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1. Introduction and preliminaries

Levine [12] defined semiopen sets which are weaker than open sets in topo-
logical spaces. After Levine’s semiopen sets, mathematicians gave in several
papers different and interesting new open sets as well as generalized open
sets. In 1968, Velic̆ko [24] introduced δ-open sets, which are stronger than
open sets, in order to investigate the characterization of H-closed spaces.
In 1997, Park et al. [19] have introduced the notion of δ-semiopen sets
which are stronger than semiopen sets but weaker than δ-open sets and
investigated the relationships between several types of open sets. In 1979,
Popa [20] introduced the useful notion of rare continuity as a generalization
of weak continuity [11]. The class of rarely continuous functions has been
further investigated by Long and Herrington [13] and Jafari [7] and [8]. The
concept of rare δs-continuity in topological spaces as a generalization of
super continuity is introduced by Caldas et al. [3].

The notion of weakly δs-continuous functions is introduced by Ekici in [6].
The purpose of the present paper is to further investigate some more prop-
erties of weakly δs-continuous functions. This type of functions is weaker
than both super continuous functions and δ-semi-continuous functions and
stronger than rare δs-continuous functions.

Throughout this paper, (X, τ) and (Y, σ) (or simply, X and Y ) denote
topological spaces on which no separation axioms are assumed unless explic-
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itly stated. If A is any subset of a space X, then Cl(A) and Int(A) denote
the closure and the interior of A, respectively.

A subset A of X is called regular open (resp. regular closed) if A =
Int(Cl(A)) (resp. A = Cl(Int(A))). Recall that a subset A of X is called
semi-open [12] if A ⊂ Cl(Int(A)). The complement of a semi-open sets is
called semi-closed. A subset A of X is called preopen [15] if A ⊂ Int(Cl(A)).
A rare or codense set is a set A such that Int(A) = ∅, equivalently, if the
complement X \ A is dense. A point x ∈ X is called a δ-cluster [24] of A if
S ∩U 6= ∅ for each regular open set U containing x. The set of all δ-cluster
points of A is called the δ-closure of A and is denoted by Clδ(A) . A subset
A is called δ-closed if Clδ(A) = A. The complement of a δ-closed set is
called δ-open. The δ-interior of a subset A of a space (X, τ), denoted by
Intδ(A), is the union of all regular open sets of (X, τ) contained in A.

A subset A of a topological space X is said to be δ-semiopen sets [19]
if there exists a δ-open set U of X such that U ⊂ A ⊂ Cl(U), equiva-
lently if A ⊂ Cl(Intδ(A)). The complement of a δ-semiopen set is called
a δ-semiclosed set. A point x ∈ X is called the δ-semicluster point of
A if A ∩ U 6= ∅ for every δ-semiopen set U of X containing x. The set
of all δ-semicluster points of A is called the δ-semiclosure of A, denoted
by sClδ(A) and the δ-semiinterior of A, denoted by sIntδ(A), is defined
as the union of all δ-semiopen sets contained in A. We denote the col-
lection of all δ-semiopen (resp. δ-semiclosed, δ-open, regular open and
open) sets by δSO(X) (resp. δSC(X), δO(X), RO(X) and O(X)). We set
δSO(X,x) = {U | x ∈ U ∈ δSO(X)}, δO(X,x) = {U | x ∈ U ∈ δO(X)},
RO(X,x) = {U | x ∈ U ∈ RO(X)} and O(X,x) = {U | x ∈ U ∈ O(X)}.

Lemma 1. The intersection (resp. union) of an arbitrary collection
of δ-semiclosed (resp. δ-semiopen) sets in (X, τ) is δ-semiclosed (resp.
δ-semiopen)

Corollary 1. Let A be a subset of a topological space (X, τ). Then the
following properties hold:

(1) sClδ(A) = ∩{F ∈ δSC(X, τ) : A ⊂ F}.
(2) sClδ(A) is δ-semiclosed.
(3) sClδ(sClδ(A)) = sClδ(A).

