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Abstract. This work is devoted to the existence of solutions for
a system of nonlocal resonant boundary value problem

x′′ = f(t, x), x′(0) = 0, x′(1) =

∫ 1

0

x(s)dg(s),

where f : [0, 1] × Rk → Rk is continuous and g : [0, 1] → Rk is a
function of bounded variation.
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1. Introduction

Nonlocal boundary value problems (BVPs) arise in different areas of ap-
plied mathematics and physics. Such problems, for instance, have appli-
cations in chemical engineering, thermo-elasticity, underground water flow
and population dynamics (see [2, 8, 18] and the references therein).

Nowadays, the problem of the existence of solutions for various types
of nonlocal BVPs is the subject of many papers. Let us notice that BVPs
with Riemann-Stieltjes integral boundary conditions include as special cases
multi-point and integral BVPs. For such problems and comments on their
importance, we refer the reader, for example, to [1, 3, 4, 6, 11, 19, 20].

In the paper the following system of ordinary differential equations

x′′ = f(t, x), x′(0) = 0, x′(1) =

∫ 1

0
x(s)dg(s),(1)

where f = (f1, . . . , fk) : [0, 1] × Rk → Rk is continuous, g = (g1, . . . , gk) :
[0, 1]→ Rk has bounded variation, is studied.



144 Katarzyna Szymańska-Dȩbowska

As far as we are aware, the BVP (1) has not been studied in this generality
so far. The motivation to deal with this problem is the fact that, in the case
when g ≡ 0, it is a generalization of the Neumann BVP

x′′ = f(t, x), x′(0) = 0, x′(1) = 0.

Until now, under suitable monotonicity conditions or nonresonance condi-
tions, some existence or uniqueness theorems or methods for Neumann BVPs
have been presented (compare [5, 10, 13, 14, 15] and the references therein).

In this paper we have shown that, under suitable assumptions on f , the
BVP (1), has at least one solution. Here, we consider only the resonant
case. First, we perturb the boundary condition so as to obtain an invertible
problem. Then, we show that we can choose a convergent subsequence of the
solutions to this problem and that its limit is a solution to the problem (1).
To accomplish this, we assume that there is a uniform limit of the function
f (cf. assumption (iv)). Similar assumption one can find in [7] and [9].

The method described above has been applied earlier for other nonlocal
second order BVP. In [12], we have shown that the following BVP

x′′ = f(t, x), x′(0) = 0, x′(1) =

∫ 1

0
x′(s)dg(s),(2)

which is also a generalization of the Neumann problem, has a solution.
Solutions to the problems (1) and (2) are stationary solutions for a heat

equation, corresponding to a heated bar, with a controller at 1 (comp., for
instance, [17, 16]). In the problem (2), the heated bar adds or removes
heat depending on the speed of the changes of the temperature detected by
sensors put at any points of the bar (it depends on the function g) while, in
the problem (1), the bar adds or removes heat depending on the temperature
detected by sensors.

2. Settings

First, observe that the problem (1) can be written down as a system of
BVPs 

x′′i (t) = fi(t, x(t)),
x′i(0) = 0,

x′i(1) =
∫ 1
0 xi(s)dgi(s),

where t ∈ [0, 1], i = 1, . . . , k and the integrals
∫ 1
0 x
′
i(s)dgi(s) are meant in

the sense of Riemann-Stieltjes.
Now, let us note that if

∫ 1
0 dgi(t) = 0, i = 1, . . . , k, then the homogeneous

linear problem, i.e.,

x′′ = 0, x′(0) = 0, x′(1) =

∫ 1

0
x(s)dg(s),



On second order nonlocal boundary . . . 145

has nontrivial solutions - constant functions. Hence problem (1) is reso-
nant. This means that the problem under consideration is not invertible
and therefore we will use the perturbation method. Let us consider the
following BVP

x′′ = f(t, x), t ∈ [0, 1],(3)

x′(0) = 0,(4)

x′(1) =

∫ 1

0
x(s)dg(s) + αnx(0), αn ∈ (0, 1), αn → 0.(5)

