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1. Introduction

In 1994, Matthews [9] introduced the concept of partial metric space as a
part of the study of denotational semantics of dataflow networks and proved
the Banach contraction principle in such spaces.

Many authors studied the fixed points for mappings satisfying some con-
tractive condition in complete partial metric spaces. In 2012, Aydi et al.
[3] introduced the definition of partial Hausdorff metric and also proved the
existence of the Banach contraction principle for multi-valued mappings in
complete partial metric spaces.

Quite recently, in [4] is proved a common fixed point theorem for a pair
of multi-valued mappings satisfying a contractive condition in partial metric
spaces.

Other results for fixed points of multi-valued mappings in complete par-
tial metric spaces are recently obtained in [1], [5], [6], [7], [8], [16] and in
other paper.

A Nadler type theorem for multi-valued mappings in partial metric spaces
is proved in [3]. Quite recently, a new generalized Nadler type theorem in
complete partial metric spaces is proved in [7].



130 Valeriu Popa

Several classical fixed point theorems and common fixed point theorems
have been unified considering a general condition by an implicit relation
in [11], [12] and in other papers. Recently, the method is used in the
study of fixed points in metric spaces, symmetric spaces, quasi-metric spaces,
ultra-metric spaces, convex metric spaces, reflexive spaces, compact metric
spaces, paracompact metric spaces, in two or three metric spaces, for single
valued mappings, hybrid pairs of mappings and set-valued mappings. Quite
recently, the method is used in the study of fixed points for mappings satisfy-
ing a contractive/extensive condition of integral type, in fuzzy metric spaces,
probabilistic metric spaces, intuitionistic metric spaces and G-metric spaces.
With this method the proofs of some fixed points theorems are more simple.
Also, the method allows the study of local and global properties of fixed
point structures. The study of fixed points for self mappings in complete
partial metric spaces satisfying an implicit relation is initiated in [17].

The study of coincidence and fixed points for multi-valued mappings in
metric spaces satisfying implicit relations is initiated in [13], [14], [15] and
in other papers.

The purpose of this paper is to prove a general fixed point theorem for
a pair of multi-valued mappings satisfying a new type of implicit relation
in partial metric spaces, which generalizes Theorems 2.2 [4], Theorem 3.1
[3], Theorem 3.2 [7], Corollary 2.3 [4], Theorem 2.8 [16] and obtain other
particular results.

2. Preliminaries

Definition 1 ([9]). Let X be a nonempty set. A function p : X×X → R+

is said to be a partial metric on X if for any x, y, z ∈ X, the following
conditions hold:

(P1) : p(x, x) = p(y, y) = p(x, y) if and only if x = y,
(P2) : p(x, x) ≤ p(x, y),
(P3) : p(x, y) = p(y, x),
(P4) : p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).
The pair (X, p) is called a partial metric space.

If p(x, y) = 0, then x = y, but the converse does not hold always.
Each partial metric p on X generates a T0-topology τp which has as base

the family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, y) = {y ∈
X : p(x, y) ≤ p(x, x) + ε} for all x ∈ X and ε > 0.

A sequence {xn} in a partial metric space (X, p) converges to a point
x ∈ X with respect to τp if and only if p(x, x) = limn→∞ p(x, xn).

If p is a partial metric on X, then the function ps(x, y) = 2p(x, y) −
p(x, x)− p(y, y) defines a metric on X.
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Furthermore, a sequence {xn} converges in (X, ps) to a point x ∈ X if
and only if

(1) lim
n,m→∞

p(xn, xm) = lim
n→∞

p(xn, x) = p(x, x).

Definition 2 ([9]). Let (X, p) be a partial metric space.
a) A sequence {xn} in X is said to be a Cauchy sequence if lim

n,m→∞
p(xn, xm)

exists and is finite.
b) (X, p) is said to be complete if every Cauchy sequence in X converges

with respect to τp to a point x ∈ X such that lim
n→∞

p(xn, x) = p(x, x).

Lemma 1 ([9]). Let (X, p) be a partial metric space. Then:
a) A sequence in X is a Cauchy sequence in (X, p) if and only if is a

Cauchy sequence in (X, ps);
b) A partial metric space (X, p) is complete if and only if the metric

space (X, ps) is complete.

