a solution for (18) and the sequence

(Tn
1 (x, y, z), Tn

2 (x, y, z), Tn
3 (x, y, z))→ (x∗, y∗, z∗) as n→∞.

Let ε1, ε2, ε3 > 0 and (u∗, v∗, w∗) ∈ X ×X ×X such that

d(u∗, T1(u
∗, v∗, w∗)) ≤ ε1

d(v∗, T2(u
∗, v∗, w∗)) ≤ ε2

d(w∗, T3(u
∗, v∗, w∗)) ≤ ε3

 .(26)

Then we have

d̃((u∗, v∗, w∗), (x∗, y∗, z∗))

≤ d̃((u∗, v∗, w∗), (T1(u
∗, v∗, w∗), T2(u

∗, v∗, w∗), T3(u
∗, v∗, w∗)))

+ d̃((T1(u
∗, v∗, w∗), T2(u

∗, v∗, w∗), T3(u
∗, v∗, w∗)), (x∗, y∗, z∗))

= d̃((u∗, v∗, w∗), (T1(u
∗, v∗, w∗), T2(u

∗, v∗, w∗), T3(u
∗, v∗, w∗)))

+ d̃


T1(u

∗, v∗, w∗),

T2(u
∗, v∗, w∗),

T3(u
∗, v∗, w∗)

 ,

T1(x
∗, y∗, z∗),

T2(x
∗, y∗, z∗),

T3(x
∗, y∗, z∗)




=

 d(u∗, T1(u
∗, v∗, w∗))

d(v∗, T2(u
∗, v∗, w∗))

d(w∗, T3(u
∗, v∗, w∗))

 +

 d(T1(u
∗, v∗, w∗), T1(x

∗, y∗, z∗))

d(T2(u
∗, v∗, w∗), T2(x

∗, y∗, z∗))

d(T3(u
∗, v∗, w∗), T3(x

∗, y∗, z∗))


≤

 ε1

ε2

ε3

 + d̃(T (u∗, v∗, w∗), T (x∗, y∗, z∗))

≤ ε+Ad̃((u∗, v∗, w∗), (x∗, y∗, z∗)).

Since (I − A) is invertible and (I − A)−1 has positive elements, we im-
mediately obtain

d̃((u∗, v∗, w∗), (x∗, y∗, z∗)) ≤ (I −A)−1ε

or equivalently  d(u∗, x∗)

d(y∗, v∗)

d(z∗, w∗)

 ≤ (I −A)−1ε.



88 Animesh Gupta

If we denote

(I −A)−1 =

 c1 c2 c3

c4 c5 c6

c7 c8 c9

 ,

then we obtain

d(u∗, x∗) ≤ c1ε1 + c2ε2 + c3ε3

d(y∗, v∗) ≤ c4ε1 + c5ε2 + c6ε3

d(z∗, w∗) ≤ c7ε1 + c8ε2 + c9ε3

(27)

proving that the operatorial system (18) is Ulam-Hyers stable. �

Remark 1. Notice that, if (X, d) is a metric space and T : X×X×X →
X is an operator and we define

T1(x, y, z) = T (x, y, z), T2(x, y, z) = T (y, x, y) and T3(x, y, z) = T (z, y, x)

then the above approach leads to some well-known tripled fixed point theo-
rems, see [5] . Moreover, in a forthcoming paper, the same approach will be
applied for the case of tripled fixed points for mixed monotone operators,
see, for example, [11], [20], [28].

We will consider now the case of multi-valued operators. We need first
some notations. Let (X, d) be a generalized metric space with d : X ×X →
Rm
+ given by

d(x, y) =


d1(x, y)

...

dm(x, y)

 .

Then, for x ∈ X and A ⊆ X we denote:

Dd(x,A) =


Dd1(x,A)

...

Ddm(x,A)

 =


inf
a∈A

d1(x, a)

...

inf
a∈A

dm(x, a)

 .