Lemma 2 ([1]). For subsets A and Ai (i ∈ I) of a space (X, τ), the
following hold:

(1) A ⊂ sClδ(A).
(2) If A ⊂ B, then sClδ(A) ⊂ sClδ(B).
(3) sClδ(∩{Ai : i ∈ I}) ⊂ ∩{sClδ(Ai) : i ∈ I}.
(4) sClδ(∪{Ai : i ∈ I}) = ∪{sClδ(Ai) : i ∈ I}.
(5) A is δ-semiclosed if and only A = sClδ(A).
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Lemma 3 ([19]). For a subset A of a space (X, τ), the following hold:
(1) A is a δ-semiopen set if and only if A = sIntδ(A).
(2) X − sIntδ(A) = sClδ(X −A) and sIntδ(X −A) = X − sClδ(A).
(3) sIntδ(A)) is a δ-semiopen set.

Definition 1. A function f : X → Y is said to be:
(1) Weakly continuous [11] if for each x ∈ X and each open set V con-

taining f(x), there exists U ∈ O(X,x) such that f(U) ⊂ Cl(V ).
(2) δ-semi-continuous [18] if for each x ∈ X and each open set V con-

taining f(x), there exists U ∈ δSO(X,x) such that f(U) ⊂ V .
(3) Rarely quasi continuous [21] (resp. rarely δs-continuous [3]) if for

each x ∈ X and each V ∈ O(Y, f(x)), there exist a rare set RV with V ∩
Cl(RV ) = ∅ and U ∈ SO(X,x) (resp. U ∈ δSO(X,x)) such that f(U) ⊂
V ∪RV .

(4) Super-continuous [16] if the inverse image of every open set in Y is
δ-open in X.

(5) semi-continuous [12] if for each x ∈ X and each open set V in Y
containing f(x), there exists U ∈ SO(X,x) such that f(U) ⊂ V .

Definition 2. A function f : X → Y is said to be:
(1) Weakly quasicontinuous [22] if for each x ∈ X and for each open set U

containing x and each open set G containing f(x), there exists a nonempty
open set V such that V ⊂ U and f(V ) ⊂ Cl(G).

(2) Weakly-θ-continuous [5] if for each x ∈ X and each open set V of
Y containing f(x), there exists an open set U of X containing x such that
f(Int(Cl(U))) ⊂ Cl(V ).

Definition 3. A function f : X → Y is said to be I. δs-continuous [3]
at x ∈ X if for each set V ∈ O(Y, f(x)), there exists U ∈ δSO(X,x) such
that Int[f(U)] ⊂ V . If f has this property at each point x ∈ X, then we say
that f is I. δs-continuous on X.

Remark 1 ([3]). It should be noted that super-continuity implies I.
δs-continuity and I. δs-continuity implies rare δs-continuity. But the con-
verses are not true as shown by the following examples.

Example 1 ([3]). Let X = Y = {a, b, c} and τ = σ = {X, ∅, {a}}. Then
a function f : (X, τ) → (Y, σ) defined by f(a) = f(b) = a and f(c) = c, is
I. δs-continuous. Since f is not continuous, then it is not super continuous.

Example 2 ([3]). Let (Y, σ) be the same spaces as in the above Example.
Then the identity function f : (X, τ) → (Y, σ) is rare δs-continuous but it
is not I. δs-continuous.
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Remark 2. The following diagram [[18], Remark 4.1] holds:

super − continuity → continuity
↓ ↓
δ − semi− continuity → semi− continuity

2. Weakly-δs-continuous and some properties

In [3], unaware of the paper of Ekici [6], the notion of weakly-δs-continuous
under the name of almost weakly-δs-continuous was defined. In this paper,
we used the name weakly-δs-continuous functions.

Definition 4. A function f : X → Y is called weakly-δs-continuous
[6] if for each x ∈ X and each open set V containing f(x), there exists
U ∈ δSO(X,x) such that f(U) ⊂ Cl(V ).