Let (X, p) be a partial metric space. We denote by CBp(X) the family of
all nonempty closed and bounded subsets of the partial metric space (X, p),
induced by the partial metric p, where the closedness in take from (X, τp)
and boundness if given as follows: A is a bounded subset in (X, p) if there
exists x0 ∈ X and M ≥ 0 such that for all a ∈ A,, we have a ∈ Bp(x0,M),
that is p(x0, a) < p(a, a) +M .

For A,B ∈ CBp(X) and x ∈ X, we define

p(x,A) = inf{p(x, a) : a ∈ A},
δp(A,B) = sup{p(a,B) : a ∈ A}

and
δp(B,A) = sup{p(b, A) : b ∈ B}.

Then p(x,A) = 0 implies ps(x,A) = 0, where ps(x,A) = inf{ps(x,A) :
a ∈ A}.

Lemma 2 ([2]). Let (X, p) be a partial metric space and A a nonempty
subset in (X, p). Then x ∈ A if and only if p(a,A) = p(a, a), where A
denotes the closure of A with respect to the partial metric p.

The following properties of δp : CBp(X) × CBp(X) → [0,∞) are estab-
lished in [3].

Lemma 3 ([3]). For A,B,C ∈ CBp(X), we have the following:
(i) δp(A,A) = sup{p(a, a) : a ∈ A},

(ii) δp(A,A) ≤ δp(A,B),
(iii) δp(A,B) = 0 implies A ⊂ B,
(iv) δ(A,B) ≤ δ(A,C) + δ(C,B)− inf{p(c, c) : c ∈ C}.
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Let (X, p) be a partial metric space. For A,B ∈ CBp(X) we define [3]

Hp(A,B) = max{δp(A,B), δp(B,A)}.

Lemma 4 ([3]). For all A,B,C ∈ CBp(X), we have:
(i) Hp(A,A) ≤ Hp(A,B),
(ii) Hp(A,B) = Hp(B,A),
(iii) Hp(A,B) ≤ Hp(A,C) +H(C,B)− inf{p(c, c) : c ∈ C}.

Corollary 1 ([3]). Let (X, p) be a partial metric space. For A,B ∈
CBp(X), Hp(A,B) = 0 implies A = B.

Remark 1. The converse of Corollary 1 is not true in general.

The mapping Hp is called a partial Hausdorff metric induced by p [3].

Lemma 5 ([3]). Let (X, p) be a partial metric space, A,B ∈ CBp(X)
and k > 1. For any a ∈ A there exists b = b(a) ∈ B such that p(a, b) ≤
kH(A,B).

Lemma 6 ([16]). Let xn → x as n tends to infinite in a partial metric
space with p(x, x) = 0. Then limn→∞ p(xn, B) = p(x,B) for any B ∈
CBp(X).

The following result generalizes Nadler theorem [10] for partial metric
space.

Theorem 1 ([3] Theorem 3.1). Let (X, p) be a complete partial metric
space. If T : (X, p) → CBp(X) is a multi-valued mapping such that for all
x, y ∈ X we have

Hp(Tx, Ty) ≤ hp(x, y),

where h ∈ (0, 1), then T has a fixed point.

Quite recently, a generalization of Theorem 1 is obtained.

Theorem 2 ([7] Theorem 3.2). Theorem 2. Let (X, p) be a complete
partial metric space and let T : (X, p)→ CBp(X) be a multi-valued mapping
such that for all x, y ∈ X

H(Tx, Ty) ≤ αp(x, y) + β[p(x, Tx) + p(y, Ty)] + γ[p(x, Ty) + p(y, Tx)],

where α, β, γ ≥ 0, 0 < α+ 2β + 2γ < 1. Then T has a fixed point.

In a recent paper [4] the following results are obtained.
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Theorem 3 ([4] Theorem 2.2). Let (X, p) be a complete partial metric
space and T, S : (X, p)→ CBp(X) be two multi-valued mappings satisfying,
for all x, y ∈ X, the following condition:

(2) Hp(Tx, Sy) ≤ αmax{p(x, y), p(x, Tx), p(y, Sy),
p(x, Sy) + p(y, Tx)

2
},

α ∈ [0, 1). Then, T and S have a common fixed point. Moreover, if T or S
is a single valued mapping, then the common fixed point is unique.

Corollary 2 ([4] Corollary 2.3). Let (X, p) be a complete partial metric
space and T, S : (X, p)→ CBp(X) be two multi-valued mappings satisfying,
for all x, y ∈ X, the following condition:

Hp(Tx, Sy) ≤ a1p(x, y) + a2p(x, Tx) + a3p(y, Sy)

+ a4[p(x, Sy) + p(y, Tx)],

where a1, a2, a3, a4 ≥ 0 and 0 < a1 +a2 +a3 + 2a4 < 1. Then, T and S have
a common fixed point. Moreover, if T or S is a single valued mapping, then
the common fixed point is unique.

