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Abstract. In this paper, we impose restrictions on the complex
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1. Introduction and statement of results

The study of polynomials and their zeros is well known to have numer-
ous applications in many areas of scientific discipline such as control theory,
signal processing, communication theory, coding theory, cryptography, com-
binatorics and mathematical biology. Due to this fact, several authors have
studied extensively problems involving polynomials and their properties in
general, and locations of their zeros. In most cases, especially in practice,
the roots of polynomials may not be easily obtainable. Therefore, there is
need to put some restrictions on the coefficients of polynomials. This would
assist us to determine the bounds on the number of zeros of some polynomi-
als in a certain region, thereby reducing the effort of locating these zeros. In
this paper, we present some interesting results involving the bounds on the
number of zeros of polynomials and in the process, generalize these results.

The earliest record of the Eneström-Kakeya Theorem dates back to 1893
and is stated thus:

Let p(z) =
∑n

j=0 ajz
j be a polynomial of degree n such that 0 < a0 <

a1 < a2 < ... < an−1 < an, then p(z) has all its zeros in |z| < 1.
Since the establishment of this result, several works have been done to

improve or extend the result.
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One result of fundamental importance pertaining to the number of zeros
of polynomials in a given disk is the result of Titchmarsh [15] and this is
found in The Theory of Functions (second edition, page 171). He proved
the following.

Theorem A. Let F (z) be analytic in |z| ≤ R. Let |F (z)| ≤ M in the
disk |z| ≤ R and suppose F (0) 6= 0. Then for 0 < δ < 1, the number of
zeros of F (z) in the disk |z| ≤ δR is less than

1

log 1/δ
log

M

|F (0)|
.

By applying Theorem A particularly to polynomial functions and intro-
ducing restrictions like that of Eneström-Kakeya’s result, Mohammad [12]
obtained the bound for number of zeros of polynomials for a particular case
of δ = 1/2.

Dewan [2] weakened Mohammad’s hypotheses and proved the following
result involving the complex coefficients of the polynomial.

Theorem B. Let p(z) =
∑n

j=0 ajz
j such that | arg aj − β| ≤ α ≤ π

2 for
all 1 ≤ j ≤ n and some real α and β, and 0 < |a0| ≤ |a1| ≤ |a2| ≤ · · · ≤
|an−1| ≤ |an|. Then the number of zeros of p(z) in |z| ≤ 1/2 does not exceed

1

log 2
log
|an|(cosα+ sinα+ 1) + 2 sinα

∑n−1
j=0 |aj |

|a0|
.

Dewan [2] also considered the monotonicity condition for the real parts
of the coefficients of a given polynomial.

Pukhta [13] generalized Theorem B by finding the number of zeros in
|z| ≤ δ for 0 < δ < 1.

The following Theorem deals with the monotonicity condition on the
moduli of the coefficients.

Theorem C. Let p(z) =
∑n

j=0 ajz
j such that | arg aj − β| ≤ α ≤ π

2 for
all 1 ≤ j ≤ n and some real α and β, and 0 < |a0| ≤ |a1| ≤ |a2| ≤ · · · ≤
|an−1| ≤ |an|. Then the number of zeros of p in |z| ≤ δ, 0 < δ < 1 does not
exceed

1

log 1/δ
log
|an|(cosα+ sinα+ 1) + 2 sinα

∑n−1
j=0 |aj |

|a0|
.

Pukhta [13] also obtained a similar result dealing with a monotonicity
condition on the real part of the complex polynomial.

Gardner and Shields [5] used some “monotonicity flip” conditions like
those of Aziz and Mohammad [1] to prove the following result.
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Theorem D. Let p(z) =
∑n

j=0 ajz
j where for some R > 0 and some

0 ≤ k ≤ n,

0 < |a0| ≤ R|a1| ≤ R2|a2| ≤ · · · ≤ Rk−1|ak−1| ≤ Rk|ak|
≥ Rk+1|ak+1| ≥ Rk+2|ak+2| ≥ · · · ≥ Rn−1|an−1| ≥ Rn|an|

and | arg aj − β| ≤ α ≤ π
2 for 1 ≤ j ≤ n and for some real α and β. Then

for 0 < δ < 1 the number of zeros of p(z) in the disk |z| ≤ δR is less than

1

log 1/δ
log

M

|a0|

where

M =|a0|R(1− cosα− sinα) + 2|ak|Rk+1 cosα

+ |an|Rn+1(1− cosα+ sinα) + 2 sinα
n−1∑
j=0

|aj |Rj+1.

