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Abstract. There exists several concepts of stability for fixed
point iterative methods in literature. The aim of this paper is
to compare two such concepts, namely one due to Harder and the
second one due to Rus, in the class of contractive mappings.
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1. Introduction

For a metric space (X, d) and a self mapping T : X → X, with Fix(T ) 6=
0, let the Picard iteration procedure {xn}∞n=0 defined by xn+1 = Txn, n =
0, 1, . . ., with an arbitrary x0 ∈ X.

In concrete solving problems, instead of the theoretical sequence {xn}∞n=0,
we obtain an approximative sequence {yn}∞n=0, because of rounding errors
and numerical approximations of functions.

Numerical stability of Picard iteration was approached by convergence
of {yn}∞n=0 to the fixed point of T and Ostrowski[19] established the first
stability result for a fixed point iteration procedure.

Harder and Hicks[10] introduced the concept of stability for general fixed
point iteration procedures and made a systematical study by obtaining sta-
bility results that extend Ostrowski’s theorem to mappings satisfying more
general contractive conditions for various fixed point iteration procedures.

Definition 1 ([10]). Let (X, d) be a metric space and T : X → X a
mapping, x0 ∈ X and assume that iteration procedure xn+1 = f (T, xn),
n = 0, 1, 2, . . ., respectively the sequence {xn}∞n=0 converges to a fixed point
p of T .

Let {yn}∞n=0 be an arbitrary sequence in X and set

εn = d (yn+1, f (T, yn)) , n = 0, 1, 2, . . .
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We shall say that the fixed point iteration procedure is T -stable or stable
with respect to T if and only if

lim
n→∞

εn = 0 ⇔ lim
n→∞

yn = p.

Harder and Hicks [12] showed that Picard iteration is T -stable for map-
pings satisfying various contractive definitions and Rhoades [21], [22] ex-
tended some of these results to independent contractive definitions and also
proved stability theorems for additional iteration procedures.

One of the most general contractive definition for which corresponding
stability results have been obtained in arbitrary Banach spaces appears to
be the following class of mappings: for (X, d) a metric space, T : X → X is
supposed to satisfy the condition

(1) d (Tx, Ty) ≤ ad(x, y) + Ld(x, Tx),

for some a ∈ [0, 1), L ≥ 0 and for all x, y ∈ X. This condition appears in
[16] and other related results may be found in [14], [21], [22].

Taking into account the notions of stability in the case of difference equa-
tions, dynamical systems, differential equations, operator theory and numer-
ical analysis, Rus [23] unified these notions and introduced a new concept
of stability for fixed point iterations.

Our aim in this paper is to compare theoretically and practically the
two concepts of stability for fixed point iterations, namely the one given by
Definition 1 (Harder) and the second one introduced by Rus.

The main result shows that the stability in the sense of Rus [23] is more
general than the concept introduced by Harder [10]. To illustrate our the-
oretical results, we give some examples of contractive mappings for which
Picard iteration is not stable in the sense of Harder but which is stable in
the sense of Rus.

2. New stability concept for Picard iterative procedure

Eirola, Nevanlinna and Pilyugin [9] introduced the notion of limit shad-
owing property and Rus [23] adopted it, in order to introduce a new concept
of stability for fixed point iteration procedures which appears to be more
general than the notion of stability introduced by Harder [10].

Definition 2 ([9]). The operator T has the limit shadowing property with
respect to Picard iteration, if

yn ∈ X, n ∈ N, d(yn+1, T yn)→ 0 as n→∞

imply that there exists x0 ∈ X, such that

d(yn, T
nx0)→ 0 as n→∞.
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Definition 3 ([23]). Picard iteration is stable with respect to an operator
T if it is convergent with respect to T and the operator T has the limit
shadowing property with respect to this iterative procedure.

In the following, we study the relationship between the two stability
definitions, the one of Harder [10] and the other one due to Rus [23].

Proposition 1. Let (X, d) be a metric space and T : X → X be a
mapping. Let x0 ∈ X and let use assume that the Picard iteration procedure
xn+1 = Txn, n = 0, 1, 2, . . ., converges to a fixed point p of T .

Suppose that Picard iteration is stable in the sense of Harder. Then, it
is also stable in the sense of Rus.

Proof. Let (X, d) be a metric space and T : X → X a mapping, x0 ∈ X
and let us assume that the iteration procedure xn+1 = Txn, n = 0, 1, 2, . . .,
converges to a fixed point p of T .

Let {yn}∞n=0 be an arbitrary sequence in X and set

εn = d (yn+1, f (T, yn)) , n = 0, 1, 2, . . .