Theorem 4 ([16] Theorem 2.8). Let (X, p) be a complete partial metric
space and S, T : (X, p)→ CBp(X) be mappings satisfying (2). Then T and
S have a common fixed point. Further, if we assume that p(x, y) ≤ p(x, Sx)
or p(x, y) ≤ p(y, Tx) for all x, y ∈ X, then T and S have a unique common
fixed point.

3. Implicit relations

Definition 3. Let Fp be the set of all continuous functions F (t1, . . . , t5) :
R5
+ → R satisfying the following conditions:

(F1) : F is increasing in variable t1 and nonincreasing in variables t3, t4, t5;
(F2) : There exist h1, h2 ∈ (0, 1) and k > 1 such that for all u, v ≥ 0,

t > 0 and u ≤ kt then:
(F2a) : F (t, v, v, u, u+ v) ≤ 0 implies u ≤ h1v,
(F2b) : F (t, v, u, v, u+ v) ≤ 0 implies u ≤ h2v.

Example 1. F (t1, . . . , t5) = t1 − amax{t2, t3, t4, t52 }, where α ∈ (0, 1).
(F1) : Obviously.
(F2) : Let 1 < k < 1

α be such that if u, v ≥ 0, t > 0 and u ≤ kt,
F (t, v, v, u, u+ v) = t−αmax{u, v, u+v2 } ≤ 0. Then u ≤ αkmax{u, v, u+v2 }.
If u > v, then u(1− αk) ≤ 0, a contradiction. Hence, u ≤ v, which implies
u ≤ h1v, where 0 < h1 = αk < 1.

Similarly, u ≤ kt and F (t, v, u, v, u+ v) ≤ 0 implies u ≤ h2v.
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Example 2. F (t1, . . . , t5) = t1−at2− bt3− ct4−dt5, where a, b, c, d ≥ 0
and 0 < a+ b+ c+ 2d < 1.

(F1) : Obviously.
(F2) : Let 1 < k < 1

a+b+c+2d be such that if u, v ≥ 0, t > 0 and u ≤ kt,
F (t, v, v, u, u+ v) = t− [av + bv + cu+ d(u+ v)] ≤ 0. Then u ≤ kt implies

u ≤ h1v, where 0 < h1 = k(a+b+d)
1−k(c+d) < 1.

Similarly, u ≤ kt and F (t, v, u, v, u + v) ≤ 0 implies u ≤ h2v, where

0 < h2 = k(a+c+d)
1−k(c+d) < 1.

If h = max{h1, h2} and u ≤ kt then u ≤ hv.

Example 3. F (t1, . . . , t5) = t1 − amax {t2, t3, t4, t5}, where α ∈
[
0, 12
)
.

(F1) : Obviously.
(F2) : Let 1 < k < 1

2α be such that if u, v ≥ 0, t > 0 and u ≤ kt,
F (t, v, v, u, u + v) = t − αmax{v, u, u + v} ≤ 0. Then u ≤ kt implies
u ≤ kα(u+ v), hence u ≤ hv, where 0 < h = αk

1−αk < 1.
Similarly, u ≤ kt and F (t, v, u, v, u+ v) ≤ 0 implies u ≤ hv.

Example 4. F (t1, . . . , t5) = t1 − max{ct2, ct3, ct4, at5}, where 0 < a,
c < 1

2 .
(F1) : Obviously.
(F2) : Let 1 < k < 1

2max{a,c} be such that if u, v ≥ 0, t > 0 and u ≤ kt,

F (t, v, v, u, u + v) = t −max{cu, cv, a(u + v)} ≤ 0. Since u ≤ kt, then u ≤
kmax{a, c}(u+ v) which implies u ≤ hv, where 0 < h = kmax{a,c}

1−kmax{a,c} < 1.

Similarly, u ≤ kt and F (t, v, u, v, u+ v) ≤ 0 implies u ≤ hv.

Example 5. F (t1, . . . , t5) = t21 − at2t3 − bt24 − ct25, where a, b, c ≥ 0 and
0 < a+ b+ 4c < 1.