Notice that the problem (3), (4), (5) is always nonresonant.
Let | · | denote the Euclidean norm on Rk, while the scalar product in

Rk corresponding to the Euclidean norm be denoted by 〈 · , · 〉. Moreover,
let us consider the Banach space C1([0, 1],Rk) of all continuous functions
x : [0, 1]→ Rk which have continuous first derivatives x′ with the norm

‖x‖ = max

{
sup
t∈[0,1]

|x(t)| , sup
t∈[0,1]

∣∣x′(t)∣∣} .(6)

The following compactness criterion in C1
(
[0, 1],Rk

)
will be needed:

Lemma 1. For a set Z ⊂ C1
(
[0, 1],Rk

)
to be relatively compact, it is

necessary and sufficient that:
(a) there exists M > 0 such that for any x ∈ Z and t ∈ [0, 1] we have

|x (t)| ≤M and |x′ (t)| ≤M ;
(b) the families Z := {x | x ∈ Z} and Z ′ := {x′ | x ∈ Z} are equicontin-

uous.

Throughout this paper, we assume that:
(i) f = (f1, . . . , fk) : [0, 1]× Rk → Rk is a continuous function.
(ii) g = (g1, . . . , gk) : [0, 1] → Rk has bounded variation on the interval

[0, 1].
(iii)

∫ 1
0 dgi(t) = 0, i = 1, . . . , k.

(iv) For every t there exists a uniform finite limit

h(t, ξ) := lim
λ→∞

f(t, λ ξ)

with respect to ξ ∈ Rk, |ξ| = 1 such that h is bounded on [0, 1]× Sk−1,
with Sk−1 the unit sphere in Rk.
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(v) Set

h0(ξ) :=

∫ 1

0
h(u, ξ)du−

∫ 1

0

(∫ u

0
(u− s)h(s, ξ)ds

)
dg(u).

For every ξ ∈ Rk, |ξ| = 1, we have 〈ξ, h0(ξ)〉 < 0.

3. Existence of solutions to the perturbed problem

Now, let us consider the equation (3) and integrate it from 0 to t. By
(4), we get

x′(t) =

∫ t

0
f(s, x(s))ds(7)

and

x(t) = x(0) +

∫ t

0
(t− s)f(s, x(s))ds(8)

By (iii), (5), (7) and (8), we obtain∫ 1

0
f(s, x(s))ds =

∫ 1

0

(∫ u

0
(u− s)f(s, x(s))ds

)
dg(u) + αnx(0),

so

x(0) =
1

αn

[∫ 1

0
f(s, x(s))ds−

∫ 1

0

(∫ u

0
(u− s)f(s, x(s))ds

)
dg(u)

]
.

Let n ∈ N be fixed.
A function x : [0, 1]→ Rk is called a solution to the problem (3), (4), (5)

if the following holds:
• x ∈ C2([0, 1],Rk);
• x′′(t) = f(t, x(t)) for every t ∈ [0, 1];
• x′ (0) = 0 , x′(1) =

∫ 1
0 x(s)dg(s) + αnx(0).

Lemma 2. Let the assumptions (i) − (iii) be satisfied. A function x ∈
C1([0, 1],Rk) is a solution of the problem (3), (4), (5) if and only if x satisfies
the following integral equation

x (t) =

∫ t

0
(t− s)f(s, x(s))ds

+
1

αn

[∫ 1

0
f(s, x(s))ds−

∫ 1

0

(∫ u

0
(u− s)f(s, x(s))ds

)
dg(u)

]
.
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Now, using Schauder’s fixed point Theorem we shall show that, for every
fixed n ∈ N, the BVP (3), (4), (5) has a solution. For this purpose, let us
consider an operator An : C1([0, 1],Rk)→ C1([0, 1],Rk) given by

(Anx) (t) =

∫ t

0
(t− s)f(s, x(s))ds

+
1

αn

[∫ 1

0
f(s, x(s))ds−

∫ 1

0

(∫ u

0
(u− s)f(s, x(s))ds

)
dg(u)