According to Definition 1, the fixed point iteration procedure is T -stable
if and only if

lim
n→∞

εn = 0 ⇔ lim
n→∞

yn = p.

Now, according to Definition 3 of Rus, we take yn ∈ X, n ∈ N, with
d(yn+1, T yn)→ 0 as n→∞.

Then, as long as Picard iteration is T -stable in the sense of Harder, there
exists x0 ∈ X, such that d(yn, xn) ≤ d(yn, p) + d(p, xn) → 0, as n → ∞, so
Picard iteration is also T -stable in the sense of Rus. �

Corollary 1. Let (X, d) be a metric space and T : X → X be a map-
ping satisfying the contraction condition of Zamfirescu, i.e., there exists real
numbers α, β, γ, satisfying 0 ≤ α < 1, 0 ≤ β, γ < 1

2 , such that, for each
x, y ∈ X, at least one of the following is true:

(a) d(Tx, Ty) ≤ αd(x, y);
(b) d(Tx, Ty) ≤ β [d(x, Tx) + d(y, Ty)] ;
(c) d(Tx, Ty) ≤ γ [d(x, Ty) + d(y, Tx)] .
Let x0 ∈ X and let use assume that the Picard iteration procedure xn+1 =

Txn, n = 0, 1, 2, . . ., converges to a fixed point p of T .
Suppose that Picard iteration is stable in the sense of Harder. Then, it is

also stable in the sense of Rus and in this case, we obtain a stability result
corresponding to fixed point theorem of Zamfirescu [27].
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Corollary 2. Let (X, d) be a metric space and T : X → X be a mapping
satisfying Kannan’s contraction condition, i.e., there exists a ∈ [0, 1) such
that for all x, y ∈ X,

d (Tx, Ty) ≤ a [d(x, Tx) + d(y, Ty)] .

Let x0 ∈ X and let use assume that the Picard iteration procedure xn+1 =
Txn, n = 0, 1, 2, . . ., converges to a fixed point p of T .

Suppose that Picard iteration is stable in the sense of Harder. Then, it is
also stable in the sense of Rus and in this case, we obtain a stability result
corresponding to fixed point theorem of Kannan [13].

Corollary 3. Let (X, d) be a metric space and T : X → X be a mapping
satisfying Chatterjea’s contraction condition, i.e., there exists a ∈

[
0, 12
)

such that for all x, y ∈ X,

d (Tx, Ty) ≤ a [d(x, Ty) + d(y, Tx)] .

Let x0 ∈ X and let use assume that the Picard iteration procedure xn+1 =
Txn, n = 0, 1, 2, . . ., converges to a fixed point p of T .

Suppose that Picard iteration is stable in the sense of Harder. Then, it is
also stable in the sense of Rus and in this case, we obtain a stability result
corresponding to fixed point theorem of Chatterjea [8].

Remark 1. The converse of Proposition 1 is not generally true, as shown
by the following example.

Example 1. Let T : [0, 1]→ [0, 1] be identity mapping on [0, 1], that is,
Tx = x, for each x ∈ [0, 1], where [0, 1] is endowed with the usual metric.
Every point in [0, 1] is a fixed point of T and T is nonexpansive, but not a
contraction.

Harder [12] showed in this case that Picard iteration is not T -stable. Let
now study the stability in sense of Rus. For any yn ∈ X, with n ∈ N,
we have to prove that limn→∞ d(yn+1, Tyn) = 0 implies that there exists
x0 ∈ X, such that limn→∞ d(yn, T

nx0) = 0.
Indeed, for any yn ∈ [0, 1], we get Tyn = yn, and suppose that

lim
n→∞

d(yn+1, T yn) = lim
n→∞

d(yn+1, yn) = 0.

Now, there exists x0 ∈ X, where x0 = l := limn→∞ yn such that

lim
n→∞

d(yn, T
nx0) = lim

n→∞
d(yn, x0) = 0.

Hence, Picard iteration is stable in the sense of Rus.
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Corollary 4. Let (X, d) be a metric space and T : X → X a mapping,
x0 ∈ X and let use assume that the sequence {xn}∞n=1 converges to a fixed
point p of T .

If Picard iteration procedure is stable in the sense of Harder, then the
fixed point is unique.

Proof. Suppose that Fix(T ) = {p, q}, with p 6= q. For the sequence
{yn}∞n=0, yn = q, with Tyn = q, we have that limn→∞ d (yn+1, T yn) = 0, but
limn→∞ yn = q 6= p.

So, Picard iteration procedure is stable in the sense of Harder if and only
if Fix(T ) = {p}. �

Remark 2. Corollary 4 has been suggested by Professor I.A. Rus (private
communication).