The following diagram holds:

super C. → weak θ − C. → weak C.
↓ ↓ ↓
δ − semi− C. → weak δs− C. → weak quasi C.
↓ ↓ ↓
I. δs− C. → rare δs− C. → rare quasi C.

It should be mentioned that in the above diagram C. means continuity.

Example 3. Let X = {a, b, c}, τ = {X, {a}, {b}, {a, b}, ∅} and σ =
{X, {a}, {b, c}, ∅}. Then the identity function f : (X, τ)→ (Y, σ) is δ-semi-
continuous but it is not weakly continuous.

Example 4. Let X, τ and σ be the same as in Example 3. Let f :
(X, τ) → (Y, σ) be defined as f(a) = b, f(b) = c and f(c) = a. Then f is
I. δs-continuous and not weakly quasicontinuous.

Example 5. Let X = {a, b, c} and τ = σ = {X, {a}, ∅}. Then the iden-
tity function f : (X, τ)→ (Y, σ) is continuous and hence weakly θ-continuous.
But it is not I. δs-continuous.

Example 6. Let X = {a, b, c}, τ = {X, {a}, ∅} and σ = {X, {a}, {c},
{a, c}, ∅}. Define a function f : (X, τ) → (Y, σ) as follows: f(a) = b,
f(b) = a and f(c) = c. Then f is weakly quasicontinuous(= weakly
semi-continuous) [[9], Example 2] but it is not rarely δs-continuous.
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Theorem 1. For a function f : X → Y , the following are equivalent:
(1) f is weakly δs-continuous,
(2) sClδ(f

−1(Int(Cl(V )))) ⊂ f−1(Cl(V )) for every subset V ⊂ Y ,
(3) sClδ(f

−1(Int(F ))) ⊂ f−1(F ) for every regular closed subset F ⊂ Y ,
(4) sClδ(f

−1(U)) ⊂ f−1(Cl(U)) for every open subset U ⊂ Y ,
(5) f−1(U) ⊂ sIntδ(f−1(Cl(U))) for every open subset U ⊂ Y ,
(6) sClδ(f

−1(U)) ⊂ f−1(Cl(U)) for each preopen subset U ⊂ Y ,
(7) f−1(U) ⊂ sIntδ(f−1(Cl(U))) for each preopen subset U ⊂ Y .

Proof. (1)⇒ (2) : Let V be a subset of Y and x ∈ X\f−1(Cl(V )). Then
f(x) ∈ Y \Cl(V ). There exists an open set U containing f(x) such that U ∩
V = ∅. We have Cl(U) ∩ Int(Cl(V )) = ∅. Since f is weakly δs-continuous,
then there exists a δ-semiopen set W containing x such that f(W ) ⊂ Cl(U).
Then W ∩f−1(Int(Cl(V ))) = ∅ and x ∈ X\sClδ(f−1(Int(Cl(V )))). Hence,
sClδ(f

−1(Int(Cl(V )))) ⊂ f−1(Cl(V )).
(2) ⇒ (3) : Suppose F is any regular closed set in Y . Then sClδ(f

−1

(Int(F ))) = sClδ(f
−1(Int(Cl(Int(F ))))) ⊂ f−1(Cl(Int(F ))) = f−1(F ).

(3) ⇒ (4) : Suppose U is an open subset of Y . Since Cl(U) is regular
closed in Y , then sClδ(f

−1(U)) ⊂ sClδ(f
−1(Int(Cl(U)))) ⊂ f−1(Cl(U)).

(4)⇒ (5) : Suppose U is any open set of Y . Since Y \Cl(U) is open in Y ,
thenX\sIntδ(f−1(Cl(U))) = sClδ(f

−1(Y \Cl(U))) ⊂ f−1(Cl(Y \Cl(U))) ⊂
X \ f−1(U). Hence, f−1(U) ⊂ sIntδ(f−1(Cl(U))).

(5)⇒ (1) : Suppose x ∈ X and U is any open subset of Y containing f(x).
Then x ∈ f−1(U) ⊂ sIntδ(f

−1(Cl(U))). Take W = sIntδ(f
−1(Cl(U))).