]
,

where n ∈ N is fixed. Then

(Anx)′(t) =

∫ t

0
f(s, x(s))ds.(9)

It is easy to observe that the operator An is well-defined.
By the assumption (iv), in particular, the function f is bounded. Set

M := sup
t∈[0,1],x∈Rk

|f(t, x)|.(10)

Then, by (9) and (10), we have

sup
t∈[0,1]

|(Anx)′(t)| ≤M.(11)

Moreover, we get

sup
t∈[0,1]

|(Anx)(t)| ≤M +
1

αn
(M +MVar(g)) ,(12)

where Var(g) means the variation of g on the interval [0, 1].
From (ii), L := Var(g) < ∞. Put Mn := M + 1

αn
(M +M L), then

‖Anx‖ ≤ Mn for every n ∈ N. Moreover, (Anx)′′(t) and (Anx)′(t), t ∈
[0, 1], are bounded, hence the families (Anx)′ and (Anx) are equicontinuous.
Now, by Lemma 1, one can easily show that the operator An is completely
continuous.

Set Bn :=
{
x ∈ C1

(
[0, 1],Rk

) ∣∣ ‖x‖ ≤Mn

}
. Now, let us notice that, by

Schauder’s fixed point Theorem, the operator

An : Bn → Bn,

has a fixed point in Bn for every n. Hence, the following lemma holds

Lemma 3. Let the assumptions (i) − (iv) be satisfied. Then, for each
n ∈ N, the problem (3), (4), (5) has at least one solution.
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4. The convergent subsequence

For each n ∈ N let ϕn be a solution to the problem (3), (4), (5).
First, we shall show, that the sequence (ϕn) is bounded in C1

(
[0, 1],Rk

)
.

Assume, on the contrary, that the sequence (ϕn) is unbounded. Then, pass-
ing to a subsequence if necessary, we have ‖ϕn‖ → ∞. By (11), we get that
supt∈[0,1] |(ϕn)′(t)| ≤M , for every n. Hence,

sup
t∈[0,1]

|ϕn(t)| → ∞,

when n→∞.
Now, let us consider a sequence ( ϕn

‖ϕn‖) ⊂ C1
(
[0, 1],Rk

)
and notice that

the norm of the sequence equals 1. Hence, the sequence is bounded. More-

over, the family ( ϕn

‖ϕn‖) (and simultaneously
(

ϕ′
n

‖ϕn‖

)
) is equicontinuous, since

ϕ′
n(t)
‖ϕn‖

(
or ϕ′′

n(t)
‖ϕn‖

)
is bounded (observe that ϕ′′n(t) = f(t, ϕn(t)) and thus ϕ′′n(t)

is continuous and, by (10), bounded). By Lemma 1, there exists a convergent
subsequence of ( ϕn

‖ϕn‖). Let us also denote this subsequence as ( ϕn

‖ϕn‖).

Lemma 4. The sequence (
ϕn(t)

‖ϕn‖

)
(13)

converges uniformly to a ξ ∈ Rk on [0, 1]. Moreover, |ξ| = 1.

Proof. Notice that ϕn(t)
‖ϕn‖ is given by

ϕn(t)

‖ϕn‖
=

∫ t
0 (t− s)f(s, ϕn(s))ds

‖ϕn‖
(14)

+

∫ 1
0 f(s, ϕn(s))ds−

∫ 1
0

(∫ u
0 (u− s)f(s, ϕn(s))ds

)
dg(u)

αn ‖ϕn‖
.

By (10), we obtain that ∫ t
0 (t− s)f(s, ϕn(s))ds

‖ϕn‖
(15)

converges uniformly to 0 ∈ Rk on [0, 1]. Consequently, by (14) and (15), we
can easily observe that the limit (13) does not depend on t.

