
F A S C I C U L I M A T H E M A T I C I

Nr 57 2016
DOI:10.1515/fascmath-2016-0013

George A. Anastassiou

FRACTIONAL SELF ADJOINT OPERATOR POINCARÉ
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1. Background

LetA be a selfadjoint linear operator on a complex Hilbert space (H; 〈·, ·〉).
The Gelfand map establishes a ∗−isometrically isomorphism Φ between the
set C (Sp (A)) of all continuous functions defined on the spectrum of A,
denoted Sp (A), and the C∗-algebra C∗ (A) generated by A and the identity
operator 1H on H as follows (see e.g. [6, p. 3]):

For any f, g ∈ C (Sp (A)) and any α, β ∈ C we have
(i) Φ (αf + βg) = αΦ (f) + βΦ (g) ;
(ii) Φ (fg) = Φ (f) Φ (g) (the operation composition is on the right) and

Φ
(
f
)

= (Φ (f))∗ ;
(iii) ‖Φ (f)‖ = ‖f‖ := sup

t∈Sp(A)
|f (t)| ;

(iv) Φ (f0) = 1H and Φ (f1) = A, where f0 (t) = 1 and f1 (t) = t, for
t ∈ Sp (A) .

With this notation we define

f (A) := Φ (f) , for all f ∈ C (Sp (A)) ,

and we call it the continuous functional calculus for a selfadjoint operator A.
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If A is a selfadjoint operator and f is a real valued continuous function
on Sp (A) then f (t) ≥ 0 for any t ∈ Sp (A) implies that f (A) ≥ 0, i.e.
f (A) is a positive operator on H. Moreover, if both f and g are real valued
continuous functions on Sp (A) then the following important property holds:

(P ) f (t) ≥ g (t) for any t ∈ Sp (A), implies that f (A) ≥ g (A) in the
operator order of B (H) (the Banach algebra of all bounded linear operators
from H into itself).

Equivalently, we use (see [5], pp. 7-8):
Let U be a selfadjoint operator on the complex Hilbert space (H, 〈·, ·〉)

with the spectrum Sp (U) included in the interval [m,M ] for some real
numbers m < M and {Eλ}λ be its spectral family.

Then for any continuous function f : [m,M ]→ C, it is well known that we
have the following spectral representation in terms of the Riemann-Stieljes
integral:

〈f (U)x, y〉 =

∫ M

m−0
f (λ) d (〈Eλx, y〉) ,

for any x, y ∈ H. The function gx,y (λ) := 〈Eλx, y〉 is of bounded variation
on the interval [m,M ], and

gx,y (m− 0) = 0 and gx,y (M) = 〈x, y〉 ,

for any x, y ∈ H. Furthermore, it is known that gx (λ) := 〈Eλx, x〉 is
increasing and right continuous on [m,M ].

We have also the formula

〈f (U)x, x〉 =

∫ M

m−0
f (λ) d (〈Eλx, x〉) , ∀ x ∈ H.

As a symbol we can write

f (U) =

∫ M

m−0
f (λ) dEλ.

Above, m = min {λ|λ ∈ Sp (U)} := minSp (U), M = max {λ|λ ∈ Sp (U)} :=
maxSp (U). The projections {Eλ}λ∈R , are called the spectral family of A,
with the properties:

(a) Eλ ≤ Eλ′ for λ ≤ λ′;
(b) Em−0 = 0H (zero operator), EM = 1H (identity operator) and Eλ+0 =

Eλ for all λ ∈ R.
Furthermore

Eλ := ϕλ (U) , ∀ λ ∈ R,
is a projection which reduces U , with

ϕλ (s) :=

{
1, for −∞ < s ≤ λ,
0, for λ < s < +∞.
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The spectral family {Eλ}λ∈R determines uniquely the self-adjoint opera-
tor U and vice versa.

For more on the topic see [7], pp. 256-266, and for more detalis see there
pp. 157-266. See also [4].

Some more basics are given (we follow [5], pp. 1-5):
Let (H; 〈·, ·〉) be a Hilbert space over C. A bounded linear operator A

defined on H is selfjoint, i.e., A = A∗, iff 〈Ax, x〉 ∈ R, ∀ x ∈ H, and if A is
selfadjoint, then

‖A‖ = sup
x∈H:‖x‖=1

|〈Ax, x〉| .

Let A,B be selfadjoint operators on H. Then A ≤ B iff 〈Ax, x〉 ≤ 〈Bx, x〉,
∀ x ∈ H.

In particular, A is called positive if A ≥ 0.
Denote by

P :=

{
ϕ (s) :=

n∑
k=0

αks
k|n ≥ 0, αk ∈ C, 0 ≤ k ≤ n

}
.

If A ∈ B (H) is selfadjoint, and ϕ (s) ∈ P has real coefficients, then ϕ (A) is
selfadjoint, and

‖ϕ (A)‖ = max {|ϕ (λ)| , λ ∈ Sp (A)} .

If ϕ is any function defined on R we define

‖ϕ‖A := sup {|ϕ (λ)| , λ ∈ Sp (A)} .

