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Abstract. In this paper, we present some oscillation criteria for
second order nonlinear delay difference equation with non-positive
neutral term of the form

∆(an(∆zn)α) + qnf(xn−σ) = 0, n ≥ n0 > 0,

where zn = xn − pnxn−τ , and α is a ratio of odd positive inte-
gers. Examples are provided to illustrate the results. The results
obtained in this paper improve and complement to some of the
existing results.
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1. Introduction

In this paper, we study the oscillatory behavior of the following second
order difference equation with non-positive neutral term of the form

(1) ∆(an(∆zn)α) + qnf(xn−σ) = 0, n ≥ n0 > 0,

where zn = xn − pnxn−τ , subject to the following hypotheses:
(H1) {an}, {pn}, and {qn} are sequences of real numbers with 0 ≤ pn ≤

p < 1, qn ≥ 0 and qn is not identically zero for infinitely many values of
n, and {an} is a positive real sequence with

∑n
s=n0

1

a
1
α
s

→∞ as n→∞;

(H2) f ∈ C(R,R) such that uf(u) > 0 for all u 6= 0, and there exists a

positive constant M such that f(u)
uα ≥M for all u 6= 0;
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(H3) α is a ratio of odd positive integers, σ and τ are positive integers.

Let θ = max{τ, σ}. By a solution of equation (1) we mean a real sequence
{xn} defined for all n ≥ n0−θ, and satisfying the equation (1) for all n ≥ n0.
As usual a solution {xn} of equation (1) is said to be oscillatory if it is
neither eventually positive nor eventually negative, otherwise it is said to be
non-oscillatory. We consider only nontrivial solutions of equation (1), and
we assume that equation (1) possesses such solutions.

From the review of literature, it is known that there are many results
available on the oscillatory and asymptotic behavior of solutions of equation
(1) when the neutral term is nonnegative, i.e., pn ≤ 0; see for example
[1, 2, 3, 8, 14] and the references cited therein. However, there are few results
available on the oscillatory behavior of solutions of equation (1) when the
neutral term is non-positive; see, for example [5, 6, 7, 10, 11, 12, 13, 15, 16]
and the references cited therein. In [1], we see that the oscillatory behavior
of the equation

(2) ∆2
(
xn − pxn−τ

)
+ qnxn−σ = 0, n ∈ N(n0),

is discussed and in [13], the authors studied the oscillatory and asymptotic
behavior of the equation

(3) ∆
(
an(∆(xn − pnxn−τ ))

)
+ qnx

α
n−σ = 0, n ∈ N(n0),

with
∞∑

n=n0

1

an
= ∞. Also Thandapani et al. [11] studied the oscillation of

the equation

(4) ∆
(
an(∆(xn − pnxn−τ ))α

)
+ qnf(xn−σ) = 0,

under the conditions

f(u)

uα
≥M, and

∞∑
n=n0

1

a
1
α
n

=∞.

In these papers the authors obtained that every solution of equations (2),
(3) and (4) is either oscillatory or tends to zero as n→∞.

This observation motivated us to study when all solutions of equation
(1) are oscillatory. In Section 2, we present some lemmas which will be
useful to prove our main results. In Section 3, we obtain some new sufficient
conditions for the oscillation of all solutions of equation (1), and in Section 4,
we provide some examples to illustrate the main results. Thus the results
presented in this paper improve and complement to those established in
[5, 6, 7, 10, 11, 12, 13, 15, 16].
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2. Some preliminary lemmas

In this section, we provide two lemmas which are useful in proving the
main results. Since α is a ratio of odd positive integers it is enough to prove
all the results for positive solutions of equation (1) since the proof for the
negative case in similar.

Lemma 1. Assume that hypotheses (H1) − (H3) hold. If {xn} is a
positive solution of equation (1), then {zn} satisfies only one of the following
two cases for all n ≥ N ≥ n0:

(C1) zn > 0,∆zn > 0 and ∆(an(∆zn)α) ≤ 0;
(C2) zn < 0,∆zn > 0 and ∆(an(∆zn)α) ≤ 0.