3. Stability results for mappings satisfying certain
contraction conditions

According to above stability definitions of Rus [23], in the following we
study the stability of Picard iterative procedure with respect to mappings
satisfying some particular contraction conditions.

We precede with a useful result in the sequel.

Lemma 1 ([6]). Let {an}∞n=0, {bn}∞n=0 be sequences of nonnegative num-
bers and a constant h, 0 ≤ h < 1, so that

an+1 ≤ han + bn, n ≥ 0.

• If limn→∞ bn = 0, then limn→∞ an = 0.
• If

∑∞
n=0 bn <∞, then

∑∞
n=0 an <∞.

A generalized contraction condition introduced by Berinde [4], named
almost contraction condition has some surprising properties: it ensures the
convergence of Picard iteration to a fixed point and under adequate condi-
tions, an unique fixed point, but it does not require the sum of the coefficients
on the right side of the contractive condition to be less than 1.

In a metric space (X, d), a self mapping T : X → X is called an almost
contraction if there exists two constants δ ∈ [0, 1) and L ≥ 0 such that

d (Tx, Ty) ≤ δd(x, y) + Ld(y, Tx),

for any x, y ∈ X. Here, δ + L is not restricted to be less than 1.
Almost contractions have a very similar behavior to that of Banach con-

tractions, which explains their name, except for the fact that the fixed point
is generally not unique.
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In order to ensure this uniqueness, Berinde [4] considered another condi-
tion, similar to the above one, namely

(2) d (Tx, Ty) ≤ δud(x, y) + Lud(x, Tx),

for any x, y ∈ X, where δu ∈ [0, 1) and Lu ≥ 0 are constants.
Note that (2) has been used by Osilike [15], [16], Osilike and Udomene

[18] in order to establish several stability results.
Berinde [5] also proved the existence of coincidence points and common

fixed points for a large class of almost contractions in cone metric spaces.
Moreover, Berinde [3] proved the existence of coincidence points and

common fixed points of noncommuting almost contractions in metric spaces
and a method for approximating the coincidence points or the common fixed
points is also constructed, for which both a priori and a posteriori error
estimates are obtained.

Using this condition, we obtain the following stability result:

Theorem 1. Let (X, d) be a metric space and T : X → X be a self
mapping satisfying the contraction condition (2), i.e., for some δu ∈ [0, 1)
and Lu ≥ 0. For all x, y ∈ X, we have

d (Tx, Ty) ≤ δud(x, y) + Lud(x, Tx).

Then, the associated Picard iteration is T -stable in the sense of Defini-
tion 3.

Proof. Osilike [16] established the stability in the sense of Harder for
Picard iteration and using a mapping satisfying (2).

Further, by Proposition 1, stability in the sense of Harder involve stability
in the sense of Rus, so, we get the conclusion. �

Example 2. Let X =
{

0, 12 ,
1
22
, ...
}

with the usual metric. Define T :
X → X by T (0) = 1

2 , T
(

1
2n

)
= 1

2n+1 , n = 1, 2, 3, . . .
Babu, Sandhya and Kameswari [1] proved that T satisfies the almost

contraction condition (2), with δ = 1
2 and L = 1, when δ + L = 3

4 > 1.
Because T has no fixed points, Picard iteration is not stable in the sense

of Harder. Now, we study the stability in the sense of Rus.
For an arbitrary sequence {yn}∞n=0 ∈ X, with limn→∞ d(yn+1, T yn) = 0,

where limn→∞ yn := l, there obviously exists x0 ∈ X, with limn→∞ xn = l,
such that limn→∞ d(yn, xn) = 0.

Because Picard iteration is also convergent with respect to T , then it is
stable in the sense of Rus.
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Babu, Sandhya and Kameswari [1] found a different contractive condition
that ensures the uniqueness of fixed points of almost contractions: if there
exists δ ∈ (0, 1) and L ≥ 0, such that for all x, y ∈ X,

(3) d (Tx, Ty) ≤ δd(x, y) + Lmin {d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} .

Using this condition, we obtain the following stability result:

Theorem 2. Let (X, d) be a metric space and a self mapping T : X → X,
satisfying the almost contraction condition (3), i.e., there exists δ ∈ (0, 1)
and L ≥ 0, such that

d (Tx, Ty) ≤ δd(x, y) + Lmin {d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} ,

for all x, y ∈ X.
Then, the associated Picard iteration is T -stable in the sense of Harder.

Proof. Let the Picard iteration with the initial value x0 ∈ X, {xn}∞n=1,
which converges to a fixed point p of T , see [1].

Let {yn}∞n=0 be an arbitrary sequence in X, satisfying condition

lim
n→∞

d(yn+1, T yn) = 0.