Thus f(W ) ⊂ Cl(U) and hence f is weakly δs-continuous at x in X.
(1) ⇒ (6) : Suppose U is any preopen set of Y and x ∈ X\f−1(Cl(U)).

There exists an open set O containing f(x) such that O ∩ U = ∅. We
have Cl(O ∩ U) = ∅. Since U is preopen, then U ∩ Cl(O) ⊂ Int(Cl(U)) ∩
Cl(O) ⊂ Cl(Int(Cl(U))∩O) ⊂ Cl(Int(Cl(U)∩O)) ⊂ Cl(Int(Cl(U∩O))) ⊂
Cl(U ∩ O) = ∅. Since f is weakly δs-continuous and O is an open set
containing f(x), there exists a δ-semiopen set W in X containing x such
that f(W ) ⊂ Cl(O). Then f(W ) ∩ U = ∅ and W ∩ f−1(U) = ∅. This
implies that x ∈ X\sClδ(f−1(U)) and then sClδ(f

−1(U)) ⊂ f−1(Cl(U)).
(6) ⇒ (7) : Suppose U is any preopen set of Y . Since Y \Cl(U) is open

in Y , then X \ sIntδ(f−1(Cl(U))) = sClδ(f
−1(Y \ Cl(U))) ⊂ f−1(Cl(Y \

Cl(U))) ⊂ X \ f−1(U). This shows that f−1(U) ⊂ sIntδ(f−1(Cl(U))).
(7) ⇒ (1) : Suppose x ∈ X and U is any open set of Y containing f(x).

We have x ∈ f−1(U) ⊂ sIntδ(f
−1(Cl(U))). Take W = sIntδ(f

−1(Cl(U))).
Then f(W ) ⊂ Cl(U). This means that f is weakly δs-continuous at x inX. �

Theorem 2. If f : X → Y is a weakly δs-continuous function and Y is
Hausdorff, then f has δ-semiclosed point inverses.
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Proof. Let y ∈ Y and x ∈ {x ∈ X : f(x) 6= y}. Since f(x) 6= y and
Y is Hausdorff, there exist disjoint open sets G1, G2 such that f(x) ∈ G1

and y ∈ G2. Since G1 ∩ G2 = ∅, then Cl(G1) ∩ G2 = ∅. we have y /∈
Cl(G1). Since f is weakly δs-continuous, there exists a δ-semiopen set U
containing x such that f(U) ⊂ Cl(G1). Assume that U is not contained
in {x ∈ X : f(x) 6= y}. There exists a point u ∈ U such that f(u) = y.
Since f(U) ⊂ Cl(G1), we have y = f(u) ∈ Cl(G1). This is a contradiction.
Hence, U ⊂ {x ∈ X : f(x) 6= y} and {x ∈ X : f(x) 6= y} is δ-semiopen in
X. This shows that {x ∈ X : f(x) 6= y} is δ-semiopen in X, equivalently
f−1(y) = {x ∈ X : f(x) = y} is δ-semiclosed in X.

Recall that a point x ∈ X is said to be in the θ-closure [17] of a subset
A of X, denoted by Clθ(G), if Cl(G) ∩ A 6= ∅ for each open set G of X
containing x. A is called θ-closed if A = Clθ(A). The complement of a
θ-closed set is called θ-open. �

Theorem 3. For a function f : X → Y , the following are equivalent:
(1) f is weakly δs-continuous,
(2) f(sClδ(V )) ⊂ Clθ(f(V )) for each subset V ⊂ X,
(3) sClδ(f

−1(G)) ⊂ f−1(Clθ(G)) for each subset G ⊂ Y ,
(4) sClδ(f

−1(Int(Clθ(G)))) ⊂ f−1(Clθ(G)) for every subset G ⊂ Y .

Proof. (1) ⇒ (2) : Let V ⊂ X, x ∈ sClδ(V ) and U be any open set
of Y containing f(x). There exists a δ-semiopen set W containing x such
that f(W ) ⊂ Cl(U). Since x ∈ sClδ(V ), then W ∩ V 6= ∅. This implies
that ∅ 6= f(W ) ∩ f(V ) ⊂ Cl(U) ∩ f(V ) and f(x) ∈ Clθ(f(V )). Hence,
f(sClδ(V )) ⊂ Clθ(f(V )).