Proof. Let {xn} be a positive solution of equation (1). Then there
exists an integer n1 ≥ n0 such that xn > 0, xn−τ > 0 and xn−σ > 0 for all
n ≥ n1. Now from equation (1), we have

(5) ∆(an(∆zn)α) = −qnf(xn−σ) ≤ 0

for all n ≥ n1. Therefore an(∆zn)α is non-increasing and hence (∆zn)α is
non-increasing and of one sign eventually. That is, there exists an integer
n2 ≥ n1 such that either ∆zn > 0 or ∆zn < 0 for all n ≥ n2. We shall show
that ∆zn > 0 for all n ≥ n2. If not, then ∆zn < 0 for all n ≥ n2, and

an(∆zn)α ≤ an2(∆zn2)α < 0

for all n ≥ n2. Then

∆zn ≤
a

1
α
n2∆zn2

an

for all n ≥ n2. Summing the last inequality from n2 to n− 1, we obtain

zn − zn2 ≤ a
1
α
n2∆zn2

n−1∑
s=n2

1

a
1
α
s

.

Letting n → ∞, and using (H1), we see that zn → −∞. Now we consider
the two cases for {xn}.

Case (i): Suppose {xn} is an unbounded sequence. Then there exists
a sequence {nj} such that nj → ∞ and xnj → ∞, where xnj = max{xs :
n0 ≤ s ≤ nj}. Then

xnj−τ = max{xs : n0 ≤ s ≤ nj − τ} ≤ max{xs : n0 ≤ s ≤ nj} = xnj .

Therefore for large values of n

znj = xnj − pnjxnj−τ ≥ (1− pnj )xnj > 0,
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which is a contradiction for zn → −∞ as n→∞.

Case (ii): Suppose {xn} is a bounded sequence then {zn} is also a
bounded sequence. This contradicts zn → −∞ as n → ∞. Hence ∆zn > 0
for all n ≥ n2 and zn satisfies only one of the two possible cases (C1) and
(C2). �

Lemma 2. If {xn} is an eventually positive solution of equation (1) such
that (C1) of Lemma 1 holds, then

xn ≥ zn ≥ Rnan∆zn

where Rn =
∑n−1

s=n0

1

a
1
α
s

.

Proof. The proof can be found in [11]. �

3. Oscillation results

In this section, we obtain some sufficient conditions which ensure that all
solutions of equation (1) are oscillatory. In what follows, we denote

ξn = a
1
α
n

n−1∑
s=n1

a
−1
α
s ,

where n1 ≥ n0 is sufficiently large.

Theorem 1. Assume that hypotheses (H1)-(H3) hold, and σ > τ . If
there exists a positive and nondecreasing sequence {ρn} of real numbers,
such that

(6)

∞∑
n=n1

[
Mρn+1qn −

∆ρnan−σ
ξαn−σ

]
=∞,

and

(7) lim
n→∞

sup

n−1∑
s=n−σ+τ

(
1

as

n−1∑
t=s

qt

) 1
α

>
p

M
1
α

for sufficiently large n1 ≥ n0, then every solution of equation (1) is oscilla-
tory.

Proof. Suppose {xn} is a positive solution of equation (1). Then there
exists an integer n1 ≥ n0 such that xn > 0, xn−τ > 0 and xn−σ > 0 for
all n ≥ n1. Choose an integer N ≥ n1 such that the sequence {zn} satisfies
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only one of the two Cases (C1) and (C2) of Lemma 1. First we assume that
{zn} satisfies Case (C1) of Lemma 1. From the definition of zn, we have

(8) xn = zn + pnxn−τ ≥ zn

for all n ≥ N . Since an(∆zn)α is non-increasing, we have

(9) an(∆zn)α ≤ an−σ(∆zn−σ)α.

Now

zn = zN +
n−1∑
s=N

∆zs(10)

≥ (an(∆zn)α)
1
α

n−1∑
s=N

1

a
1
α
s

= ξn∆zn.

Define

(11) wn = ρn
an(∆zn)α

zαn−σ

for all n ≥ N . Then wn > 0 for all n ≥ N , and

∆wn = ∆ρn
an(∆zn)α

zαn−σ
+ ρn+1

∆(an(∆zn)α)

zαn−σ
(12)

− ρn+1an+1(∆zn+1)α

zαn−σz
α
n−σ+1

∆(zαn−σ)

≤ ∆ρn
an(∆zn)α

zαn−σ
+ ρn+1

∆(an(∆zn)α)

zαn−σ
.