Also, Gardner and Shields [5] used similar conditions on the real parts
and then on both the real and imaginary parts of the complex polynomial
to have the following results:

Theorem E. Let p(z) =
∑n

j=0 ajz
j where Re aj = αj and Im aj = βj

for 0 ≤ j ≤ n. Suppose that for some R > 0 and some 0 ≤ k ≤ n, we have

0 6= α0 ≤ Rα1 ≤ R2α2 ≤ · · · ≤ Rk−1αk−1 ≤ Rkαk
≥ Rk+1αk+1 ≥ · · · ≥ Rn−1αn−1 ≥ Rnαn.

Then, for 0 < δ < 1 the number of zeros of p(z) in the disk |z| ≤ δR is less
than

1

log 1/δ
log

M

|a0|
where

M = (|α0| − α0)R+ 2αkR
k+1 + (|αn| − αn)Rn+1 + 2

n∑
j=0

|βj |Rj+1.

Theorem F. Let p(z) =
∑n

j=0 ajz
j where Re aj = αj and Im aj = βj

for 0 ≤ j ≤ n. Suppose that for some R > 0 and some 0 ≤ k ≤ n, we have

0 6= α0 ≤ Rα1 ≤ R2α2 ≤ · · · ≤ Rk−1αk−1 ≤ Rkαk
≥ Rk+1αk+1 ≥ · · · ≥ Rn−1αn−1 ≥ Rnαn
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and for some 0 ≤ l ≤ n we have

β0 ≤ Rβ1 ≤ R2β2 ≤ · · · ≤ Rl−1βl−1 ≤ Rlβl
≥ Rl+1βl+1 ≥ · · · ≥ Rn−1βn−1 ≥ Rnβn.

Then for 0 < δ < 1 the number of zeros of p(z) in the disk |z| ≤ δR is less
than

1

log 1/δ
log

M

|a0|
where

M = (|α0| − α0)R+ 2αkR
k+1 + (|αn| − αn)Rn+1

+ (|β0| − β0)R+ 2βlR
l+1 + (|βn| − βn)Rn+1.

In this paper, we further weaken the hypotheses of the above results in
order to obtain results that include several results in this area.

Theorem 1. Let p(z) =
∑n

j=0 ajz
j where for some R > 0, 0 ≤ µ < 1,

0 < ρ ≤ 1 and some 0 ≤ k ≤ n,

0 < ρ|a0| ≤ R|a1| ≤ R2|a2| ≤ · · · ≤ Rk−1|ak−1| ≤ Rk|ak|
≥ Rk+1|ak+1| ≥ · · · ≥ Rn−1|an−1| ≥ (R− µ)Rn−1|an|

and | arg aj − β| ≤ α ≤ π
2 for 1 ≤ j ≤ n and for some real α and β. Then

for 0 < δ < 1 the number of zeros of p(z) in the disk |z| ≤ δR is less than

1

log 1/δ
log

M

|a0|

where

M = |a0|R[
1

ρ
+

µ

ρ|a0|
− cosα− sinα] + 2|ak|Rk+1 cosα

+ |an|Rn+1[1 +
µ

|an|
− cosα+ sinα] + 2 sinα

n−1∑
j=0

|aj |Rj+1.

Notice that when R = 1 in Theorem 1, we get the following:

Corollary 1. Let p(z) =
∑n

j=0 ajz
j where for some 0 ≤ µ < 1, 0 < ρ ≤ 1

and some 0 ≤ k ≤ n,

0 < ρ|a0| ≤ |a1| ≤ |a2| ≤ · · · ≤ |ak−1| ≤ |ak| ≥ |ak+1| ≥ · · ·
≥ |an−1| ≥ (1− µ)|an|
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and | arg aj − β| ≤ α ≤ π
2 for 1 ≤ j ≤ n and for some real α and β. Then

for 0 < δ < 1 the number of zeros of p(z) in the disk |z| ≤ δ is less than

1

log 1/δ
log

M

|a0|

where

M = |a0|
(

1

ρ
+

µ

ρ|a0|
− cosα− sinα

)
+ 2|ak| cosα+ |an|

(
1 +

µ

|an|
− cosα+ sinα

)
+ 2 sinα

n−1∑
j=0

|aj |.