The fixed point iteration is T -stable in the sense of Harder, if this implies

lim
n→∞

d(yn, p) = 0.

We have

d(yn+1, p) ≤ d(yn+1, Tyn) + d(Tyn, Txn) + d(Txn, p)

≤ d(yn+1, Tyn) + δd(xn, yn) + Lmin {d(xn, Txn),

d(yn, Tyn), d(xn, T yn), d(yn, Txn)}+ d(Txn, p).

We discuss four cases.

Case 1.

min {d(xn, Txn), d(yn, Tyn), d(xn, Tyn), d(yn, Txn)} := d(xn, Txn).

Then, d(yn+1, p) ≤ εn+δd(xn, yn), where εn := d(yn+1, Tyn)+Ld(xn, Txn)
+d(Txn, p) → 0, as n → ∞, and applying Lemma 1 for δ ∈ (0, 1), we get
the conclusion.

Case 2.

min {d(xn, Txn), d(yn, T yn), d(xn, T yn), d(yn, Txn)} := d(yn, Tyn).
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As d(yn, T yn) ≤ d(xn, Txn), then, d(yn+1, xn+1) ≤ d(yn+1, Tyn) + δd(xn,
yn) + Ld(yn, T yn) + d(Txn, p) ≤ d(yn+1, T yn) + δd(xn, yn) + Ld(xn, Txn) +
d(Txn, p) ≤ ε′n + δd(xn, yn), where ε′n := d(yn+1, Tyn) + Ld(xn, Txn)+
d(Txn, p) → 0, as n → ∞, and applying again Lemma 1 for δ ∈ (0, 1),
we get the conclusion.

Case 3.

min {d(xn, Txn), d(yn, Tyn), d(xn, Tyn), d(yn, Txn)} := d(xn, T yn).

As d(xn, Tyn) ≤ d(xn, Txn), we follow the same steps as in above case in
order to get the conclusion.

Case 4.

min {d(xn, Txn), d(yn, Tyn), d(xn, Tyn), d(yn, Txn)} := d(yn, Txn).

As d(yn, Txn) ≤ d(xn, Txn), we follow the same steps as in above case in
order to get the conclusion.

In a similar way, we treat the last two cases.
Therefore, the fixed point iteration procedure is stable with respect to T ,

in the sense of Harder. �

Corollary 5. Let (X, d) be a metric space and a self mapping T : X → X,
satisfying the almost contraction condition (3), i.e., there exists δ ∈ (0, 1)
and L ≥ 0, such that

d (Tx, Ty) ≤ δd(x, y) + Lmin {d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} ,

for all x, y ∈ X.
Then, the associated Picard iteration is T -stable in the sense of Rus,

provided it is T -stable in the sense of Harder.

4. Examples

In the following, we give some examples of mappings satisfying certain
contractive conditions for which the associated Picard iteration is not stable
in the sense of Harder but it is actually stable in the sense of Rus.

Example 3 ([20]). Let T : [0, 2]→ [0, 2] be given by

Tx =

{
x
2 , x ∈ [0, 1) ,

2, x ∈ [1, 2] ,

where [0, 2] is endowed with the usual metric. T has two fixed points,
Fix(T ) = {0, 2}.
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Păcurar [20] showed that T is an almost contraction, i.e., there exists the
constants δ = 1

2 ∈ [0, 1) and L = 3 ≥ 0, such that, for any x, y ∈ [0, 2], we
have that

d(Tx, Ty) ≤ δd(x, y) + Ld(y, Tx).

Note that δ + L = 7
2 > 1.

In the following, we show that Picard iteration is not T -stable in sense
of Harder but it is T -stable in sense of Rus.

Let x0 ∈ X and assume that Picard iteration procedure {xn}∞n=1, given
by xn+1 = Txn, n = 0, 1, 2, . . ., converges to a fixed point p of T .

Let {yn}∞n=0 be an arbitrary sequence in X and set

lim
n→∞

εn = lim
n→∞

d (yn+1, T yn) = 0.

According to Definition 1 of Harder, fixed point iteration procedure is
T -stable if and only if

lim
n→∞

εn = 0 ⇔ lim
n→∞

yn = p.

Let x0 ∈ [0, 1), so xn = 1
2nx0, with limn→∞ xn = 0 = p. Then, Txn =

1
2n+1x0.

Now, for an arbitary {yn}∞n=0, with limn→∞ d (yn+1, T yn) = 0, let yn =
2n−1
n ∈ [1, 2], with Tyn = 2. Indeed, we have that

lim
n→∞

d (yn+1, T yn) = lim
n→∞

d

(
2n+ 1

n+ 1
, 2

)
= 0.