(2) ⇒ (3) : Let G ⊂ Y . Then f(sClδ(f
−1(G))) ⊂ Clθ(G) and hence

sClδ(f
−1(G)) ⊂ f−1(Clθ(G)).

(3) ⇒ (4) : Let G ⊂ Y . Since Clθ(G) is closed in Y , then sClδ(f
−1(Int

(Clθ(G)))) ⊂ f−1(Clθ(Int(Clθ(G))))) = f−1(Cl(Int(Clθ(G))))) ⊂ f−1(Clθ
(G)).

(4) ⇒ (1) : Let U be any open set of Y . We have U ⊂ Int(Cl(U)) =
Int(Clθ(U)). Thus, sClδ(f

−1(U)) ⊂ sClδ(f−1(Int(Clθ(U)))) ⊂ f−1(Clθ(U))
= f−1(Cl(U)). This implies from Theorem 1 that f is weakly δs-conti-
nuous. �

Theorem 4. If f−1(Clθ(V )) is δ-semiclosed in X for every subset
V ⊂ Y , then f is weakly δs-continuous.

Proof. Let V ⊂ Y . Since f−1(Clθ(V )) is δ-semiclosed in X, then
sClδ(f

−1(V )) ⊂ sClδ(f
−1(Clθ(V ))) = f−1(Clθ(V )). This implies from

Theorem 3 that f is weakly δs-continuous. �
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Theorem 5. Let f : X → Y be a function. If f is weakly δs-continuous,
then f−1(V ) is δ-semiclosed in X for every θ-closed subset V ⊂ Y .

Proof. It follows from Theorem 3. �

Corollary 2. Let f : X → Y be a function. If f is weakly δs-continuous,
then f−1(V ) is δ-semiopen in X for every θ-open subset V ⊂ Y .

Definition 5. A function f : X → Y is said to be
(1) (δ, s)-open if f(A) is semiopen for every δ-semiopen subset A ⊂ X.
(2) neatly weak δs-continuous if for each x ∈ X and each open set V of

X containing f(x), there exists a δ-semiopen set U containing x such that
Int(f(U)) ⊂ Cl(V ).

Theorem 6. If a function f : X → Y is neatly weak δs-continuous and
(δ, s)-open, then f is weakly δs-continuous.

Proof. Let x ∈ X and V be an open subset of Y containing f(x).
Since f is neatly weak δs-continuous, there exists a δ-semiopen set U of X
containing x such that Int(f(U)) ⊂ Cl(V ). Since f is (δ, s)-open, then f(U)
is semiopen in Y . Then f(U) ⊂ Cl(Int(f(U))) ⊂ Cl(V ). Thus, f is weakly
δs-continuous. �

Theorem 7. If f : X → Y is weakly δs-continuous and Y is Hausdorff,
then for each (x, y) /∈ G(f), there exist a δ-semiopen set V ⊂ X and an open
set U ⊂ Y containing x and y, respectively, such that f(V )∩Int(Cl(U)) = ∅.

Proof. Let (x, y) /∈ G(f). We have y 6= f(x). Since Y is Hausdorff,
there exist disjoint open sets U and V containing y and f(x), respectively.
We have Int(Cl(U)) ∩ Cl(V ) = ∅. Since f is weakly δs-continuous, there
exists an δ-semiopen set G containing x such that f(G) ⊂ Cl(V ). Hence,
f(G) ∩ Int(Cl(U)) = ∅. �

Definition 6. A function f : X → Y is said to be faintly δs-continuous
if for each x ∈ X and each θ-open set V of Y containing f(x), there exists
a δ-semiopen set U containing x such that f(U) ⊂ V .