(F1) : Obviously.
(F2) : Let 1 < k < 1√

a+b+4c
be such that if u, v ≥ 0, t > 0 and u ≤ kt,

F (t, v, v, u, u+ v) = t2 − av2 − bu2 − c(u+ v)2 ≤ 0. If u > v, since u ≤ kv,
then u2[1− k2(a+ b+ 4c)] ≤ 0, a contradiction. Hence u ≤ v which implies
u ≤ hv, where 0 < h = k

√
a+ b+ 4c < 1.

Similarly, u ≤ kt and F (t, v, u, v, u+ v) ≤ 0 implies u ≤ hv.

Example 6. F (t1, . . . , t5) = t1−at2−bt3−cmax {2t4, t5}, where a, b, c ≥
0 and 0 < a+ b+ 2c < 1.

(F1) : Obviously.
(F2) : Let 1 < k < 1

a+b+2c be such that if u, v ≥ 0, t > 0 and u ≤ kt,
F (t, v, v, u, u + v) = t − av − bv − cmax{2u, u + v} ≤ 0. Since u ≤ kt, if
u > v, then u[1 − k(a + b + 2c)] ≤ 0, a contradiction. Hence u ≤ v which
implies u ≤ hv, where 0 < h = k(a+ b+ 2c) < 1.

Similarly, u ≤ kt and F (t, v, u, v, u+ v) ≤ 0 implies u ≤ hv.
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4. Main results

Theorem 5. Let (X, p) be a complete partial metric space and T, S :
(X, p)→ CBp(X) be two multi-valued mappings satisfying, for all x, y ∈ X,
the following condition

(3)

{
F (Hp(Tx, Sy), p(x, y), p(x, Tx),

p(y, Sy), p(x, Sy) + p(y, Tx)) ≤ 0,

where F ∈ Fp. Then, T and S have a common fixed point. Moreover, if T
or S is single-valued, then the common fixed point is unique.

Proof. Let x0 ∈ X be and x1 ∈ Sx0. By Lemma 5, there exists x2 ∈ Tx1
such that

p(x2, x1) ≤ kHp(Tx1, Sx0).

Continuing in this manner, we can construct a sequence {xn} in X such
that

(4) x2n+1 ∈ Sx2n and x2n+2 ∈ Tx2n+1

(5) p(x2n+1, x2n) ≤ kHp(Sx2n, Tx2n−1),

(6) p(x2n+2, x2n+1) ≤ kHp(Tx2n+1, Sx2n).

By (3) we get{
F (Hp(Tx2n−1, Sx2n), p(x2n−1, x2n), p(x2n−1, Tx2n−1),

p(x2n, Sx2n), p(x2n−1, Sx2n) + p(x2n, Tx2n−1)) ≤ 0.

By (4) and (F1) we have{
F (Hp(Tx2n−1, Sx2n), p(x2n−1, x2n), p(x2n−1, x2n),

p(x2n, x2n+1), p(x2n−1, x2n+1) + p(x2n, x2n)) ≤ 0.

Since by (P4),

p(x2n−1, x2n+1) ≤ p(x2n−1, x2n) + p(x2n, x2n+1)− p(x2n, x2n),

by (F1) we obtain

(7)

{
F (Hp(Tx2n−1, Sx2n), p(x2n−1, x2n), p(x2n−1, x2n),

p(x2n, x2n+1), p(x2n−1, x2n) + p(x2n, x2n+1)) ≤ 0.
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By (5), (7) and (F2a) it follows that

p(x2n, x2n+1) ≤ h1p(x2n−1, x2n).

Similarly, by (3) we have{
F (Hp(Tx2n+1, Sx2n), p(x2n+1, x2n), p(x2n+1, Tx2n+1),

p(x2n, Sx2n), p(x2n+1, Sx2n) + p(x2n, Tx2n+1)) ≤ 0.

By (F1) we get{
F (Hp(Tx2n+1, Sx2n), p(x2n+1, x2n), p(x2n+1, x2n+2),

p(x2n, x2n+1), p(x2n+1, x2n+1) + p(x2n, x2n+2)) ≤ 0.

Since by (P4),

p(x2n, x2n+2) ≤ p(x2n, x2n+1) + p(x2n+1, x2n+2)− p(x2n+1, x2n+1),

by (F1) we obtain

(8)

{
F (Hp(Tx2n+1, Sx2n), p(x2n+1, x2n), p(x2n+1, x2n+2),

p(x2n, x2n+1), p(x2n, x2n+1) + p(x2n+1, x2n+2)) ≤ 0.

Then by (6), (8) and (F2b) we have

p(x2n+1, x2n+2) ≤ h2p(x2n, x2n+1).