Then, limn→∞ d (yn, p) = limn→∞ d
(
2n−1
n , 0

)
= 2 6= 0, so the Picard

iteration is not T -stable in sense of Harder.
On the other hand, according to Definition 3 of Rus, Picard iteration is

Rus-stable if yn ∈ X, n ∈ N, d(yn+1, T yn)→ 0 as n→∞ implies that there
exists x0 ∈ X, such that d(yn, T

nx0)→ 0 as n→∞. We discuss two cases.

Case 1. If yn ∈ [0, 1), then yn = 1
2n y0, with Tyn = 1

2n+1 y0.
So, limn→∞ d(yn+1, T yn) = limn→∞ d

(
1

2n+1 y0,
1

2n+1 y0
)

= 0 and therefore,
there exists x0 ∈ X such that

lim
n→∞

d(yn, xn) = lim
n→∞

d

(
1

2n+1
y0,

1

2n+1
x0

)
= lim

n→∞

1

2n+1
d (y0, x0) = 0.

Case 2. If yn ∈ [1, 2], then yn = 2 = Tyn.
So, d(yn+1, T yn) = d(yn+1, 2) and from limn→∞ d(yn+1, Tyn) = 0 we

obtain that {yn}∞n=0 converges to 2. Now, just take x0 ∈ [1, 2] arbitrary, to
get xn = 2, n ≥ 0, and hence, limn→∞ d(yn, xn) = 0. as required.

Therefore, the Picard iteration is T -stable in sense of Rus.
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Example 4 ([20]). Let T : [0, 1]→ [0, 1] be given by

Tx =

{
2
3x, x ∈

[
0, 12
)
,

2
3x+ 1

3 , x ∈
[
1
2 , 1
]
,

where [0, 1] is endowed with the usual metric.
T has two fixed points, Fix(T ) = {0, 1}.
Păcurar [20] showed that T is an almost contraction, i.e., there exists the

constants δ = 2
3 ∈ [0, 1) and L = 6 ≥ 0, such that, for any x, y ∈ [0, 1], we

have that
d(Tx, Ty) ≤ δd(x, y) + Ld(y, Tx).

Note that δ + L = 6 + 2
3 > 1.

In the following, we show that Picard iteration is not T -stable in sense
of Harder but it is T -stable in sense of Rus.

Let x0 ∈ X and assume that Picard iteration procedure {xn}∞n=1, given
by xn+1 = Txn, n = 0, 1, 2, . . ., converges to a fixed point p of T .

Let {yn}∞n=0 be an arbitrary sequence in X and set

lim
n→∞

εn = lim
n→∞

d (yn+1, T yn) = 0.

According to Definition 1 of Harder, fixed point iteration procedure is
T -stable if and only if

lim
n→∞

εn = 0 ⇔ lim
n→∞

yn = p.

Let x0 ∈
[
0, 12
)
, so xn =

(
2
3

)n
x0, with limn→∞ xn = 0 = p.

Now, for an arbitary {yn}∞n=0, with limn→∞ d (yn+1, Tyn) = 0, let yn =
n−1
n ∈ [12 , 1], with limn→∞ yn = 1 and Tyn = 2

3yn + 1
3 .

Indeed, we have that

lim
n→∞

d (yn+1, Tyn) = lim
n→∞

d

(
n

n+ 1
,
2

3
yn +

1

3

)
= lim

n→∞
d

(
n

n+ 1
,
2

3
· n− 1

n
+

1

3

)
= 0.

Then, limn→∞ d (yn, p) = limn→∞ d
(
n−1
n , 0

)
= 1 6= 0, so the Picard

iteration is not T -stable in sense of Harder.
Now, according to Definition 3 of Rus, if yn ∈ X, n ∈ N, d(yn+1, Tyn)→ 0

as n → ∞ implies that there exists x0 ∈ X, such that d(yn, T
nx0) → 0 as

n→∞. We discuss two cases.

Case 1. If yn ∈
[
0, 12
)
, then Tyn = 2

3yn and by

lim
n→∞

d(yn+1, T yn) = lim
n→∞

d

(
yn+1,

2

3
yn

)
= 0,
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we obtain that limn→∞ yn = 0.
Indeed, by

∣∣yn+1 − 2
3yn
∣∣→ 0, as n→∞, we have yn+1 − 2

3yn = αn, with
αn → 0, as n → ∞. Then, yn+1 = 2

3yn + αn, so yn+1 ≤ 2
3yn + αn, and

applying Lemma 1, we get limn→∞ yn = 0.
There exists x0 ∈

[
0, 12
)
, such that

lim
n→∞

d(yn, xn) = lim
n→∞

d

((
2

3

)n

y0,

(
2

3

)n

x0

)
= lim

n→∞

(
2

3

)n

d (y0, x0) = 0.