If A is selfadjoint operator on Hilbert space H and ϕ is continuous and given
that ϕ (A) is selfadjoint, then ‖ϕ (A)‖ = ‖ϕ‖A. And if ϕ is a continuous real
valued function so it is |ϕ|, then ϕ (A) and |ϕ| (A) = |ϕ (A)| are selfadjoint
operators (by [5], p. 4, Theorem 7).

Hence it holds

‖|ϕ (A)|‖ = ‖|ϕ|‖A = sup {||ϕ (λ)|| , λ ∈ Sp (A)}
= sup {|ϕ (λ)| , λ ∈ Sp (A)} = ‖ϕ‖A = ‖ϕ (A)‖ ,

that is
‖|ϕ (A)|‖ = ‖ϕ (A)‖ .

For a selfadjoint operator A ∈ B (H) which is positive, there exists a
unique positive selfadjoint operator B :=

√
A ∈ B (H) such that B2 = A,

that is
(√

A
)2

= A. We call B the square root of A.

Let A ∈ B (H), then A∗A is selfadjoint and positive. Define the ”operator
absolute value” |A| :=

√
A∗A. If A = A∗, then |A| =

√
A2.
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For a continuous real valued function ϕ we observe the following:

|ϕ (A)| (the functional absolute value) =

∫ M

m−0
|ϕ (λ)| dEλ

=

∫ M

m−0

√
(ϕ (λ))2dEλ =

√
(ϕ (A))2

= |ϕ (A)| (operator absolute value),

where A is a selfadjoint operator.
That is we have

|ϕ (A)| (functional absolute value) = |ϕ (A)| (operator absolute value).

2. Main results

Let A be a selfadjoint operator in the Hilbert space H with the spectrum
Sp (A) ⊆ [m,M ], m < M ; m,M ∈ R.

In the next we obtain fractional Poincaré and Sobolev type inequalities
in the operator order of B (H) (the Banach algebra of all bounded linear
operators from H into itself). All of our functions next in this article are
real valued.

We give

Definition 1 ([1], p. 270). Let ν > 0, n := dνe (ceiling of ν), f ∈
ACn ([m,M ]) (i.e. f (n−1) is absolutely continuous on [m,M ], that is in
AC ([m,M ])). We define the left Caputo fractional derivative

(1) (Dν
∗mf) (z) :=

1

Γ (n− ν)

∫ z

m
(z − t)n−ν−1 f (n) (t) dt,

which exists almost everywhere for z ∈ [m,M ].
Notice that D0

∗mf = f , and Dn
∗mf = f (n).

We present the operator representation formula

Theorem 1. Let A be a selfadjoint operator in the Hilbert space H with
the spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M , {Eλ}λ be its

spectral family, I be a closed subinterval on R with [m,M ] ⊂
◦
I (the interior

of I) and n ∈ N, with n := dνe, ν > 0. We consider f ∈ ACn ([m,M ]) (i.e.
f (n−1) ∈ AC ([m,M ]), absolutely continuous functions), where f : I → R.

Then

(2) f (A) =
n−1∑
k=0

f (k) (m)

k!
(A−m1H)k +Rn (f,m,M) ,
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where

(3) Rn (f,m,M) =
1

Γ (ν)

∫ M

m−0

(∫ λ

m
(λ− t)ν−1 (Dν

∗mf) (t) dt

)
dEλ.

Proof. We have by left Caputo fractional Taylor’s formula [3], p. 54,
that

(4) f (λ) =
n−1∑
k=0

f (k) (m)

k!
(λ−m)k +

1

Γ (ν)

∫ λ

m
(λ− t)ν−1 (Dν

∗mf) (t) dt,

∀ λ ∈ [m,M ].
Then we integrate (4) against Eλ to get∫ M

m−0
f (λ) dEλ =

n−1∑
k=0

f (k) (m)

k!

∫ M

m−0
(λ−m)k dEλ(5)

+
1

Γ (ν)

∫ M

m−0

(∫ λ

m
(λ− t)ν−1 (Dν

∗mf) (t) dt

)
dEλ.

By the spectral representation theorem we obtain

f (A) =
n−1∑
k=0

f (k) (m)

k!
(A−m1H)k(6)

+
1

Γ (ν)

∫ M

m−0

(∫ λ

m
(λ− t)ν−1 (Dν

∗mf) (t) dt

)
dEλ,

proving the claim. �

Remark 1. In (6) assume that f (k) (m) = 0, k = 0, ..., n− 1. Then

(7) f (A) =
1

Γ (ν)

∫ M

m−0

(∫ λ

m
(λ− t)ν−1 (Dν

∗mf) (t) dt

)
dEλ.

Therefore it holds

(8) 〈f (A)x, y〉 =
1

Γ (ν)

∫ M

m−0

(∫ λ

m
(λ− t)ν−1 (Dν

∗mf) (t) dt

)
d 〈Eλx, y〉 ,

∀ x, y ∈ H.
The function gx,y (λ) := 〈Eλx, y〉 is of bounded variation on the interval

[m,M ] and

(9) gx,y (m− 0) = 0 and gx,y (M) = 〈x, y〉 , ∀ x, y ∈ H.
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It is also well known that gx (λ) := 〈Eλx, x〉 is nondecreasing and right
continuous on [m,M ].