It is also important to see that when µ = 0 and ρ = 1, we recapture
the result of Theorem D of Gardner and Shields [5], which in turn, is a
generalization of several other theorems.

Theorem 2. Let p(z) =
∑n

j=0 ajz
j where Re aj = αj and Im aj = βj

for 0 ≤ j ≤ n. Suppose that for some R > 0, 0 ≤ µ < 1, 0 < ρ ≤ 1 and
some 0 ≤ k ≤ n, we have

0 6= ρα0 ≤ Rα1 ≤ R2α2 ≤ · · · ≤ Rk−1αk−1 ≤ Rkαk
≥ Rk+1αk+1 ≥ · · · ≥ Rn−1αn−1 ≥ (R− µ)Rn−1αn.

Then for 0 < δ < 1 the number of zeros of p(z) in the disk |z| ≤ δR is less
than

1

log 1/δ
log

M

|a0|

where

M =

(
1

ρ
|α0 − µ| − α0

)
R+ (|αn − µ| − αn)Rn+1

+ µR(1 +Rn) + 2αkR
k+1 + 2

n∑
j=0

|βj |Rj+1.

Observe that when R = 1 in Theorem 2, we have the following.

Corollary 2. Let p(z) =
∑n

j=0 ajz
j where Re aj = αj and Im aj = βj

for 0 ≤ j ≤ n. Suppose that for some 0 ≤ µ < R, 0 < ρ ≤ 1 and some
0 ≤ k ≤ n, we have

0 6= ρα0 ≤ α1 ≤ α2 ≤ · · · ≤ αk−1 ≤ αk ≥ αk+1 ≥ · · · ≥ αn−1 ≥ (1− µ)αn.
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Then for 0 < δ < 1 the number of zeros of p(z) in the disk |z| ≤ δ is less
than

1

log 1/δ
log

M

|a0|
where

M =

(
1

ρ
|α0 − µ| − α0

)
+ (|αn − µ| − αn) + 2(µ+ αk) + 2

n∑
j=0

|βj |.

Theorem 3. Let p(z) =
∑n

j=0 ajz
j where Re aj = αj and Im aj = βj

for 0 ≤ j ≤ n. Suppose that for some R > 0, 0 < ρ1 ≤ 1, 0 < ρ2 ≤ 1
0 ≤ µ < 1, 0 ≤ λ < 1 and some 0 ≤ k ≤ n, we have

0 6= ρ1α0 ≤ Rα1 ≤ R2α2 ≤ · · · ≤ Rk−1αk−1 ≤ Rkαk
≥ Rk+1αk+1 ≥ · · · ≥ Rn−1αn−1 ≥ (R− µ)Rn−1αn

and for some 0 ≤ l ≤ n we have

ρ2β0 ≤ Rβ1 ≤ R2β2 ≤ · · · ≤ Rl−1βl−1 ≤ Rlβl
≥ Rl+1βl+1 ≥ · · · ≥ Rn−1βn−1 ≥ (R− λ)Rn−1βn.

Then for 0 < δ < 1 the number of zeros of p(z) in the disk |z| ≤ δR is less
than

1

log 1/δ
log

M

|a0|
where

M = (
1

ρ1
|α0 − µ| − α0)R+ (

1

ρ2
|β0 − λ| − β0)R

+ (µ+ λ)R(1 +Rn) + 2αkR
k+1 + (|αn − µ| − αn)Rn+1

+ (|βn − λ| − βn)Rn+1 + 2βlR
l+1.