Case 2. If yn ∈
[
1
2 , 1
]
, then Tyn = 2

3yn + 1
3 .

So, from limn→∞ d(yn+1, Tyn) = limn→∞ d(yn+1,
2
3yn + 1

3) = 0 it re-
sults that limn→∞ yn = 1 and therefore, there exists x0 ∈

[
1
2 , 1
]
, with

limn→∞ xn = 1, such that

lim
n→∞

d(yn, xn) = lim
n→∞

d

((
2

3

)n

y0 + 1−
(

2

3

)n

,

(
2

3

)n

x0 + 1−
(

2

3

)n)
= 0,

so, the Picard iteration is T -stable in sense of Rus.

Example 5 ([20]). Let T : [0, 1]→ [0, 1] be given by

Tx =

{
x2, x ∈

[
0, 14
)
,

0, x ∈
[
1
4 , 1
]
,

where [0, 1] is endowed with the usual metric. T has a fixed point at 0.
Păcurar [20] showed that T is an almost contraction, i.e., there exists the

constants δ = 1
2 ∈ [0, 1) and L = 1

3 ≥ 0, such that, for any x, y ∈ [0, 1], we
have that

d(Tx, Ty) ≤ δd(x, y) + Ld(y, Tx).

Note that in this case δ + L = 5
6 < 11.

In the following, we show that Picard iteration is T -stable in sense of
Harder and it is also T -stable in sense of Rus.

Let x0 ∈ X and assume that Picard iteration procedure {xn}∞n=1, given
by xn+1 = Txn, n = 0, 1, 2, . . ., converges to a fixed point p of T .

Let {yn}∞n=0 be an arbitrary sequence in X and set

lim
n→∞

εn = lim
n→∞

d (yn+1, T yn) = 0.

According to Definition 1 of Harder, fixed point iteration procedure is
T -stable if and only if

lim
n→∞

εn = 0 ⇔ lim
n→∞

yn = p.

Let x0 ∈
[
0, 14
)
, so xn = (x0)

2n, with limn→∞ xn = 0 = p.
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Now, for an arbitary {yn}∞n=0, we discuss two cases.

Case 1. If yn ∈
[
1
4 , 1
]
, then Tyn = 0 and from limn→∞ d (yn+1, Tyn) = 0,

it results that limn→∞ yn = 0 and this is a contradiction, as long as yn ∈[
1
4 , 1
]
.

Case 2. If yn ∈
[
0, 14
)
, then Tyn = y2n and from limn→∞ d (yn+1, Tyn) =

= limn→∞ d
(
yn+1, y

2
n

)
= 0, we obtain that limn→∞ yn = 0.

Indeed, from
∣∣yn+1 − y2n

∣∣→ 0, as n→∞, we have that

(*) yn+1 = y2n + αn,

with αn → 0, as n→∞. Denote limn→∞ yn := l and by taking to the limit
in (∗), we get l = l2, so l = 0, or l = 1.

Because yn ∈
[
0, 14
)
, we have l = 0, so limn→∞ yn = 0.

Then, limn→∞ d (yn, p) = 0, so the Picard iteration is T -stable in sense
of Harder.

According to Proposition 1, if Picard iteration is T -stable in the sense of
Harder, it is also stable in the sense of Rus.

Example 6 ([20]). Let T : [0, 1]→ [0, 1] be given by

Tx =

{
2
3 , x ∈ [0, 1) ,

0, x = 1,

where [0, 1] is endowed with the usual metric.
T has one fixed point at 2

3 , Fix(T ) =
{
2
3

}
.

Păcurar [20] showed that T is an almost contraction, i.e., there exists the
constants δ = 2

3 ∈ [0, 1) and L ≥ δ ≥ 0, such that, for any x, y ∈ [0, 1], we
have that

d(Tx, Ty) ≤ δd(x, y) + Ld(y, Tx).

Note that in this case δ + L ≥ 4
3 > 1.

In the following, we show that Picard iteration is T -stable in sense of
Harder and hence it is also T -stable in sense of Rus.

Let x0 ∈ X and assume that Picard iteration procedure {xn}∞n=1, given
by xn+1 = Txn, n = 0, 1, 2, . . ., converges to a fixed point p of T .

Let {yn}∞n=0 be an arbitrary sequence in X and set

lim
n→∞

εn = lim
n→∞

d (yn+1, T yn) = 0.