Let h = max{h1, h2}. Then

p(xn, xn+1) ≤ hp(xn−1, xn) ≤ . . . ≤ hpp(x0, x1).

For every k ∈ N we have

p(xn, xn+k) ≤ p(xn, xn+1) + p(xn+1, xn+2) + ...+ p(xn+k−1, xn+k)

≤ (hn + hn+1 + ...+ hn+k−1)p(x0, x1)

=
hn

1− h
p(x0, x1)→ 0 as n→∞.

By the definition of ps we get

ps(xn, xn+k) ≤ 2p(xn, xn+k)→ 0 as n→∞.

This implies that {xn} is a Cauchy sequence in (X, ps). Since (X, p) is
complete then by Lemma 1 (X, ps) is a complete metric space. Therefore,
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the sequence {xn} converges to some v ∈ X with respect to the metric ps,
that is

lim
n→∞

ps(xn, v) = 0.

Moreover, by (2) we have

(9) p(v, v) = lim
n→∞

p(xn, v) = lim
n,m→∞

p(xn, xm) = 0.

Also, we get{
F (Hp(Tx2n+1, Sv), p(x2n+1, v), p(x2n+1, Tx2n+1),

p(v, Sv), p(x2n+1, Sv) + p(v, Tx2n+1)) ≤ 0.

By (F1) we get{
F (p(x2n+2, Sv), p(x2n+1, v), p(x2n+1, x2n+2),

p(v, Sv), p(x2n+1, Sv) + p(v, x2n+2)) ≤ 0.

By (9) and Lemma 6 letting n tends to infinity we obtain

F (p(v, Sv), 0, 0, p(v, Sv), p(v, Sv)) ≤ 0.

Since p(v, Sv) < kp(v, Sv), by (F2a) we have p(v, Sv) = 0. Since Sv is
closed then v ∈ Sv.

Similarly, by (F2b) we obtain v ∈ Tv.
Now, we show that the common point v is unique if T is a single-valued

mappings. Assume that u ∈ X is another common fixed point of T and S.
By (3) we have {

F (Hp(Tu, Sv), p(u, v), p(u, Tu),

p(v, Sv), p(u, Sv) + p(v, Tu)) ≤ 0.

Since u = {Tu} and v ∈ Sv we have

p(u, v) ≤ Hp(Tu, Sv),

p(v, Sv) = p(v, v),

which implies by (F1) that

F (p(u, v), p(u, v), p(u, u), p(v, v), p(u, v) + p(u, v)) ≤ 0.

By p(u, u) ≤ p(u, v), p(v, v) ≤ p(u, v) and by (F1), we obtain

F (p(u, v), p(u, v), p(u, v), p(u, v), p(u, v) + p(u, v)) ≤ 0.
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Since p(u, v) ≤ kp(u, v) if p(u, v) > 0, by (F2a) or (F2b) we have

p(u, v) ≤ hp(u, v) < p(u, v),

a contradiction. Hence, p(u, v) = 0 which implies u = v and v is the unique
common fixed point of T and S. If S is single-valued mapping instead T ,
the proof is similar. �

Corollary 3. Theorem 3.

Proof. The proof it follows by Theorem 5 and Example 1. �

Example 7. Let X = {0, 1, 2} be endowed with the partial metric
p : X × X → R+ defined by p(0, 0) = p(1, 1) = 0, p(0, 1) = p(1, 0) = 1

4 ,
p(2, 2) = 1

3 , p(0, 2) = p(2, 0) = 2
5 , p(1, 2) = p(2, 1) = 13

20 .

We define T : X → X and S : X → CBp(X) by

Tx =

{
0, x ∈ {0, 1}
1, x = 2

and

Sx =

{
{0}, x 6= 2

{0, 1}, x = 2

as in Example 2.11 [4], and

M(x, y) = max

{
p(x, y), p(x, Tx), p(y, Sy),

p(x, Sy) + p(y, Tx)

2

}
.

Note that Sx is closed and bounded for all x ∈ X under the given partial
metric p.

We distinguish the following cases:
(i) If x ∈ {0, 1} then Hp({T0}, S1) = 0 and Hp({Tx}, Sy) ≤ αM({Tx},

Sy) for α ∈ [0, 1).
(ii) If x = 0 and y = 2, then Hp({T0}, S2) = Hp({0}, {0, 1}) = 1

4 andM(0, 2) = max
{
p(0, 2), p(0, T0), p(2, S2), p(0,S2)+p(2,T0)2

}
= max

{
2
5 , 0,

2
5 ,

0+ 2
5

2

}
= 2

5 .