P (X) = {Y ⊆ X|Y is nonempty}

Pcl(X) = {Y ⊆ P (X)|Y closed}.

We also denote

D((x, y, z), A×B × C) =

Dd(x,A)

Dd(y,B)

Dd(z, C)

 .
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Our second main result is an existence, uniqueness, data dependence
and Ulam-Hyers stability theorem for the tripled fixed point of a triple of
multi-valued operators (T1, T2, T3). For the proof of our main result, we give
the following theorem.

Theorem 5. Let (X, d) be a complete generalized metric space and let
T : X → Pcl(X) be a multi-valued A−contraction, i.e. there exists A ∈
Mmm(R+) which converges towards zero as n → ∞ and for each x, y ∈ X
and each u ∈ T (x) there exists v ∈ T (y) such that d(u, v) ≤ Ad(x, y). Then
T is a MWP−operator, i.e. Fix(T ) 6= φ, and for each (x, y) ∈ Graph(T )
there exists a sequence (xn)n∈N of succesive approximations for T starting
from (x, y) which converges to a fixed point x∗ of T . Moreover d(x, x∗) ≤
(I −A)−1d(x, y), for all (x, y) ∈ Graph(T ).

Proof. Let x0 ∈ X and x1 ∈ T (x0). Then by the A−contraction con-
dition, there exists x2 ∈ T (x1) such that d(x1, x2) ≤ Ad(x0, x1). Now, for
x2 ∈ T (x1) there exists x3 ∈ T (x2) such that

d(x2, x3) ≤ Ad(x1, x2) ≤ A2d(x0, x1).

In this way, by an iterative construction, we get a sequence (xn)n∈N such
that

x0 ∈ X
xn+1 ∈ T (xn)

d(xn, xn+1) ≤ And(x0, x1)

 .

for all n ∈ N .
Thus, by the above relation, we get

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xp−1, xn+p)

≤ Ad(x0, x1) +A2d(x0, x1) + · · ·+Ap−1d(x0, x1)

= A(I +A+ · · ·+An+p−1)d(x0, x1)

Letting n → ∞ we get that the sequence (xn)n∈N is Cauchy. Hence there
exists x∗ ∈ X such that x∗ = limn→∞ xn.

We prove that x∗ ∈ T (x∗). Indeed, for xn ∈ T (xn−1) there exists un ∈
T (x∗) such that

d(xn, un) ≤ Ad(xn−1, x
∗),

for all n ∈ N .
On the other side

d(x∗, un) ≤ d(x∗, xn)+d(xn, un) ≤ d(x∗, xn)+Ad(xn−1, x
∗)→ 0, as n→∞.

Hence limn→∞ un = x∗. But un ∈ T (x∗), for n ∈ N and because T (x∗)
is closed, we have that x∗ ∈ T (x∗).
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Moreover we can write

d(xn, xn+p) ≤ A(I +A+ · · ·+Ap−1 + . . . )d(x0, x1) = A(I −A)−1d(x0, x1).

Letting p→∞ we get that

d(xn, x
∗) ≤ A(I −A)−1d(x0, x1).

for all n ≥ 1. Thus

d(x0, x
∗) ≤ d(x0, x1) + d(x1, x

∗) ≤ d(x0, x1) +A(I −A)−1d(x0, x1)

= (I +A(I −A)−1)d(x0, x1) = (I +A+A2 + . . . )d(x0, x1)

= (I −A)−1d(x0, x1).

�

Definition 3. Let (X, d) generalized metric space and F : X → P (X).
The fixed point inclusion

x ∈ F (x), x ∈ X(28)

is called generalized Ulam-Hyers stable if and only if there exists ψ : Rm
+ →

Rm
+ increasing, continuous at 0 with ψ(0) = 0 such that for each ε =

(ε1, . . . , εm) > 0 and for each ε−solution y∗ of (28), i.e.