One has

(10) 〈f (A)x, x〉 =
1

Γ (ν)

∫ M

m−0

(∫ λ

m
(λ− t)ν−1 (Dν

∗mf) (t) dt

)
d 〈Eλx, x〉 ,

∀ x ∈ H.

Remark 2 (all as in Theorem 1, Remark 1). Let p, q > 1 : 1
p + 1

q = 1,

with ν > 1
q . Then∫ λ

m
(λ− t)ν−1 |(Dν

∗mf) (t)| dt(11)

≤
(∫ λ

m
(λ− t)p(ν−1) dt

) 1
p
(∫ λ

m
|(Dν
∗mf) (t)|q dt

) 1
q

≤ (λ−m)
p(ν−1)+1

p

(p (ν − 1) + 1)
1
p

(∫ M

m
|(Dν
∗mf) (t)|q dt

) 1
q

(12)

=
(λ−m)

ν−1+ 1
p

(p (ν − 1) + 1)
1
p

‖Dν
∗mf‖q,[m,M ]

=
(λ−m)

ν− 1
q

(p (ν − 1) + 1)
1
p

‖Dν
∗mf‖q,[m,M ] .

We have proved that∣∣∣∣∫ λ

m
(λ− t)ν−1 (Dν

∗mf) (t) dt

∣∣∣∣ ≤ ∫ λ

m
(λ− t)ν−1 |(Dν

∗mf) (t)| dt(13)

≤ (λ−m)
ν− 1

q

(p (ν − 1) + 1)
1
p

‖Dν
∗mf‖q,[m,M ] ,

∀ λ ∈ [m,M ].
Therefore it holds

|〈f (A)x, x〉|
(10)

≤ 1

Γ (ν)

∫ M

m−0

(∫ λ

m
(λ− t)ν−1(Dν

∗mf) (t) dt

)
d 〈Eλx, x〉(14)

≤
‖Dν
∗mf‖q,[m,M ]

(p (ν − 1) + 1)
1
p Γ (ν)

∫ M

m−0
(λ−m)

ν− 1
q d 〈Eλx, x〉

=
‖Dν
∗mf‖q,[m,M ]

(p (ν − 1) + 1)
1
p Γ (ν)

〈
(A−m1H)

ν− 1
q x, x

〉
,

∀x ∈ H.
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We have proved

Theorem 2. All as in Theorem 1. Assume further f (k) (m) = 0, k =
0, 1, ..., n− 1. Let p, q > 1 : 1

p + 1
q = 1, with ν > 1

q . Then

(15) |〈f (A)x, x〉| ≤
‖Dν
∗mf‖q,[m,M ]

(p (ν − 1) + 1)
1
p Γ (ν)

〈
(A−m1H)

ν− 1
q x, x

〉
,

∀x ∈ H.
Inequality (15) means that

(16) ‖f (A)‖ ≤
‖Dν
∗mf‖q,[m,M ]

(p (ν − 1) + 1)
1
p Γ (ν)

∥∥∥(A−m1H)
ν− 1

q

∥∥∥
and in particular,

(17) f (A) ≤
‖Dν
∗mf‖q,[m,M ]

(p (ν − 1) + 1)
1
p Γ (ν)

(A−m1H)
ν− 1

q .

We need

Definition 2. Let the real valued function f ∈ C ([m,M ]), and we con-
sider

(18) g (t) =

∫ t

m
f (z) dz, ∀ t ∈ [m,M ] ,

then g ∈ C ([m,M ]).
We denote by

(19)

∫ A

m1H

f := Φ (g) = g (A) .

We understand and write that (r > 0)

gr (A) = Φ (gr) =:

(∫ A

m1H

f

)r
.

Clearly
(∫ A

m1H
f
)r

is a self adjoint operator on H, for any r > 0.

We will use
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Theorem 3 ([1], p. 451). Let ν ≥ γ + 1, γ ≥ 0, n := dνe (d·e ceiling of
number). Assume f ∈ Cn ([m,M ]) such that f (k) (m) = 0, k = 0, 1, ..., n−1.
Let p, q > 1 : 1

p + 1
q = 1. Then

∫ λ

m
|Dγ
∗mf (t)|q dt(20)

≤

[
(λ−m)q(ν−γ)

(Γ (ν − γ))q (p (ν − γ − 1) + 1)
q
p q (ν − γ)

]∫ λ

m
|Dν
∗mf (t)|q dt,

∀ λ ∈ [m,M ].

Note: By Proposition 15.114 ([1], p. 388) we have that Dν
∗mf,D

γ
∗mf ∈

C ([m,M ]).
Using (20) and properties (P) and (ii), we derive the operator Poincaré

inequality:

Theorem 4. All as in Theorem 3. Then∫ A

m1H

|Dγ
∗mf |

q(21)

≤

[
(A−m1H)q(ν−γ)

(Γ (ν − γ))q (p (ν − γ − 1) + 1)
q
p q (ν − γ)

](∫ A

m1H

|Dν
∗mf |

q

)
.