Using (5) and (H1) in (12) we have

(13) ∆wn ≤ ∆ρn
an(∆zn)α

zαn−σ
−M

ρn+1qnx
α
n−σ

zαn−σ
.

Applying (8) and (10) in (13), we have

∆wn ≤ ∆ρn
an−σ(∆zn−σ)α

zαn−σ
−Mρn+1qn

≤ ∆ρnan−σ
ξαn−σ

−Mρn+1qn, n ≥ N.



160 E. Thandapani, S. Selvarangam, R. Rama and M. Madhan

Summing the last inequality from N to n− 1, we obtain

wn − wN ≤
n−1∑
s=N

[
∆ρsas−σ
ξαs−σ

−Mρs+1qs

]
.

That is,
n−1∑
s=N

(
Mρs+1qs −

∆ρsas−σ
ξαs−σ

)
≤ wN .

Letting n→∞ in the last inequality, we obtain a contradiction to (6). Next
consider the Case (C2) of Lemma 1. From the definition of zn, we have

(14) xn−k > (−zn
p

), n ≥ N.

Using (H2) and (14) in equation (1), we obtain

∆(an(∆zn)
1
α )− Mqn

pα
zαn+τ−σ ≤ 0, n ≥ N.

Summing the last inequality from s to n− 1 for n > s+ 1, we have

an(∆zn)α − as(∆zs)α −
M

pα

n−1∑
t=s

qt z
α
t−σ+τ ≤ 0,

or

−∆zs ≤
M

1
α

p

(
1

as

n−1∑
t=s

qtz
α
t−σ+τ

) 1
α

, n ≥ N.

Again summing the last inequality from n − σ + τ to n − 1 for s and then
using monotonicity of {zn} we have

zn−σ+τ − zn ≤
M

1
α

p
zn−σ+τ

n−1∑
s=n−σ+τ

(
1

as

n−1∑
t=s

qt

) 1
α

or

p

M
1
α

≥
n−1∑

s=n−σ+τ

(
1

as

n−1∑
t=s

qt

) 1
α

which is a contradiction to (7). Now the proof is complete. �

Next assume that ρn ≡ 1. then by Theorem 1, we have the following
corollary.

Corollary 1. Assume that condition (7) is satisfied. If
∑∞

n=n0
qn =∞,

then every solution of equation (1) is oscillatory.
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Theorem 2. Assume that hypotheses (H1), (H2), and condition (7) hold.
If α > 1, and there exists a positive and non-decreasing sequence {ρn} of
real numbers such that

∞∑
n=n1

(
Mρn+1qn −

an−σ(∆ρn)α+1

ρα+1
n ραn+1(α+ 1)α+1

)
=∞(15)

for sufficiently large n1 ≥ n0, then every solution of equation (1) is oscilla-
tory.

Proof. Suppose {xn} is a positive solution of equation (1). Then as in
the proof of Theorem 1, {zn} satisfies (C1) or (C2) of Lemma 1.

First, assume that {zn} satisfies (C1) of Lemma 1. Define a sequence
{wn} as in Theorem 1. Then wn > 0 for all n ≥ N ≥ n1 ≥ n0, and

∆wn = ∆ρn
an(∆zn)α

zαn−σ
+ ρn+1

∆(an(∆zn)α)

zαn−σ
− ρn+1an+1∆(zn+1)α

zαn−σz
α
n−σ+1

∆zαn−σ.

Using the definition of wn and the monotonicity of an(∆zn)α, we get

∆wn ≤
∆ρn
ρn

wn −Mρn+1qn − ρn+1
an(∆zn)α

zαn−σz
α
n−σ+1

∆zαn−σ

≤ ∆ρn
ρn

wn −Mρn+1qn − ρn+1
wn∆zαn−σ
zαn−σ+1

(16)

for all n ≥ N . By Mean value theorem, we have

(17) ∆zαn−σ = αtα−1∆zn−σ

where zn−σ ≤ t ≤ zn−σ+1. Therefore

∆wn ≤
∆ρn
ρn

wn −Mρn+1qn − αρn+1wn
zα−1
n−σ∆zn−σ

zαn−σ+1

(18)

≤ ∆ρn
ρn

wn −Mρn+1qn − αρn+1wn
∆zn−σ
zn−σ

, n ≥ N.