Since the norm of the sequence ( ϕn

‖ϕn‖) in the space C1
(
[0, 1],Rk

)
equals 1,

ϕ′
n(t)
‖ϕn‖ → 0 and the limit of the sequence (13) does not depend on t, without

using the formula (14), we get that ϕn(t)
‖ϕn‖ converges to ξ ∈ Rk such that

|ξ| = 1. Moreover, this convergence is uniform. �
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Lemma 5. For each t ∈ [0, 1], f(t, ‖ϕn‖ ϕn(t)
‖ϕn‖ ) tends to h(t, ξ).

Proof. From Lemma 4, (yn(t)) :=
(
ϕn(t)
‖ϕn‖

)
converges uniformly to ξ.

Notice that if (yn(t)) tends to ξ, then also
(
ϕn(t)
|ϕn(t)|

)
tends uniformly to ξ.

Given ε > 0, for each t ∈ [0, 1], there is R > 0 such that

|f(t, λξ)− h(t, ξ)| < ε

2
,

when λ ≥ R and ξ ∈ Rk, |ξ| = 1.
One can easy observe that : for every t, h(t, ξn)→ h(t, ξ), when ξn → ξ,

with |ξn|, |ξ| = 1. Consequently, for each t there exists n1 such that∣∣∣∣h(t, ϕn(t)

|ϕn(t)|

)
− h(t, ξ)

∣∣∣∣ < ε

2
,

for all n ≥ n1.
Let us consider a sequence (cn) ⊂ R such that cn →∞. Now, since (yn(t))

is uniformly convergent, one can choose n2 such that for all n ≥ n2 and all
t ∈ [0, 1],

|yn(t)| ≥ 1

2
and cn ≥ 2R.

We shall show that for each t ∈ [0, 1], f(t, cnyn(t)) converges to h(t, ξ).
Indeed, for n ≥ max{n1, n2}, we obtain

|f(t, cnyn(t))− h(t, ξ)| =

∣∣∣∣f (t, cn ϕn(t)

‖ϕn(t)‖

)
− h(t, ξ)

∣∣∣∣
=

∣∣∣∣f (t, cn|yn(t)| ϕn(t)

|ϕn(t)|

)
− h(t, ξ)

∣∣∣∣
≤
∣∣∣∣f (t, cn|yn(t)| ϕn(t)

|ϕn(t)|

)
− h

(
t,
ϕn(t)

|ϕn(t)|

)∣∣∣∣
+

∣∣∣∣h(t, ϕn(t)

|ϕn(t)|

)
− h(t, ξ)

∣∣∣∣ < ε,

what ends the proof. �

Lemma 6. Let ξ be the limit of the sequence (13). Then

ξ = γ

[∫ 1

0
h(s, ξ)ds−

∫ 1

0

(∫ u

0
(u− s)h(s, ξ)ds

)
dg(u)

]
,

where γ ∈ (0,∞).
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Proof. Let us observe that, by (14), we obtain

ξ = lim
n→∞

ϕn(t)

‖ϕn‖
=

∫ t
0 (t− s)f(s, ϕn(s))ds

‖ϕn‖
(16)

+

∫ 1
0 f(s, ϕn(s))ds−

∫ 1
0

(∫ u
0 (u− s)f(s, ϕn(s))ds

)
dg(u)

αn ‖ϕn‖

= lim
n→∞

∫ 1
0 f(s, ‖ϕn‖ ϕn(s)

‖ϕn‖ )ds

αn ‖ϕn‖

−

∫ 1
0

(∫ u
0 (u− s)f(s, ‖ϕn‖ ϕn(s)

‖ϕn‖ )ds
)
dg(u)

αn ‖ϕn‖

 .

From (10) and Lemma 5, Lebesgue dominated convergence theorem implies
that

lim
n→∞

∫ 1

0
f(s, ‖ϕn‖

ϕn(s)

‖ϕn‖
)ds =

∫ 1

0
h(s, ξ)ds

and

− lim
n→∞

∫ 1

0

(∫ u

0
(u− s)f(s, ‖ϕn‖

ϕn(s)

‖ϕn‖
)ds

)
dg(u)

= −
∫ 1

0

(∫ u

0
(u− s)h(s, ξ)ds

)
dg(u).