We will use

Theorem 5 ([1], p. 493). Let ν ≥ γ + 1, γ ≥ 0, n := dνe. Assume
f ∈ Cn ([m,M ]) such that f (k) (m) = 0, k = 0, 1, ..., n − 1. Let p, q > 1 :
1
p + 1

q = 1, r ≥ 1. Then

(∫ λ

m
|Dγ
∗mf (t)|r dt

) 1
r

(22)

≤

[
(λ−m)

ν−γ+ 1
r
− 1
q

(Γ (ν − γ)) (p (ν − γ − 1) + 1)
1
p

] (∫ λ
m |D

ν
∗mf (t)|q dt

) 1
q

[
r
(
ν − γ − 1

q

)
+ 1
] 1
r

,

∀ λ ∈ [m,M ].

Applying (22), using properties (P) and (ii), we get the following operator
Sobolev type inequality:
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Theorem 6. All as in Theorem 5. Then(∫ A

m1H

|Dγ
∗mf |

r

) 1
r

(23)

≤ (A−m1H)
ν−γ+ 1

r
− 1
q

(Γ (ν − γ)) (p (ν − γ − 1) + 1)
1
p

(∫ A
m1H
|Dν
∗mf |

q
) 1
q

[
r
(
ν − γ − 1

q

)
+ 1
] 1
r

.

Next we follow [1], p. 8.

Definition 3. Let ν > 0, n := [ν] (integral part), and α := ν − n
(0 < α < 1). Let f ∈ C ([m,M ]) and define

(24) (Jmν f) (z) =
1

Γ (ν)

∫ z

m
(z − t)ν−1 f (t) dt,

all m ≤ z ≤ M , where Γ is the gamma function, the left generalized
Riemann-Liouville integral. We define the subspace Cνm ([m,M ]) of Cn ([m,M ]):

(25) Cνm ([m,M ]) :=
{
f ∈ Cn ([m,M ]) : Jm1−αf

(n) ∈ C1 ([m,M ])
}
.

So let f ∈ Cνm ([m,M ]); we define the left generalized ν-fractional deriva-
tive (of Canavati type) of f over [m,M ] as

(26) Dν
mf :=

(
Jm1−αf

(n)
)′
.

Notice that

(27)
(
Jm1−αf

(n)
)

(z) =
1

Γ (1− α)

∫ z

m
(z − t)−α f (n) (t) dt

exists for f ∈ Cνm ([m,M ]), all m ≤ z ≤M .
Also we notice that Dν

mf ∈ C ([m,M ]), Dn
mf = f (n), n ∈ N; D0

mf = f .

We need

Theorem 7 ([1], p. 9). Let f ∈ Cνm ([m,M ]). Then
(i) for ν ≥ 1, we have

f (λ) = f (m) + f ′ (m) (λ−m) +
f ′′ (m)

2
(λ−m)2 + ...(28)

+ f (n−1) (m)
(λ−m)n−1

(n− 1)!
+

1

Γ (ν)

∫ λ

m
(λ− t)ν−1(Dν

mf) (t) dt,

(ii) if 0 < ν < 1 we get

(29) f (λ) =
1

Γ (ν)

∫ λ

m
(λ− t)ν−1 (Dν

mf) (t) dt,

∀ λ ∈ [m,M ].
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We present the following operator representation formula:

Theorem 8. Theorem 8. Let A be a selfadjoint operator in the Hilbert
space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M ,
{Eλ}λ be its spectral family, [m,M ] ⊂ (a, b) and n ∈ N, where n := dνe,
ν > 0. We consider f ∈ Cνm ([m,M ]), where f : [a, b]→ R.

Then
(i) for ν ≥ 1, we have

(30) f (A) =

n−1∑
k=0

f (k) (m)

k!
(A−m1H)k +R∗n (f,m,M) ,

where

(31) R∗n (f,m,M) =
1

Γ (ν)

∫ M

m−0

(∫ λ

m
(λ− t)ν−1 (Dν

mf) (t) dt

)
dEλ.

(ii) if 0 < ν < 1 we get

(32) f (A) =
1

Γ (ν)

∫ M

m−0

(∫ λ

m
(λ− t)ν−1 (Dν

mf) (t) dt

)
dEλ.

Proof. We integrate (28), (29) against Eλ, apply spectral representation
theorem. �

Remark 3. In (30) (ν ≥ 1) we assume f (k) (m) = 0, k = 0, 1, ..., n − 1,
then

(33) f (A) =
1

Γ (ν)

∫ M

m−0

(∫ λ

m
(λ− t)ν−1 (Dν

mf) (t) dt

)
dEλ.

We have

(34) 〈f (A)x, x〉 =
1

Γ (ν)

∫ M

m−0

(∫ λ

m
(λ− t)ν−1 (Dν

mf) (t) dt

)
d 〈Eλx, x〉 ,

∀ x ∈ H.
Let p, q > 1 : 1

p + 1
q = 1, with ν > 1

q . Then∣∣∣∣∫ λ

m
(λ− t)ν−1 (Dν

mf) (t) dt

∣∣∣∣ ≤ ∫ λ

m
(λ− t)ν−1 |(Dν

mf) (t)| dt(35)

≤ (λ−m)
ν− 1

q

(p (ν − 1) + 1)
1
p

‖Dν
mf‖q,[m,M ] ,

∀ λ ∈ [m,M ].
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Hence

|〈f (A)x, x〉|
(34)

≤ 1

Γ (ν)

∫ M

m−0

∣∣∣∣∫ λ

m
(λ− t)ν−1 (Dν

mf) (t) dt

∣∣∣∣ d 〈Eλx, x〉(36)

≤
‖Dν

mf‖q,[m,M ]

(p (ν − 1) + 1)
1
p Γ (ν)

∫ M

m−0
(λ−m)

ν− 1
q d 〈Eλx, x〉

=
‖Dν

mf‖q,[m,M ]

(p (ν − 1) + 1)
1
p Γ (ν)

〈
(A−m1H)

ν− 1
q x, x

〉
, ∀x ∈ H.