Now using (38) in the last inequality, we have

∆wn ≤
∆ρn
ρn

wn −Mρn+1qn − αρn+1wn
(an)

1
σ∆zn

a
1
α
n−σzn−σ

≤ ∆ρn
ρn

wn −Mρn+1qn −
αρn+1w

α+ 1
α

n

a
1
α
n−σ

, n ≥ N.



162 E. Thandapani, S. Selvarangam, R. Rama and M. Madhan

Using the inequality Au − Buα+ 1
α ≤ αα

(α1)α+1
Aα+1

Bα with u = wn, A = ∆ρn
ρn

,

B = αρα+1

aαn−σ
in the last inequality, we obtain

∆wn ≤ −Mρn+1qn +
an−σ(∆ρn)α+1

ρα+1
n ραn+1(α+ 1)α+1

, n ≥ N.

Summing the last inequality from N to n− 1, we have

n−1∑
s=N

[
Mρs+1qs −

as−σ(∆ρs)
α+1

ρα+1
s ραs+1(α+ 1)α+1

]
≤ wN − wn ≤ wN .

Letting n→∞ in the last inequality, we obtain a contradiction to (15).
If Case (C2) of Lemma 1 is satisfied by {zn}, then as in the proof of

Theorem 1 we obtain a contradiction to (7). This completes the proof. �

Next we consider the case α = 1.

Theorem 3. Assume hypotheses (H1), (H2) hold, and α = 1. If condi-
tion (3.2) and

(19) lim
n→∞

inf
n−1∑

s=n−σ
qsRs−σ >

1

M
(

σ

σ + 1
)σ+1

are satisfied, then every solution of equation (1) is oscillatory.

Proof. Suppose {xn} is a positive solution of equation (1). Then as in
the proof of Theorem 1, {zn} satisfies Case (C1) or (C2) of Lemma 1. Let
{zn} satisfies Case (C1). By the definition of zn, we have

(20) xn = zn + pnxn−τ ≥ zn for all n ≥ N.

Applying (19) and (H2) in equation (1), we have

∆(an∆zn) +Mqnzn−σ ≤ 0, n ≥ N.

Using Lemma 2 in the last inequality, we obtain

∆(an∆zn) +MqnRn−σan−σ∆zn−σ ≤ 0, n ≥ N.

Let wn = an∆zn for n ≥ N . Then {wn} is a positive solution of

(21) ∆wn +MqnRn−σwn−σ ≤ 0, n ≥ N.

But by Theorem 7.6.1 of [4] and (19), the inequality (21) has no positive
solution, which is a contradiction. Next assume Case (C2) of Lemma 1 holds.
Then as in the proof of Theorem 1 we again obtain a contradiction with (7).
The proof is now completed. �
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3. Examples

In this section, we provide three examples in support of our results.

Example 1. Consider the following second order neutral difference equa-
tion

(22) ∆((∆(xn −
1

2
xn−2))

1
3 ) + 2x

1
3
n−3 = 0, n ≥ 3.

It is easy to see that all conditions of Theorem 1 are satisfied and hence
every solution of equation (22) is oscillatory. In fact {xn} = {(−1)3n} is one
such oscillatory solution of equation (22).

Example 2. Consider the following second order neutral difference equa-
tion

(23) ∆(n3(∆(xn −
1

2
xx−2))3) + (2n2 + 2n+ 1)x3

n−3 = 0, n ≥ 3.

It is easy to see that all conditions of Theorem 2 are satisfied and hence
every solution of equation (23) is oscillatory. In fact {xn} = {(−1)n} is one
such oscillatory solution of equation (23).

Example 3. Consider the following second order neutral difference equa-
tion

(24) ∆2(xn −
1

2
xn−2) + xn−3(1 + x2

n−3) = 0, n ≥ 3.

It is easy to see that all the conditions of Theorem 3 are satisfied and hence
every solution of equation (24) is oscillatory. In fact {xn} = {(−1)n} is one
such oscillatory solution of equation (24).

We conclude the paper with the following remark.

Remark 1. If results presented in [5-7, 10-13, 15, 16] are applied to
examples 1-3, we obtain that the solutions of the equations (6)-(8) are either
oscillatory or tend to zero as n→∞. But our Theorems 1 to 3 give stronger
results in the sense that all solutions of equations (22) to (24) are oscillatory.
Thus our results improve that of in [5-7, 10-13, 15, 16].
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