Moreover, by (v), the sum of the limits is different from zero. Hence, since
Lemma 4 holds, there exists γ ∈ (0,∞) such that γ := limn→∞ 1/(αn ‖ϕn‖).

Now, by assumption (iv) and Lemma 5, we obtain

ξ = lim
n→∞

ϕn(t)

‖ϕn‖
(17)

= γ

[∫ 1

0
h(s, ξ)ds−

∫ 1

0

(∫ u

0
(u− s)h(s, ξ)ds

)
dg(u)

]
.

�

Lemma 7. Let the assumptions (i)− (v) hold. Then the sequence (ϕn)
is bounded in C1

(
[0, 1],Rk

)
.

Proof. Assume that the sequence (ϕn) in unbounded. Then, by Lemma 4,
Lemma 6 and (v), we reach a contradiction. Indeed, we get

1 = 〈ξ, ξ〉 = γ

〈
ξ ,

∫ 1

0
h(s, ξ)ds−

∫ 1

0

(∫ u

0
(u− s)h(s, ξ)ds

)
dg(u)

〉
(18)

= γ 〈ξ, h0(ξ)〉 < 0.
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Hence, the sequence (ϕn) is bounded. �

By Lemma 1, it is easy to note that the following lemma holds

Lemma 8. Let the assumptions (i) − (v) hold. Then the set Z =
{ϕn | n ∈ N} is relatively compact in C1

(
[0, 1],Rk

)
.

5. The existence result

Now, let us consider the problem (1). By a solution to the problem (1)
we mean a function x : [0, 1]→ Rk such that:
• x ∈ C2([0, 1],Rk);
• x′′(t) = f(t, x(t)) for every t ∈ [0, 1];
• x′ (0) = 0 , x′(1) =

∫ 1
0 x(s)dg(s).

By the above Lemmas, we get the existence result for problem (1).
Indeed, Lemma 8 implies that (ϕn) has a convergent subsequence (ϕnl

),
ϕnl
→ ϕ. We know that ϕnl

(ϕ′nl
) converges uniformly to ϕ (ϕ′) on [0, 1].

One can see that f(t, ϕnl
) is uniformly convergent to f(t, ϕ). Since

ϕ′′nl
(t) = f(t, ϕnl

(t)),

the sequence ϕ′′nl
(t) is also uniformly convergent. Moreover, ϕ′′nl

(t) converges
uniformly to ϕ′′(t).

Note that we have actually shown that function ϕ ∈ C1
(
[0, 1],Rk

)
is a

solution of the equation of problem (1) (in fact, ϕ ∈ C2([0, 1]Rk), since f
is continuous). By (4) and (5), it is easy to see that ϕ satisfies boundary
conditions of problem (1).

We have proved the following theorem

Theorem 1. Under assumptions (i) − (v) the problem (1) has at least
one solution.

Example 1. Let k = 2, g(t) = (12 t
2 − 1

2 t,
1
2 t

2 − 1
2 t) and

f1(t, x1, x2) =
−xp1 − c1(t)x

q
2 + a1(t)

|x|p + b1(t)
,

f2(t, x1, x2) =
c2(t)x

q
1 − x

p
2 + a2(t)

|x|p + b2(t)
,

where p, q ∈ N, p is odd and q < p, ai, bi, ci are bounded and continuous
functions on [0, 1] and, additionally, bi are positive, i = 1, 2. For every
ξ = (ξ1, ξ2), |ξ| = 1, we get

h(t, ξ) = lim
λ→∞

f(t, λ ξ) =

(
−ξp1
|ξ|p

,
−ξp2
|ξ|p

)
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and

h0(ξ) =

(
−23 ξp1

24
,−23 ξp2

24

)
.

Then

〈ξ, h0(ξ)〉 = −23

24

(
ξp+1
1 + ξp+1

2

)
< 0.

Hence, the problem (1) has at least one nontrivial solution.
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