According to Definition 1 of Harder, fixed point iteration procedure is
T -stable if and only if

lim
n→∞

εn = 0 ⇔ lim
n→∞

yn = p.
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For any x0 ∈ [0, 1], xn = 2
3 , so limn→∞ xn = 2

3 = p.
Now, for an arbitary {yn}∞n=0, we discuss two cases.

Case 1. If yn = 1, then Tyn = 0 and then limn→∞ d(yn+1, T yn) = 1 6= 0
and it is a contradiction.

Case 2. If yn ∈ [0, 1), then Tyn = 2
3 and from limn→∞ d (yn+1, Tyn) = 0,

it results that limn→∞ yn = 2
3 .

Then, limn→∞ d (yn, p) = 0, so the Picard iteration is T -stable in sense
of Harder.

According to Proposition 1, if Picard iteration is T -stable in the sense of
Harder, it is also stable in the sense of Rus.

Example 7 ([20]). Let T : [0, 1]→ [0, 1] be given by

Tx =

{
0, x ∈

[
0, 12
]
,

x
2 , x ∈

(
1
2 , 1
]
,

where [0, 1] is endowed with the usual metric.
T has one fixed point at 1

2 , Fix(T ) =
{
1
2

}
.

Păcurar [20] showed that T is an almost contraction, i.e., there exists two
constants δu = 1

2 ∈ [0, 1) and Lu = 1 ≥ 0, such that, for any x, y ∈ [0, 1], we
have that

d(Tx, Ty) ≤ δud(x, y) + Lud(x, Tx).

Note that in this case δ + L = 3
2 > 1.

In the following, we show that Picard iteration is T -stable in sense of
Harder and it is also T -stable in sense of Rus.

Let x0 ∈ X and assume that Picard iteration procedure {xn}∞n=1, given
by xn+1 = Txn, n = 0, 1, 2, . . ., converges to a fixed point p of T .

Let {yn}∞n=0 be an arbitrary sequence in X and set

lim
n→∞

εn = lim
n→∞

d (yn+1, T yn) = 0.

According to Definition 1 of Harder, fixed point iteration procedure is
T -stable if and only if

lim
n→∞

εn = 0 ⇔ lim
n→∞

yn = p.

For any x0 ∈ [0, 1], xn = 2
3 , so limn→∞ xn = 2

3 = p.
For any x0 ∈ [0, 1], we have that limn→∞ xn = 0 = p.
Now, for an arbitary {yn}∞n=0, we discuss two cases.

Case 1. If yn ∈
(
1
2 , 1
]
, then Tyn = yn

2 and by limn→∞ d (yn+1, Tyn) = 0,
it results that limn→∞ yn = 0 and it is a contradiction, as long as yn ∈

(
1
2 , 1
]
.
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Case 2. If yn ∈
[
0, 12
]
, then Tyn = 0 and by limn→∞ d(yn+1, T yn) = 0,

we obtain that limn→∞ yn = 0.
Hence, limn→∞ d (yn, p) = 0, so the Picard iteration is T -stable in sense

of Harder.
According to Proposition 1, if Picard iteration is T -stable in the sense of

Harder, it is also stable in the sense of Rus.

Example 8 ([12]). Let T : [0, 1]→ [0, 1] be given by

Tx =


1
2 , x ∈

[
0,

1

2

]
,

0, x ∈
(

1

2
, 1

]
,

where [0, 1] is endowed with the usual metric. T is continuous at each point
of [0, 1] except at 1

2 .
T has an unique fixed point at 1

2 , Fix(T ) =
{
1
2

}
. For each x, y ∈ [0, 1],

with x 6= y, T satisfies the condition

d(Tx, Ty) < max {d(x, Tx), d(y, Ty)} ,

and also we showed that the associated Picard iteration is not T -stable in
the sense of Harder, by using a divergent sequence {yn}∞n=0 = 1

2 ,
1
4 ,

1
2 +

1
42
, 1
43
, 12 + 1

44
, 1
45
, · · · .

In the following, we prove that it is stable in the sense of Rus.
By Definition 3 of Rus, for any yn ∈ [0, 1], we have that limn→∞ d(yn+1,

Tyn) = 0 and it implies that there exists x0 ∈ X, such that limn→∞ d(yn,
Tnx0) = 0.

From limn→∞ d(yn+1, T yn) = 0, it results that yn ∈
[
0, 12
]

and hence,
Tyn = 1

2 and limn→∞ yn = 1
2 .

Now, for any x0 ∈ [0, 1], we have xn = 1
2 , n ≥ 2, and so limn→∞ xn = 1

2 .
Hence,

lim
n→∞

d(yn, T
nx0) = lim

n→∞
d(yn, xn) = 0,

so, Picard iteration is T -stable in the sense of Rus.