Hence Hp({T0}, S2) = 1
4 ≤ αM(0, 2) for α ∈

[
5
8 , 1
)
.

(iii) Similarly, if x = 2 and y = 0, then Hp({T2}, S0) = Hp({1}, 0) =
1
4 ≤ αM(2, 0) = 13

20α. Hence, Hp({T2}, S0) = 1
4 ≤ αM(2, 0) = 13

20α for
α ∈

[
5
13 , 1

)
.
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(iv) If x = 2, y = 1, then Hp({T2}, S1) = Hp({1}, {0}) = 1
4 and

M(2, 1) = 13
20 . Hence Hp({T2}, S1) = 1

4 ≤ αM(2, 1) = 13
20α. Hence

Hp({T2}, S1) = 1
4 ≤ αM(2, 1) = 13

20 for α ∈
[
5
13 , 1

)
.

(v) Similarly, if x = 1, y = 2, we have Hp({T1}, S2) = 1
4 ≤ αM(1, 2) =

13
20α for α ∈

[
5
13 , 1

)
.

(vi) If x = 2, y = 2, similarly we obtain Hp({T2}, S2) = 1
4 ≤ αM(2, 2) =

13
20α for α ∈

[
5
13 , 1

)
.

Hence, Hp({Tx}, Sy) ≤ αM(x, y) for α ∈
[
5
8 , 1
)
. Thus all the conditions

of Corollary 3 are satisfied and x = 0 is the unique common fixed point.

Corollary 4. Corollary 2.

Proof. The proof it follows by Theorem 5 and Example 2 with a2 = a3. �

If T = S, by Theorem 5 we obtain

Theorem 6. (X, p) be a complete partial metric space and T : (X, p)→
CBp(X) be a multi-valued mapping satisfying, for all x, y ∈ X, the following
condition

F (Hp(Tx, Ty), p(x, y), p(x, Tx), p(y, Ty), p(x, Ty) + p(y, Tx)) ≤ 0,

where F ∈ Fp. Then, T has a fixed point. Moreover, if T is single-valued
mapping, then the common fixed point is unique.

Remark 2. (a) The proof of Theorem 1 it follows by Theorem 6 and
Example 2 with b = c = d = 0.

(b) The proof of Theorem 2 it follows by Theorem 6 and Example 2 with
b = c = β.

Definition 4. A function F (t1, . . . , t5) : R5
+ → R satisfies the condition

(F ′1): F is increasing in variable t1 and nonincreasing in variables t2, t3,
t4, t5.

Theorem 7. Let (X, p) be a complete partial metric space and T, S :
X → CBp(X) be two multivalued mappings satisfying (2) for all x, y ∈
X,where F satisfy (F ′1) and F2. Then, T and S have a common fixed point.
Further if p(x, y) ≤ p(y, Sx) or p(x, y) ≤ p(y, Tx), then T and S have a
unique common fixed point in X.

Proof. As in Theorem 5, T and S have a common fixed point z. Suppose
that z′ is another fixed point of T and S. By hypothesis

(10) p(z, z′) ≤ p(z′, Sz) ≤ Hp(Sz, Tz
′)
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Then by (2) we have{
F (Hp(Tz, Sz

′), p(z′, z), p(z′, T z′),

p(z, Sz), p(z, Tz′) + p(z′, Sz)) ≤ 0.

From (F ′1) and (10) we obtain:{
F (Hp(Tz

′, Sz), Hp(Tz
′, Sz), H(Tz′, T z′),

Hp(Sz, Sz), Hp(Sz, Tz
′) +Hp(z

′, Sz)) ≤ 0.

By (F ′1) and Lemma 4 (i) we obtain{
F (Hp(Tz

′, Sz), Hp(Tz
′, Sz), Hp(Tz

′, Sz),

Hp(Tz
′, Sz), Hp(Tz

′, Sz) +Hp(Tz′, Sz)) ≤ 0.

Since Hp(Tz
′, Sz) ≤ kHp(Tz

′, Sz) then by (F2) we obtain Hp(Tz
′, Sz) ≤

h1Hp(Tz
′, Sz) which implies Hp(Tz, Sz

′) = 0 and by (10), z = z′. �

Corollary 5. Theorem 4.

Proof. The proof it follows by Theorem 7 and Example 1. �
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