Theorem 8. Let f : X → Y be a function. The following are equivalent:
(1) f is faintly δs-continuous,
(2) f−1(V ) is δ-semiopen in X for every θ-open subset V ⊂ Y ,
(3) f−1(V ) is δ-semiclosed in X for every θ-closed subset V ⊂ Y .

Proof. Obvious. �
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Theorem 9. Let f : X → Y be a function, where Y is regular. The
following are equivalent:

(1) f is δ-semicontinuous,
(2) f−1(Clθ(V )) is δ-semiclosed in X for every subset V ⊂ Y ,
(3) f is weakly δs-continuous,
(4) f is faintly δs-continuous.

Proof. (1)⇒ (2) : Let V ⊂ Y . Since Clθ(V ) is closed, then f−1(Clθ(V ))
is δ-semiclosed in X.

(2)⇒ (3) : It follows from Theorem 4.
(3) ⇒ (4) : Let V be a θ-closed subset of Y . By Theorem 3, we

have sClδ(f
−1(V )) ⊂ f−1(Clθ(V )) = f−1(V ). This shows that f−1(V )

is δ-semiclosed and hence f is faintly δs-continuous.
(4)⇒ (1) : Let V be an open subset of Y . Since Y is regular, V is θ-open

in Y . Since f is faintly δs-continuous, then f−1(V ) is δ-semiopen in X.
Thus, f is δ-semicontinuous. �

Definition 7. A space (X, τ) is said to be δ-semi T2 (see [1]) if for each
pair of distinct points x and y in X, there exist U ∈ δSO(X,x) and V ∈
δSO(X, y) such that U ∩ V = ∅.

Theorem 10. Let f : (X, τ)→ (Y, σ) be a weakly δs-continuous injective
function. If (Y, σ) is Urysohn, then (X, τ) is δ-semi T2.

Proof. Let x1 and x2 be any two distinct points of X. Since f is
injective, f(x1) 6= f(x2). Since (Y, σ) is Urysohn, there exist disjoint V1, V2
∈ σ such that f(x1) ∈ V1, f(x2) ∈ V2 and Cl(V1) ∩ Cl(V2) = ∅. Since f is
weakly δs-continuous at xi, then there exists δ-semiopen sets Ui for i = 1, 2
containing xi such that f(Ui) ⊂ Cl(Vi). This indicates that (X, τ) is δ-semi
T2. �

Theorem 11. If f : X → Y is weakly δs-continuous and g : Y → Z is
continuous, then the composition gof : X → Z is weakly δs-continuous.

Proof. Let x ∈ X and A be an open set of Z containing g(f(x)). We have
g−1(A) is an open set of Y containing f(x). Then there exists a δ-semiopen
set B containing x such that f(B) ⊂ Cl(g−1(A)). Since g is continuous, then
(gof)(B) ⊂ g(Cl(g−1(A))) ⊂ Cl(A). Thus, gof is weakly δs-continuous. �

Definition 8. We say that the product space X = X1 × . . . × Xn has
property Pδs [3] if Ai is a δ-semiopen set in a topological space Xi, for
i = 1, 2, . . . n, then A1 × . . . × An is also δ-semiopen in the product space
X = X1 × . . .×Xn.
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Theorem 12. If fi : Xi → Yi is weakly δs-continuous for each i ∈ I =
{1, 2, 3, . . . , n} and

∏
Xi has property Pδs, then the function f :

∏
Xi →∏

Yi which is defined by f((xi)) = (fi(xi)) is weakly δs-continuous.

Proof. Let x = (xi) ∈
∏
Xi and V be an open set containing f(x). There

exists an open set
∏
Ui such that f(x) ∈

∏n
i=1 Ui ×

∏
i 6=j Yj ⊂ V , where Ui

is open in Yi. Since fi is weakly δs-continuous, there exists δ-semiopen sets
Gi in Xi containing xi such that fi(Gi) ⊂ Cl(Ui) for each i = 1, 2, ..., n.
Take G =

∏n
i=1Gi ×

∏
i 6=j Xj . Then G is δ-semiopen in

∏
Xi containing x

and f(G) ⊂
∏n
i=1 fi(Gi)×

∏
i 6=j Yj ⊂

∏n
i=1Cl(Ui)×

∏
i 6=j Yj ⊂ Cl(V ). This

shows that f is weakly δs-continuous. �

Theorem 13. Let f, g : X → Y be weakly δs-continuous functions and
Y be Urysohn. If δSO(X) is closed under the finite intersections, then the
set {x ∈ X : f(x) = g(x)} is δ-semiclosed in X.