We have proved

Theorem 9. All as in Theorem 8. Let ν > 0. In case of ν ≥ 1, assume
further f (k) (m) = 0, k = 0, 1, ..., n− 1. Let p, q > 1 : 1

p + 1
q = 1, with ν > 1

q .
Then

(37) |〈f (A)x, x〉| ≤
‖Dν

mf‖q,[m,M ]

(p (ν − 1) + 1)
1
p Γ (ν)

〈
(A−m1H)

ν− 1
q x, x

〉
,

∀x ∈ H.
Inequality (37) means that

(38) ‖f (A)‖ ≤
‖Dν

mf‖q,[m,M ]

(p (ν − 1) + 1)
1
p Γ (ν)

∥∥∥(A−m1H)
ν− 1

q

∥∥∥ ,
and in particular,

(39) f (A) ≤

(
‖Dν

mf‖q,[m,M ]

(p (ν − 1) + 1)
1
p Γ (ν)

)
(A−m1H)

ν− 1
q .

We will use

Theorem 10 ([1], p. 447). Let ν ≥ γ + 1, γ ≥ 0, n := [ν]. Assume
f ∈ Cνm ([m,M ]) such that f (k) (m) = 0, k = 0, 1, ..., n − 1. Let p, q > 1 :
1
p + 1

q = 1. Then∫ λ

m
|Dγ

mf (t)|q dt(40)

≤

[
(λ−m)q(ν−γ)

(Γ (ν − γ))q (p (ν − γ − 1) + 1)
q
p q (ν − γ)

]∫ λ

m
|Dν

mf (t)|q dt,

∀ λ ∈ [m,M ] .

By Remark 3.4, [1], p. 26, Dγ
mf ∈ C ([m,M ]) .

Using (40) and properties (P) and (ii), we derive the operator Poincaré
inequality:
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Theorem 11. All as in Theorem 10. Then∫ A

m1H

|Dγ
mf |

q(41)

≤

[
(A−m1H)q(ν−γ)

(Γ (ν − γ))q (p (ν − γ − 1) + 1)
q
p q (ν − γ)

](∫ A

m1H

|Dν
mf |

q

)
.

We will use

Theorem 12 ([1], p. 485). Let ν ≥ γ + 1, γ ≥ 0, n := [ν]. Assume
f ∈ Cνm ([m,M ]) such that f (k) (m) = 0, k = 0, 1, ..., n − 1. Let p, q > 1 :
1
p + 1

q = 1, r ≥ 1. Then

(∫ λ

m
|Dγ

mf (t)|r dt
) 1
r

(42)

≤

[
(λ−m)

ν−γ+ 1
r
− 1
q

(Γ (ν − γ)) (p (ν − γ − 1) + 1)
1
p

] (∫ λ
m |D

ν
mf (t)|q dt

) 1
q

[
r
(
ν − γ − 1

q

)
+ 1
] 1
r

,

∀ λ ∈ [m,M ].

Applying (42), using properties (P) and (ii), we get the following operator
Sobolev type inequality:

Theorem 13. All as in Theorem 12. Then(∫ A

m1H

|Dγ
mf |

r

) 1
r

(43)

≤ (A−m1H)
ν−γ+ 1

r
− 1
q

(Γ (ν − γ)) (p (ν − γ − 1) + 1)
1
p

(∫ A
m1H
|Dν

mf |
q
) 1
q

[
r
(
ν − γ − 1

q

)
+ 1
] 1
r

.

We need

Definition 4 ([2], p. 337). Let f ∈ ACn ([m,M ]), n := dνe, ν > 0. The
right Caputo fractional derivative of order ν > 0, is given by

(44)
(
Dν
M−f

)
(z) :=

(−1)n

Γ (n− ν)

∫ M

z
(J − z)n−ν−1 f (n) (J) dJ,

∀ z ∈ [m,M ] , which exists a.e. on [m,M ], and Dν
M−f ∈ L1 ([m,M ]).

We notice that D0
M−f = f ,

(
Dn
M−f

)
(z) = (−1)n f (n) (z), for n ∈ N.
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We need the right Caputo fractional Taylor formula with integral remain-
der:

Theorem 14 ([2], p. 341). Let f ∈ ACn ([m,M ]) , λ ∈ [m,M ], ν > 0,
n = dνe. Then

(45) f (λ) =

n−1∑
k=0

f (k) (M)

k!
(λ−M)k+

1

Γ (ν)

∫ M

λ
(J − λ)ν−1

(
Dν
M−f

)
(J) dJ.