Dd(y∗, F (y∗)) ≤ ε

there exists a solution x∗ of the fixed point inclusion (28) such that

d(y∗, x∗) ≤ ψ(ε).

In particular, if ψ(t) = Ct, for each t ∈ Rm
+ (where C ∈Mmm(R+)), then

(28) is said to be Ulam-Hyers stable.

Definition 4. A subset U of a generalized metric space (X, d) is called
proximinal if for each x ∈ X there exists u ∈ U such that d(x, u) = Dd(x, U).

Theorem 6. Let (X, d) be a complete generalized metric space and let
T : X → Pcl(X) be a multi-valued A−contraction with proximinal values.
Then, the fixed point inclusion (28) is Ulam-Hyers stable.

Proof. Let ε = (ε1, . . . , εm) with ε1 > 0, for each i ∈ 1, 2, . . . ,m and let
y∗ ∈ X an ε−solution of (28), i.e.,

Dd(y∗, T (y∗)) ≤ ε.
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By the second conclusion of Theorem 5 we have that for any (x, y) ∈
Graph(T )

d(x, x∗(x, y)) ≤ (I −A)−1d(x, y),(29)

where x∗(x, y) denotes the fixed point of T which is obtained by Theorem 5
by successive approximations starting from (x, y).

Since T (y∗) is proximinal there exists u ∈ T (y∗) such that

d(y∗, u∗) = Dd(y, T (y∗)).

Hence, by 29

d(y∗, x∗(y∗, u∗)) ≤ (I −A)−1d(y∗, u∗) ≤ (I −A)−1ε.

�

Theorem 7. Let (X, d) be a complete generalized metric space and let
T : X → Pcl(X) be a multi-valued A−contraction such that there exists x∗ ∈
X with T (x∗) = {x∗}. Then the fixed point inclusion (28) is Ulam-Hyers
stable.

Proof. Let ε = (ε1, . . . , εm) with εi > 0, for each i ∈ 1, 2, . . . ,m and let
y∗ ∈ X an ε−solution of (28), i.e.,

Dd(y∗, T (y∗)) ≤ ε.

By the A−contraction condition, for x = y∗, y = x∗ and u ∈ T (y∗) we get
that

d(u∗, x∗) ≤ Ad(y∗, x∗).

Then, for any u ∈ T (y∗) we have

d(y∗, x∗) ≤ d(y∗, u∗) + d(u∗, x∗) ≤ d(y∗, u) +A.d(y∗, x∗).

Hence
d(y∗, x∗) ≤ (I −A)−1d(y∗, u),

for any u ∈ T (y∗). Thus

d(y∗, x∗) ≤ (I −A)−1Dd(y∗, T (y∗)) ≤ (I −A)−1ε.

�

Let (X, d) be a metric space. We will focus our attention to the following
system of operatorial inclusions:

x ∈ T1(x, y, z)
y ∈ T2(x, y, z)
z ∈ T3(x, y, z)

(30)
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where T1, T2, T3 : X×X×X → P (X) are three given multi-valued operators.
By definition, a solution (x, y, z) ∈ X ×X ×X of the above system is called
a tripled fixed point for (T1, T2, T3).

Definition 5. Let (X, d) be a metric space and let T1, T2, T3 : X ×X ×
X → P (X) be three multi-valued operators. Then the operatorial inclusions
system (30) is said to be Ulam-Hyers stable if there exist c1, c2, c3, c4, c5, c6,
c7, c8, c9 > 0 such that for each ε1, ε2, ε3 > 0 and for each triple (u∗, v∗, w∗) ∈
X ×X ×X which satisfies the relations

d(u∗, α) ≤ ε1 for all α ∈ T1(u∗, v∗, w∗)
d(v∗, β) ≤ ε2 for all β ∈ T2(u∗, v∗, w∗)
d(w∗, γ) ≤ ε3 for all γ ∈ T3(u∗, v∗, w∗)

(31)

there exists a solution (x∗, y∗, z∗) ∈ X ×X ×X of (30) such that

d(u∗, x∗) ≤ c1ε1 + c2ε2 + c3ε3

d(v∗, y∗) ≤ c4ε3 + c5ε4 + c6ε3

d(w∗, z∗) ≤ c7ε3 + c8ε4 + c9ε3

(32)

Definition 6. Let (X, d) be a metric space. By definition, we say that
S : X × X × X → P (X) has proximinal values with respect to the first
variable if for any x, y, z ∈ X there exists u ∈ S(x, y, z) such that

d(x, u) = Dd(x, S(x, y, z)).