Proof. Let x ∈ X\{x ∈ X : f(x) = g(x)}. We have f(x) 6= g(x). Since
Y is Urysohn, then there exist open sets A and B of Y such that f(x) ∈ A,
g(x) ∈ B and Cl(A) ∩ Cl(B) = ∅. Since f is weakly δs-continuous, there
exists δ-semiopen set G in X containing x such that f(G) ⊂ Cl(A). Since
g is weakly δs-continuous, there exists a δ-semiopen set K of X containing
x such that g(K) ⊂ Cl(B). Take W = G ∩ K. Then W is δ-semiopen
containing x and f(W ) ∩ g(W ) ⊂ Cl(A) ∩ Cl(B) = ∅. This implies that
W ∩ {x ∈ X : f(x) = g(x)} = ∅ and hence {x ∈ X : f(x) = g(x)} is
δ-semiclosed in X. �

Definition 9. A subset U of a topological space X is called N -closed
if there exists a finite number of points x1, x2, . . . , xn in U such that U ⊂
∪ni=1Int(Cl(V (xi))), where the family {V (x) | x ∈ U} is a cover of U by
open sets of X.

Theorem 14. Let f : X → Y be a function, where δSO(X) is semi-
closed under the finite intersections. If for each (x, y) /∈ G(f), there exist
a δ-semiopen set U ⊂ X and an open set V ⊂ Y containing x and y,
respectively, such that f(U) ∩ Int(Cl(V )) = ∅, then inverse image of each
N -closed set of Y is δ-semiclosed in X.

Proof. Suppose that there exists a N -closed set W ⊂ Y such that
f−1(W) is not δ-semiclosed inX. We have a point x ∈ sClδ(f−1(W ))\f−1(W).
Since x /∈ f−1(W ), then (x, y) /∈ G(f) for each y ∈ W . There exist
δ-semiopen sets Uy(x) ⊂ X and an open set V (y) ⊂ Y containing x and y,
respectively, such that f(Uy(x))∩Int(Cl(V (y))) = ∅. The family {V (y) : y ∈
W} is a cover of W by open sets of Y . Since W is N -closed, there exist a fi-
nite number of points y1, y2, . . . , yn inW such thatW ⊂ ∪ni=1Int(Cl(V (yi))).
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Take U = ∩ni=1Uyi(x). We have f(U) ∩W = ∅. Since x ∈ Clδ(f−1(W )),
then f(U) ∩W 6= ∅. This is a contradiction. �

For a function f : X → Y , the graph function g : X → X × Y of f is
defined by g(x) = (x, f(x)) for each x ∈ X.

Theorem 15. If the graph function g of a function f : X → Y is weakly
δs-continuous, then f is weakly δs-continuous.

Proof. Let g be weakly δs-continuous and x ∈ X and U be an open set of
X containing f(x). Then X×U is an open set containing g(x). There exists
a δ-semiopen set V containing x such that g(V ) ⊂ Cl(X×U) = X×Cl(U).
This implies that f(V ) ⊂ Cl(U) and hence f is weakly δs-continuous. �
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topologiques, Glasnik Mat. Ser. III., 14(34)(1979), 359-362.

[21] Popa V., Noiri T., Some properties of rarely quasi continuous functions,
An. Univ. Timisoara Ser. Stiint Mat., 29(1991), 65-71.

[22] Popa V., Stan C., On a decomposition of quasi-continuity in topological
spaces, Stud. Cerc. Mat., 25(1973), 41-43.

[23] Singal M.K., Singal A.R., Almost continuous mappings, Yokohama Math.
J., 16(1968), 63-73.
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