Example 9 ([12]). Let T : [0, 1]→ [0, 1] be given by

Tx =

{
0, x ∈

[
0, 12
]
,

1
2 , x ∈

(
1
2 , 1
]
,

where [0, 1] is endowed with the usual metric. T is continuous at every point
of [0, 1] except at 1

2 .
T has an unique fixed point at 0, Fix(T ) = {0}.
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For each x, y ∈ [0, 1], with x 6= y, T satisfies the condition

d (Tx, Ty) < max {d (x, Ty) , d (y, Tx)} ,

and also showed that the associated Picard iteration is not T -stable in the
sense of Harder, using {yn}∞n=0, with yn = n+2

2n , n ≥ 1.
In the following, we prove that it is stable in the sense of Rus.
According to Definition 3 of Rus, for any yn ∈ [0, 1], we have to prove that

limn→∞ d(yn+1, T yn) = 0 implies that there exists x0 ∈ X, such that

lim
n→∞

d(yn, T
nx0) = 0.

We discuss two cases.

Case 1. If yn ∈
[
0, 12
]
, then Tyn = 0, and hence from limn→∞ d(yn+1, T yn)

= 0, it results that limn→∞ yn = 0.

Case 2. If yn ∈
(
1
2 , 1
]
, then Tyn = 1

2 , and hence from limn→∞ d(yn+1, T yn)
= 0, it results that limn→∞ yn = 1

2 .
Now, definitely, there exists x0 ∈ [0, 1], such that

lim
n→∞

d(yn, T
nx0) = lim

n→∞
d(yn, xn) = 0,

so, Picard iteration is T -stable in the sense of Rus.

Example 10 ([12]). Let T : R→
{

0, 14 ,
1
2

}
be defined by

Tx =


1
2 , x < 0,

1
4 , x ∈

[
0,

1

2

]
,

0, x > 1
2 ,

where R is endowed with the usual metric. T is continuous at every point
in R except at 0 and 1

2 .
The only fixed point of T is 1

4 , Fix(T ). For each x, y ∈ R, with x 6= y, T
satisfies the condition

d(Tx, Ty) < max

{
d(x, y),

d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2

}
,

and also showed that the associated Picard iteration is not T -stable in the
sense of Harder by using the sequence {yn}∞n=0 of real numbers yn = 1

2 + 1
n ,

for each positive odd integer and yn = − 1
n , for each positive even integer.

In the following, we prove that it is stable in the sense of Rus. According
to Definition 3 of Rus, for any yn ∈ R, we have that limn→∞ d(yn+1, T yn) = 0
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and it implies that there exists x0 ∈ R, such that limn→∞ d(yn, T
nx0) = 0.

We discuss three cases.

Case 1. If yn < 0, then Tyn = 1
2 , so, from d(yn+1, Tyn) = d(yn+1,

1
2)→

0, as n→∞, it results that limn→∞ yn = 1
2 , and this is a contradiction, as

long as yn < 0.

Case 2. If yn >
1
2 , then Tyn = 0, so, from d(yn+1, T yn) = d(yn+1, 0)→

0, as n → ∞, it results that limn→∞ yn = 0, and this is another contradic-
tion, as long as yn >

1
2 .

Case 3. If yn ∈
[
0,

1

2

]
, then Tyn = 1

4 , so, from d(yn+1, Tyn) =

d(yn+1,
1
4)→ 0, as n→∞, it results that limn→∞ yn = 1

4 .
Now, definitely, there exists x0 ∈ R, such that limn→∞ xn = 1

4 and
limn→∞ d(yn, T

nx0) = limn→∞ d(yn, xn) = 0, so, Picard iteration is T -stable
in the sense of Rus.

5. Concluding remarks

A fixed point iteration procedure which is stable in the sense of Harder is
also stable in the sense of Rus. But the reverse is not generally true, because
Harder stability implies the uniqueness of fixed point, while the new one of
Rus does not.

The stability of a fixed point iteration procedure in the sense of Rus may
imply stability in the sense of Harder, if and only if the iterative procedure
converges to the fixed point.

On the other hand, there are many examples of mappings that satisfy
certain contractive conditions and for which the associated Picard iteration
is not stable in the sense of Harder but it is actually stable in the sense of
Rus.

In above examples, there are some nonexpansive mappings and almost
contractions for which the associated Picard iteration is stable in the sense
of Rus but it is not stable in the sense of Harder.

Open problem: Study the stability in the sense of Rus for general
nonexpansive mappings as well as for general almost contractions (that do
not satisfy a certain uniqueness condition).
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