We present the following operator representation formula:

Theorem 15. Let A be a selfadjoint operator in the Hilbert space H with
the spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M , {Eλ}λ be its

spectral family, I be a closed subinterval on R with [m,M ] ⊂
◦
I (the interior

of I) and n ∈ N, with n := dνe, ν > 0. We consider f ∈ ACn ([m,M ]) (i.e.
f (n−1) ∈ AC ([m,M ])), where f : I → R.

Then

f (A) =
n−1∑
k=0

f (k) (M)

k!
(A−M1H)k(46)

+
1

Γ (ν)

∫ M

m−0

(∫ M

λ
(J − λ)ν−1

(
Dν
M−f

)
(J) dJ

)
dEλ.

Proof. Integrate (45) against Eλ and apply the spectral representation
theorem. �

We make

Remark 4. In (46) assume that f (k) (M) = 0, k = 0, ..., n− 1. Then

(47) f (A) =
1

Γ (ν)

∫ M

m−0

(∫ M

λ
(J − λ)ν−1

(
Dν
M−f

)
(J) dJ

)
dEλ.

We have that

(48) 〈f (A)x, x〉 =
1

Γ (ν)

∫ M

m−0

(∫ M

λ
(J − λ)ν−1

(
Dν
M−f

)
(J) dJ

)
d 〈Eλx, x〉 ,

∀ x ∈ H.
Let p, q > 1 : 1

p + 1
q = 1, with ν > 1

q . Then∫ M

λ
(J − λ)ν−1

∣∣(Dν
M−f

)
(J)
∣∣ dJ(49)

≤
(∫ M

λ
(J − λ)p(ν−1) dJ

) 1
p
(∫ M

λ

∣∣(Dν
M−f

)
(J)
∣∣q dJ) 1

q



18 George A. Anastassiou

≤ (M − λ)
p(ν−1)+1

p

(p (ν − 1) + 1)
1
p

∥∥Dν
M−f

∥∥
q,[m,M ]

=
(M − λ)

ν− 1
q

(p (ν − 1) + 1)
1
p

∥∥Dν
M−f

∥∥
q,[m,M ]

.

We have proved that∣∣∣∣∫ M

λ
(J − λ)ν−1

(
Dν
M−f

)
(J) dJ

∣∣∣∣(50)

≤
∫ M

λ
(J − λ)ν−1

∣∣(Dν
M−f

)
(J)
∣∣ dJ

≤ (M − λ)
ν− 1

q

(p (ν − 1) + 1)
1
p

∥∥Dν
M−f

∥∥
q,[m,M ]

,

∀ λ ∈ [m,M ].
Therefore it holds

|〈f (A)x, x〉|
(48)

≤ 1

Γ (ν)
(51)

×
∫ M

m−0

(∫ M

λ
(J − λ)ν−1

(
Dν
M−f

)
(J) dJ

)
d 〈Eλx, x〉

(50)

≤

∥∥Dν
M−f

∥∥
q,[m,M ]

Γ (ν) (p (ν − 1) + 1)
1
p

∫ M

m−0
(M − λ)

ν− 1
q d 〈Eλx, x〉

=

∥∥Dν
M−f

∥∥
q,[m,M ]

(p (ν − 1) + 1)
1
p Γ (ν)

〈
(M1H −A)

ν− 1
q x, x

〉
, ∀x ∈ H.

We have proved

Theorem 16. All as in Theorem 15. Assume further f (k) (M) = 0,
k = 0, 1, ..., n− 1. Let p, q > 1 : 1

p + 1
q = 1, with ν > 1

q . Then

(52) |〈f (A)x, x〉| ≤

∥∥Dν
M−f

∥∥
q,[m,M ]

(p (ν − 1) + 1)
1
p Γ (ν)

〈
(M1H −A)

ν− 1
q x, x

〉
,

∀x ∈ H.
Inequality (52) means

(53) ‖f (A)‖ ≤

∥∥Dν
M−f

∥∥
q,[m,M ]

(p (ν − 1) + 1)
1
p Γ (ν)

∥∥∥(M1H −A)
ν− 1

q

∥∥∥ ,
and in particular,

(54) f (A) ≤

( ∥∥Dν
M−f

∥∥
q,[m,M ]

(p (ν − 1) + 1)
1
p Γ (ν)

)
(M1H −A)

ν− 1
q .
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We give the following Poincaré type fractional inequality:

Theorem 17. Let f ∈ ACn ([m,M ]), ν > 0, n = dνe. Assume
f (k) (M) = 0, k = 0, ..., n− 1. Let p, q > 1 : 1

p + 1
q = 1, ν > 1

q . Then

(55)

∫ M

w
|f (λ)|q dλ ≤ (M − w)νq

(p (ν − 1) + 1)
q
p (Γ (ν))q νq

∫ M

w

∣∣(Dν
M−f

)
(λ)
∣∣q dλ,

∀ w ∈ [m,M ] .

Proof. By the assumption and (45) we have that

(56) f (λ) =
1

Γ (ν)

∫ M

λ
(J − λ)ν−1

(
Dν
M−f

)
(J) dJ, ∀ λ ∈ [m,M ] .

Hence

(57) |f (λ)| ≤ 1

Γ (ν)

∫ M

λ
(J − λ)ν−1

∣∣(Dν
M−f

)
(J)
∣∣ dJ, ∀ λ ∈ [m,M ] .