Definition 7. Let (X, d) be a metric space. By definition we say that
S : X × X × X → P (X) has proximinal values with respect to the second
variable if for any x, y, z ∈ X there exists v ∈ S(x, y, z) such that

d(y, v) = Dd(y, S(x, y, z)).

Definition 8. Let (X, d) be a metric space. By definition we say that
S : X × X × X → P (X) has proximinal values with respect to the third
variable if for any x, y, z ∈ X there exists w ∈ S(x, y, z) such that

d(z, w) = Dd(z, S(x, y, z)).

Now we are in the position to give our next main results.

Theorem 8. Let (X, d) be a complete metric space and let T1, T2, T3 :
X × X × X → Pcl(X) be three multi-valued operators. Suppose that T1
has proximinal values with respect to the first variable, T2 with respect to
the second variable and T3 with respect to the third variable. For each
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(x, y, z), (u, v, w) ∈ X ×X ×X and each α1 ∈ T1(x, y, z), α2 ∈ T2(x, y, z),
α3 ∈ T3(x, y, z) there exist β1 ∈ T1(u, v, w), β2 ∈ T2(u, v, w), β3 ∈ T3(u, v, w)
satisfying

d(α1, β1) ≤ k1d(x, u) + k2d(y, v) + k3d(z, w)

d(α2, β2) ≤ k4d(x, u) + k5d(y, v) + k6d(z, w)

d(α3, β3) ≤ k7d(x, u) + k8d(y, v) + k9d(z, w)


We suppose that

A =

 k1 k2 k3

k4 k5 k6

k7 k8 k9


converges to zero. Then,

(i) there exists (x∗, y∗, z∗) ∈ X ×X ×X a solution for (30).
(ii) the system of operatorial inclusions (30) is Ulam-Hyers stable.

Proof. (i)-(ii) Let us define T : X×X×X → Pcl(X)×Pcl(X)×Pcl(X)
by

T (x, y, z) = T1(x, y, z)× T2(x, y, z)× T3(x, y, z).

Denote Γ = X ×X ×X and consider d̃ : Γ× Γ→ R3
+,

d̃((x, y, z), (u, v, w)) =

 d(x, u)

d(y, v)

d(z, w)

 .

Then, from the hypotheses of the theorem, we get that for each s =
(x, y, z), t = (u, v, w) ∈ X ×X ×X and each α = (α1, α2, α3) ∈ T (x, y, z),
there exists β = (β1, β2, β3) ∈ T (u, v, w) satisfying the relation

d̃(α, β) ≤ Ad̃(s, t),

which proves that T is a multi-valued A−contraction. Since T1(x, y, z) ⊂ X
is proximinal with respect to the first variable we have that, for any x, y, z ∈
X there exists u ∈ T1(x, y, z) such that

d(x, u) = Dd(x, T1(x, y, z)).

Since T2(x, y, z) ⊂ X is proximinal with respect to the second variable we
get that, for any x, y, z ∈ X there exists v ∈ T2(x, y, z) such that

d(y, v) = Dd(y, T2(x, y, z)).
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Since T3(x, y, z) ⊂ X is proximinal with respect to the third variable we get
that, for any x, y, z ∈ X there exists w ∈ T3(x, y, z) such that

d(z, w) = Dd(z, T3(x, y, z)).