Notice that if we set R = 1, λ = µ, ρ1 = ρ2 = ρ and l = k, we obtain the
following corollary:

Corollary 3. Let p(z) =
∑n

j=0 ajz
j where Re aj = αj and Im aj = βj

for 0 ≤ j ≤ n. Suppose that for some 0 < ρ ≤ 1, 0 ≤ µ < 1, and some
0 ≤ k ≤ n, we have

0 6= ρα0 ≤ α1 ≤ α2 ≤ · · · ≤ αk−1 ≤ αk ≥ αk+1 ≥ · · · ≥ αn−1 ≥ (1− µ)αn

and

ρβ0 ≤ β1 ≤ β2 ≤ · · · ≤ βk−1 ≤ βk ≥ βk+1 ≥ · · · ≥ βn−1 ≥ (1− µ)βn.
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Then for 0 < δ < 1 the number of zeros of p(z) in the disk |z| ≤ δR is less
than

1

log 1/δ
log

M

|a0|
where

M = (
1

ρ
|α0 − µ| − α0) + (

1

ρ
|β0 − µ| − β0) + 4µ

+ 2(αk + βk) + (|αn − µ| − αn) + (|βn − µ| − βn)

Example. Consider the polynomial p(z) = (z + 1.1)(z2 + 0.1) = 0.11 +
0.1z+1.1z2+z3. We notice that none of the restrictions of the earlier existing
Theorems A through F can count the number of zeros, given the coefficients
of p. However, using corollary 2 with suitable ρ and µ, say, ρ = 10/11 and
µ = 0, we find out that the number of zeros in the disk |z| ≤ 32/100 is
less than 2.634. However, it is easy to see that exactly two roots, which are
i/
√

10 and −i/
√

10, lie in the given disk. Thus, it agrees with our Theorem.

2. Proofs of the main theorems

First, we consider the following lemma which is due to Govil and Rah-
man [9].

Lemma 1. Let z, z′ ∈ C with |z| ≥ |z′|. Suppose | arg z? − β| ≤ α ≤ π
2

for z? ∈ {z, z′} and for some real α and β. Then

|z − z′| ≤ (|z| − |z′|) cosα+ (|z|+ |z′|) sinα.

Proof of Theorem 1. Consider

F (z) = (R− z)p(z) = (R− z)
n∑
j=0

ajz
j =

n∑
j=0

(ajRz
j − ajzj+1)

= a0R+

n∑
j=1

Rajz
j −

n∑
j=1

aj−1z
j − anzn+1

= a0R+

n∑
j=1

(ajR− aj−1)zj − anzn+1.

For |z| = R we have

|F (z)| ≤ |a0|R+

n∑
j=1

|ajR− aj−1|Rj + |an|Rn+1

= |a0|R+

k∑
j=1

|ajR− aj−1|Rj +

n∑
j=k+1

|aj−1 − ajR|Rj + |an|Rn+1.
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Applying Lemma 1 with z = ajR, z′ = aj−1 when 1 ≤ j ≤ k and z = aj−1,
z′ = ajR when k + 1 ≤ j ≤ n, we have

|F (z)| ≤ |a0|R+
k∑
j=1

[(|aj |R− |aj−1|) cosα+ (|aj−1|+ |aj |R) sinα]Rj

+
n∑

j=k+1

[(|aj−1| − |aj |R) cosα+ (|aj |R+ |aj−1|) sinα]Rj

+ |an|Rn+1

= |a0|R+

k∑
j=1

|aj |Rj+1 cosα−
k∑
j=1

|aj−1|Rj cosα+

k∑
j=1

|aj−1|Rj sinα

+

k∑
j=1

|aj |Rj+1 sinα+

n∑
j=k+1

|aj−1|Rj cosα−
n∑

j=k+1

|aj |Rj+1 cosα

+
n∑

j=k+1

|aj |Rj+1 sinα+
n∑

j=k+1

|aj−1|Rj sinα+ |an|Rn+1

≤ 1

ρ
|a0|R+ |ak|Rk+1 cosα+

k−1∑
j=1

|aj |Rj+1 cosα− |a0|R cosα

−
k−1∑
j=1

|aj |Rj+1 cosα+ |a0|R sinα+
k−1∑
j=1

|aj |Rj+1 sinα

+ |ak|Rk+1 sinα+
k−1∑
j=1

|aj |Rj+1 sinα+ |ak|Rk+1 cosα

+

n−1∑
j=k+1

|aj |Rj+1 cosα− |an|Rn+1 cosα−
n−1∑
j=k+1

|aj |Rj+1 cosα

+ |an|Rn+1 sinα+
n−1∑
j=k+1

|aj |Rj+1 sinα+ |ak|Rk+1 sinα

+
n−1∑
j=k+1

|aj |Rj+1 sinα+ |an|Rn+1

≤ 1

ρ
(|a0|+ µ)R+ |ak|Rk+1 cosα− |a0|R cosα+ |a0|R sinα

+ |ak|Rk+1 sinα+ 2
k−1∑
j=1

|aj |Rj+1 sinα+ |ak|Rk+1 cosα

− |an|Rn+1 cosα+ |an|Rn+1 sinα
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+ 2
n−1∑
j=k+1