As in (49), (50), we get

(58) |f (λ)| ≤ (M − λ)
ν− 1

q

(p (ν − 1) + 1)
1
p Γ (ν)

∥∥Dν
M−f

∥∥
q,[w,M ]

,

∀ λ ∈ [w,M ], where w ∈ [m,M ].
Hence it holds

(59) |f (λ)|q ≤ (M − λ)νq−1

(p (ν − 1) + 1)
q
p (Γ (ν))q

∥∥Dν
M−f

∥∥q
q,[w,M ]

,

∀ λ ∈ [w,M ], where w ∈ [m,M ].
Therefore by integration

(60)

∫ M

w
|f (λ)|q dλ ≤ (M − w)νq

(p (ν − 1) + 1)
q
p (Γ (ν))q νq

∥∥Dν
M−f

∥∥q
q,[w,M ]

,

∀ w ∈ [m,M ], proving the claim. �

We need

Definition 5. Let f : [m,M ]→ R be continuous. We consider

(61) g (t) =

∫ M

t
f (z) dz, ∀ t ∈ [m,M ] ,

then g ∈ C ([m,M ]).
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We denote by

(62)

∫ M1H

A
f := Φ (g) = g (A) .

We denote also

(63) gr (A) = Φ (gr) =:

(∫ M1H

A
f

)r
, r > 0.

Clearly
(∫M1H

A f
)r

is a self adjoint operator on H, for any r > 0.

We present the following operator Poincaré type inequality:

Theorem 18. All as in Theorem 17. Then

(64)

∫ M1H

A
|f |q ≤ (M1H −A)νq

(p (ν − 1) + 1)
q
p (Γ (ν))q νq

(∫ M1H

A

∣∣(Dν
M−f

)∣∣q) .
We give the following Sobolev type fractional inequality:

Theorem 19. All as in Theorem 17, and r ≥ 1. Then

(65) ‖f‖r,[w,M ] ≤
(M − w)

ν− 1
q
+ 1
r(

νr − r
p + 1

) 1
r

(p (ν − 1) + 1)
1
p Γ (ν)

∥∥Dν
M−f

∥∥
q,[w,M ]

,

∀ w ∈ [m,M ].

Proof. We recall (58):

(66) |f (λ)| ≤ (M − λ)
ν− 1

q

Γ (ν) (p (ν − 1) + 1)
1
p

∥∥Dν
M−f

∥∥
q,[w,M ]

,

∀ λ ∈ [w,M ], where w ∈ [m,M ].
Hence, by r ≥ 1, we obtain

(67) |f (λ)|r ≤ (M − λ)
νr− r

q

(Γ (ν))r (p (ν − 1) + 1)
r
p

∥∥Dν
M−f

∥∥r
q,[w,M ]

,

∀ λ ∈ [w,M ], where w ∈ [m,M ].
Consequently it holds∫ M

w
|f (λ)|r dλ ≤ (M − w)

νr− r
q
+1(

νr − r
q + 1

)
(p (ν − 1) + 1)

r
p (Γ (ν))r

(68)

×
∥∥Dν

M−f
∥∥r
q,[w,M ]

,

∀ w ∈ [m,M ], proving the claim. �

Next we give an operator Sobolev type inequality:
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Theorem 20. All as in Theorem 19. Then(∫ M1H

A
|f |r
) 1
r

≤ (M1H −A)
ν− 1

q
+ 1
r(

νr − r
p + 1

) 1
r

(p (ν − 1) + 1)
1
p Γ (ν)

(69)

×
(∫ M1H

A

∣∣(Dν
M−f

)∣∣q) 1
q

.

We need

Definition 6 ([2], p. 345). Let ν > 0, n := [ν], α := ν − n, 0 < α < 1,
f ∈ C ([m,M ]). The right Riemann-Liouville fractional integral operator in
given by

(70)
(
JνM−f

)
(z) :=

1

Γ (ν)

∫ M

z
(J − z)ν−1 f (J) dJ,

∀ z ∈ [m,M ], J0
M−f := f .

Define the subspace of functions

(71) CνM− ([m,M ]) :=
{
f ∈ Cn ([m,M ]) : J1−α

M− f
(n) ∈ C1 ([m,M ])

}
.

Define the right generalized ν-fractional derivative of f over [m,M ] as

(72) D
ν
M−f := (−1)n−1

(
J1−α
M− f

(n)
)′
.

Notice that

(73) J1−α
M− f

(n) (z) =
1

Γ (1− α)

∫ M

z
(J − z)−α f (n) (J) dJ,

exists for f ∈ CνM− ([m,M ]), and

(74)
(
D
ν
M−f

)
(z) =

(−1)n−1

Γ (1− α)

d

dz

∫ M

z
(J − z)−α f (n) (J) dJ.

That is

(75)
(
D
ν
M−f

)
(z) =

(−1)n−1

Γ (n− ν + 1)

d

dz

∫ M

z
(J − z)n−ν f (n) (J) dJ.