Then the set T (x, y, z) = T1(x, y, z)× T2(x, y, z)× T3(x, y, z) is proximinal,
since for any x, y, z ∈ X there exists (u, v, w) ∈ T (x, y, z) such that

d̃((x, y, z), (u, v, w)) = Dd̃((x, y, z), T (x, y, z)).

The conclusions follow now from Theorem 5 and Theorem 6. �

Theorem 9. Let (X, d) be a complete metric space and let T1, T2, T3 :
X ×X ×X → Pcl(X) be three multi-valued operators. Suppose there exist
x1, x2, x3 ∈ X such that

(33) T1(x
∗, y∗, z∗) = {x∗}, T2(x

∗, y∗, z∗) = {y∗}, T3(x
∗, y∗, z∗) = {z∗}.

For each (x, y, z), (u, v, w) ∈ X × X × X and each α1 ∈ T1(x, y, z), α2 ∈
T2(x, y, z), α3 ∈ T3(x, y, z) there exist β1 ∈ T1(u, v, w), β2 ∈ T2(u, v, w),
β3 ∈ T3(u, v, w) satisfying

d(α1, β1) ≤ k1d(x, u) + k2d(y, v) + k3d(z, w)

d(α2, β2) ≤ k4d(x, u) + k5d(y, v) + k6d(z, w)

d(α3, β3) ≤ k7d(x, u) + k8d(y, v) + k9d(z, w)

 .

We suppose that

A =

 k1 k2 k3

k4 k5 k6

k7 k8 k9

 .

converges to zero. Then:
(i) there exists (x∗, y∗, z∗) ∈ X ×X ×X a solution for (30).
(ii) the operatorial system (30) is Ulam-Hyers stable.

Proof. For the prove of (i)-(ii) let us define T : X ×X ×X → Pcl(X)×
Pcl(X)× Pcl(X) by

T (x, y, z) = T1(x, y, z)× T2(x, y, z)× T3(x, y, z).

Then from the hypotheses of the theorem we get that

T (x∗, y∗, z∗) = T1(x
∗, y∗, z∗)× T2(x∗, y∗, z∗)× T3(x∗, y∗, z∗) = (x∗, y∗, z∗).
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So, T has at least one strict fixed point. We denote Γ = X × X × X and
consider d̃ : Γ× Γ→ R3

+

d̃((x, y, z), (u, v, w)) =

 d(x, u)

d(y, v)

d(z, w)

 .

Then from the hypotheses of the theorem, we have that for each s = (x, y, z),
t = (u, v, w) ∈ X×X×X and each α = (α1, α2, α3) ∈ T (x, y, z), there exists
β = (β1, β2, β3) ∈ T (u, v, w) satisfying the relation

d̃(α, β) ≤ Ad̃(s, t),

which proves that T is a multi-valued A−contraction. The conclusions follow
now from Theorem 5 and Theorem 6. �

Remark 2. Notice again that, if (X, d) is a metric space and T : X ×
X ×X → P (X) is a multi-valued operator and we define

T1(x, y, z) = T (x, y, z), T2(x, y, z) = T (y, x, y), and T3(x, y, z) = T (z, y, x)

then the above approach leads to some tripled fixed point theorems in the
classical sense.
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[24] Petruşel A., Multi-valued weakly picard operators and applications, Sci.
Math. Japon., 59(2004), 169-202.

[25] Precup R., The role of matrices that are convergent to zero in the study of
semilinear operator systems, Math. Comput. Modell, 49(2009), 703-708.



Ulam-Hyers stability theorem by tripled . . . 97

[26] Rus I.A., Principles and applications of the fixed point theory, Dacia, Cluj-
Napoca, 1979.

[27] Rus M.D., Remarks on Ulam stability of the operatorial equations, Fixed
Point Theory, 10(2)(2009), 305-320.

[28] Rus M.D., The method of monotone iterations for mixed monotone operators,
Ph. D. Thesis, Universitatea Babeş-Bolyai, Cluj-Napoca, 2010.
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