|aj |Rj+1 sinα+ |ak|Rk+1 sinα+ (|an|+ µ)Rn+1

=
1

ρ
|a0|R+

µ

ρ
R− |a0|R cosα+ |a0|R sinα+ 2|ak|Rk+1 cosα

+ 2|ak|Rk+1 sinα+ |an|Rn+1 + µRn+1 − |an|Rn+1 cosα

+ |an|Rn+1 sinα+ 2

k−1∑
j=1

|aj |Rj+1 sinα+
n−1∑
j=k+1

|aj |Rj+1 sinα


= |a0|R

(
1

ρ
+

µ

ρ|a0|
− cosα+ sinα

)
+ 2|ak|Rk+1 cosα

+ 2|ak|Rk+1 sinα+ |an|Rn+1

(
1 +

µ

|an|
− cosα+ sinα

)
+ 2

n−1∑
j=0

|aj |Rj+1 sinα− 2|ak|Rk+1 sinα− 2|a0|R sinα

= |a0|R
(

1

ρ
+

µ

ρ|a0|
− cosα− sinα

)
+ 2|ak|Rk+1 cosα

+ |an|Rn+1

(
1 +

µ

|an|
− cosα+ sinα

)
+ 2

n−1∑
j=0

|aj |Rj+1 sinα = M.

Now, F (z) is analytic in |z| ≤ R and |F (z)| ≤ M for |z| = R. So by
Theorem A and the Maximum Modulus Theorem, the number of zeros of
F (z) (and hence of p(z)) in |z| ≤ δR is less than or equal to

1

log 1/δ
log

M

|a0|
.

This completes the proof. �

Proof of Theorem 2. As in the proof of Theorem 1,

F (z) = (R− z)P (z) = a0R+

n∑
j=1

(ajR− aj−1)zj − anzn+1.

Notice that aj = αj + iβj , thus

F (z) = (α0 + iβ0)R+

n∑
j=1

((αj + iβj)R

− (αj−1 + iβj−1))z
j − (αn + iβn)zn+1
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= (α0 + iβ0)R+
n∑
j=1

(αjR− αj−1)zj

+ i
n∑
j=1

(βjR− βj−1)zj − (αn + iβn)zn+1.

For |z| = R, we have

|F (z)| ≤ (|α0|+ |β0|)R+
n∑
j=1

|αjR− αj−1|Rj

+

n∑
j=1

(|βj |R− |βj−1|)Rj + (|αn|+ |βn|)Rn+1

=(|α0|+ |β0|)R+
k∑
j=1

(αjR− αj−1)Rj

+
n∑

j=k+1

(αj−1 − αjR)Rj +
n−1∑
j=1

(|βj |Rj+1 + |βn|Rn+1

+ |β0|R+

n−1∑
j=1

|βj |Rj+1 + (|αn|+ |βn|)Rn+1

≤ (|α0 − µ|+ µ+ |β0|)R+

k−1∑
j=1

αjR
j+1 + αkR

k+1

− α0R−
k−1∑
j=1

αjR
j+1 +

n−1∑
j=k+1

αjR
j+1

+ αkR
k+1 −

n−1∑
j=k+1

αjR
j+1 − αnRn+1 + 2

n−1∑
j=1

|βj |Rj+1

+ |β0|R+ |βn|Rn+1 + (|αn − µ|+ µ+ |βn|)Rn+1

= (|α0 − µ|+ |β0|)R+ µR(1 +Rn) + 2αkR
k+1 − α0R

− αnRn+1 + (|αn − µ|+ |βn|)Rn+1 + |β0|R

+ |βn|Rn+1 + 2

n−1∑
j=1

|βj |Rj+1

≤ (
1

ρ
|α0 − µ|+ |β0|)R+ µR(1 +Rn) + 2αkR

k+1 − α0R− αnRn+1

+ (|αn − µ|+ |βn|)Rn+1 + |β0|R+ |βn|Rn+1 + 2

n−1∑
j=1

|βj |Rj+1
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=

(
1

ρ
|α0 − µ| − α0

)
R+ (|αn − µ| − αn)Rn+1 + µR(1 +Rn)