If ν ∈ N, then α = 0, n = ν, and

(76)
(
D
ν
M−f

)
(z) = (−1)n f (n) (z) ,

∀ z ∈ [m,M ], and D
0
M−f = f .
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We will use the following fractional Taylor formula:

Theorem 21 ([2], p. 348). Let f ∈ CνM− ([m,M ]), ν > 0, n := [ν].
Then

1) for ν ≥ 1, we get

f (λ) =
n−1∑
k=0

f (k) (M)

k!
(λ−M)k(77)

+
1

Γ (ν)

∫ M

λ
(J − λ)ν−1

(
D
ν
M−f

)
(J) dJ,

∀ λ ∈ [m,M ].
2) if 0 < ν < 1, we obtain

(78) f (λ) =
1

Γ (ν)

∫ M

λ
(J − λ)ν−1

(
D
ν
M−f

)
(J) dJ,

∀ λ ∈ [m,M ].

We present the following operator representation formula:

Theorem 22. Let A be a selfadjoint operator in the Hilbert space H with
the spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M , {Eλ}λ be its

spectral family, I be a closed subinterval on R with [m,M ] ⊂
◦
I (the interior

of I) and n ∈ N, with n := [ν], ν > 0. We consider f ∈ CνM− ([m,M ]),
where f : I → R.

Then
i) case of ν ≥ 1,

f (A) =

n−1∑
k=0

f (k) (M)

k!
(A−M1H)k(79)

+
1

Γ (ν)

∫ M

m−0

(∫ M

λ
(J − λ)ν−1

(
D
ν
M−f

)
(J) dJ

)
dEλ,

ii) case of 0 < ν < 1,

(80) f (A) =
1

Γ (ν)

∫ M

m−0

(∫ M

λ
(J − λ)ν−1

(
D
ν
M−f

)
(J) dJ

)
dEλ.

Proof. Integrate (77), (78) against Eλ, apply spectral representation
theorem. �

We have proved
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Theorem 23. All as in Theorem 22. In case of ν ≥ 1, we assume
further f (k) (M) = 0, for k = 0, 1, ..., n − 1. Let p, q > 1 : 1

p + 1
q = 1, with

ν > 1
q . Then

(81) |〈f (A)x, x〉| ≤

∥∥Dν
M−f

∥∥
q,[m,M ]

(p (ν − 1) + 1)
1
p Γ (ν)

〈
(M1H −A)

ν− 1
q x, x

〉
,

∀x ∈ H.
Inequality (81) means

(82) ‖f (A)‖ ≤

∥∥Dν
M−f

∥∥
q,[m,M ]

(p (ν − 1) + 1)
1
p Γ (ν)

∥∥∥(M1H −A)
ν− 1

q

∥∥∥ ,
and in particular,

(83) f (A) ≤

( ∥∥Dν
M−f

∥∥
q,[m,M ]

(p (ν − 1) + 1)
1
p Γ (ν)

)
(M1H −A)

ν− 1
q .

Proof. Very similar to Theorem 16. �

We give the following Poincaré type fractional inequality:

Theorem 24. Let f ∈ CνM− ([m,M ]), ν > 0, n = [ν]. If ν ≥ 1, we

assume f (k) (M) = 0, k = 0, ..., n− 1. Let p, q > 1 : 1
p + 1

q = 1, ν > 1
q . Then

(84)

∫ M

w
|f (λ)|q dλ ≤ (M − w)νq

(p (ν − 1) + 1)
q
p (Γ (ν))q νq

∫ M

w

∣∣(Dν
M−f

)
(λ)
∣∣q dλ,

∀ w ∈ [m,M ] .

Proof. Similar to Theorem 17. �

We present the following operator Poincaré type inequality:

Theorem 25. All as in Theorem 24. Then

(85)

∫ M1H

A
|f |q ≤ (M1H −A)νq

(p (ν − 1) + 1)
q
p (Γ (ν))q νq

(∫ M1H

A

∣∣Dν
M−f

∣∣q) .
We give the following Sobolev type fractional inequality:

Theorem 26. All as in Theorem 24, and r ≥ 1. Then

(86) ‖f‖r,[w,M ] ≤
(M − w)

ν− 1
q
+ 1
r(

νr − r
p + 1

) 1
r

(p (ν − 1) + 1)
1
p Γ (ν)

∥∥Dν
M−f

∥∥
q,[w,M ]

,

∀ w ∈ [m,M ].
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Proof. Similar to Theorem 19. �

Next we give an operator Sobolev type inequality:

Theorem 27. All as in Theorem 26. Then(∫ M1H

A
|f |r
) 1
r

≤ (M1H −A)
ν− 1

q
+ 1
r(

νr − r
p + 1

) 1
r

(p (ν − 1) + 1)
1
p Γ (ν)

(87)

×
(∫ M1H

A

∣∣Dν
M−f

∣∣q) 1
q

.
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in Operator Inequalities., Inequalities for Bounded Selfadjoint Operators on a
Hilbert Space, Element, Zagreb, 2005.

[7] Helmberg G., Introduction to Spectral Thery in Hilbert Space, John Wiley
& Sons, Inc., New York, 1969.

George A. Anastassiou
Department of Mathematical Sciences

University of Memphis
Memphis, TN 38152, U.S.A.

e-mail: ganastss@memphis.edu

Received on 13.04.2016 and, in revised form, on 18.05.2016.