+ 2αkR
k+1 + 2|β0|R+ 2|βn|Rn+1 + 2

n−1∑
j=1

|βj |Rj+1

=

(
1

ρ
|α0 − µ| − α0

)
R+ (|αn − µ| − αn)Rn+1 + µR(1 +Rn)

+ 2αkR
k+1 + 2

n∑
j=0

|βj |Rj+1 = M.

The result now follows as in the proof of Theorem 1. �

Proof of Theorem 3. As in the proof of Theorem 2,

F (z) = (α0 + iβ0)R+
n∑
j=1

(αjR− αj−1)zj

+ i

n∑
j=1

(βjR− βj−1)zj − (αn + iβn)zn+1.

For |z| = R we have

|F (z)| ≤ (|α0|+ |β0|)R+
n∑
j=1

|αjR− αj−1|Rj

+
n∑
j=1

|βjR− βj−1|Rj + (|αn|+ |βn|)Rn+1

= (|α0|+ |β0|)R+
k∑
j=1

|αjR− αj−1|Rj

+

n∑
j=k+1

|αjR− αj−1|Rj +

l∑
j=1

|βjR− βj−1|Rj

+
n∑

j=l+1

|βjR− βj−1|Rj + (|αn|+ |βn|)Rn+1

= (|α0|+ |β0|)R+

k∑
j=1

(αjR− αj−1)Rj

+

n∑
j=k+1

(αj−1 − αjR)Rj +

l∑
j=1

(βjR− βj−1)Rj
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+
n∑

j=l+1

(βj−1 − βjR)Rj + (|αn|+ |βn|)Rn+1

= (|α0|+ |β0|)R+
k−1∑
j=1

αjR
j+1 + αkR

k+1 − α0R−
k−1∑
j=1

αjR
j+1

+ αkR
k+1 +

n−1∑
j=k+1

αjR
j+1 −

n−1∑
j=k+1

αjR
j+1 − αnRn+1

+

l−1∑
j=1

βjR
j+1 + βlR

l+1 − β0R−
l−1∑
j=1

βjR
j+1 + βlR

l+1

+
n−1∑
j=l+1

βjR
j+1 −

n−1∑
j=l+1

βjR
j+1 − βnRn+1 + (|αn|+ |βn|)Rn+1

= (|α0|+ |β0|)R− α0R+ 2αkR
k+1 − αnRn+1 + 2βlR

l+1

− β0R− βnRn+1 + (|αn|+ |βn|)Rn+1

≤ (|α0 − µ|+ µ+ |β0 − λ|+ λ)R− α0R+ 2αkR
k+1 + 2βlR

l+1

− β0R− αnRn+1 − βnRn+1 + (|αn − µ|+ µ+ |βn − λ|+ λ)Rn+1

= (|α0 − µ|+ |β0 − λ|)R+ (µ+ λ)R− α0R− β0R+ 2αkR
k+1 + 2βlR

l+1

+ (|αn − µ|+ |βn − λ|)Rn+1 + (µ+ λ)Rn+1 − αnRn+1 − βnRn+1

≤ 1

ρ1
|α0 − µ|R+

1

ρ2
|β0 − λ|R+ (µ+ λ)R(1 +Rn)− α0R− β0R

+ 2αkR
k+1 + 2βlR

l+1 + (|αn − µ|+ |βn − λ|)Rn+1 − αnRn+1 − βnRn+1

= (
1

ρ1
|α0 − µ| − α0)R+ (

1

ρ2
|β0 − λ| − β0)R+ (µ+ λ)R(1 +Rn)

+ 2αkR
k+1 + (|αn − µ| − αn)Rn+1 + (|βn − λ| − βn)Rn+1 + 2βlR

l+1

= M.

The result now follows as in the proof of Theorem 1. �
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