
F A S C I C U L I M A T H E M A T I C I

Nr 57 2016
DOI:10.1515/fascmath-2016-0022

Ajai P. Terwase and Maslina Darus ∗

ON COEFFICIENT PROBLEMS OF AN OPERATOR

WITH RESPECT TO SYMMETRIC POINT

Abstract. In this research work, we study the properties of a
certain differential subordination involving an operator with re-
spect to a symmetric point. We establish coefficient estimates as
our main results.
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1. Introduction

Let A denote a class of all analytic functions of the form

(1) f(z) = z +

∞∑
k=2

akz
k

which are analytic in the open unit disk U = {z : |z| < 1} and normalized
by f(0) = f ′(0) − 1 = 0. Let S be the subclass of A consisting of analytic
univalent function of the form (1.1). Kanas and Ronning[6] introduced an
interesting analytic function A(ω) defined as follows:

(2) f(z) = (z − ω) +

∞∑
k=0

ak(z − ω)k

which are analytic and univalent in the unit disk U = {z : |z| < 1} and
normalized by the condition

f(ω) = 0 and f ′(ω) = 1
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and ω is fix in U . Using (2) the following classes are accordingly defined as
in [5]:

ST (ω) = S∗(ω) =

{
f(z) ∈ S(ω) : <(z − ω)f ′(z)

f(z)
> 0, z ∈ U

}
CV (ω) = Sc(ω) =

{
f(z) ∈ S(ω) : 1 + <(z − ω)f ′′(z)

f ′(z)
> 0, z ∈ U

}
known respectively as ω-starlike and ω-convex functions. Many contributors
in the like of Darus[4], Acu and Owa [1], Oladipo [7], Olatunji and Oladipo
[8] and many others have worked on these classes mostly viewing them with
different mathematical angles of interest.

Let H(ω) ∈ S(ω) be of the form (2) which are analytic and normalized
as stated above. Let f(z) be defined as in (2) and f ∈ H(ω) satisfy

<(z − ω)f ′(z)

f(z)
> 0.

Then f(ω) ∈ T ∗(ω) where T ∗(ω) is a subfamily of S∗(ω) and ω is a fixed
point U . Let f(z) be defined as stated above and f ∈ H(ω) satisfy

<
{

1 +
(z − ω)f ′′(z)

f ′(z)
> 0, z ∈ U

}
then f ∈ Kc(ω) ∈ Sc(ω) and ω is a fixed point in U . These classes are
respectively subfamilies of ω-starlike and ω-convex.

2. Definition of terms and preliminaries

The linear operator Tm,lλ (a, c) : A → A defined and studied in [2] is stated
as follows:

If f ∈ A is of the form (1.1)then

(3) T l,mλ (a, c)f(z) = z +

∞∑
k=2

(1 + λ(k − 1))l
[

(a)k−1
(c)k−1

]m
akz

k

(λ ≥ 0, a ∈ R, c ∈ R/ ∈ Z−◦ ; Z−◦ = {0,−1,−2, · · · }; m, l ∈ N◦ = N ∪ {0}).
It is easily seen from (3) that

T 0,0
λ (a, c)f(z) = f(z)

T 0,1
λ (a, c)f(z) = `(a, c)f(z)

where `(a, c)f(z) is the familiar Carson-Shaffer operator [3]. Our objectives
in this work are to establish coefficient estimates of the stated operator with
respect to a fix point.

The following definitions are analogue of the definitions defined in [5], [9]
and [8], and we shall modified some of them for the purpose of these work.
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Definition 1. Let T ∗c (ω) be the subclass of S consisting of

<
{

f ′(z)

f(z)− f(−z)

}
> 0, z ∈ U.

This is known as the class of ω-starlike with respect to symmetric point.
While the following is known as ω-starlike with respect to conjugate point.

<

{
(z − ω)f ′(z)

f(z) + f(z)

}
> 0, z ∈ U.

Moreover, we let Kc
s(ω) be the subclass of S(ω) consisting function given by

(1.2) satisfying the following condition:

<
{

((z − ω)f ′(z))

(f(z)− f(−z))′

}
> 0, z ∈ U.

This class is known the class of ω-convex with respect to symmetric point.

In subordination form, Goel and Mehrok [5], Selvaraj and Vasanthi[9]
introduced a subclass S∗s denoted by S∗s (A,B) and f is of the form (2).
Olatunji and Oladipo [8] considered and viewed it in terms of symmetric
point. Analogously going by their definitions, we define the following:

Let T ∗s (ω,A,B) be the class of functions f of the form (3) defined by an
operator stated above satisfying the condition

2(z − ω)T l,mλ (a, c)f ′(z)

T l,mλ (a, c)f(z)− T l,mλ (a, c)f(−z)
≺ 1 +A(z − ω)

1 +B(z − ω)
, −1 ≤ B < A ≤ 1, z ∈ U.

Let T ∗c (ω,A,B) be the subclass of functions of the form (3) and satisfying

2
(

(z − ω)T l,mλ (a, c)f ′(z)
)′

T l,mλ (a, c)f(z) + T l,mλ (a, c)f(z)
≺ 1 +A(z − ω)

1 +B(z − ω)
, −1 ≤ B < A ≤ 1, z ∈ U.

In this paper we introduce the class Ψs(ω,A,B) consisting of analytic
function of the form (3) and satisfying the condition

2(z − ω)T l,mλ (a, c)f ′(z) + 2α(z − ω)2T l,mλ (a, c)f ′′(z)

[(1− α) + α(z − ω)]
(
T l,mλ (a, c)f(z)− T l,mλ (a, c)f(−z)

)(4)

≺ 1 +A(z − ω)

1 +B(z − ω)
, − 1 ≤ B < A ≤ 1, z ∈ U.
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Also we introduce the class Ψc(ω,A,B) consisting of analytic function f of
the form (3) satisfying the condition

2(z − ω)T l,mλ (a, c)f ′(z) + 2α(z − ω)2T l,mλ (a, c)f ′′(z)

[(1− α) + α(z − ω)]
(
T l,mλ (a, c)f(z)− T l,mλ (a, c)f(z)

)(5)

≺ 1 +A(z − ω)

1 +B(z − ω)
, − 1 ≤ B < A ≤ 1, z ∈ U.

Equivalently, the above can be stated in terms of subordination as follows:
f ∈ Ψs(ω,A,B) if and only if

2(z − ω)T l,mλ (a, c)f ′(z) + 2α(z − ω)2T l,mλ (a, c)f ′′(z)

[(1− α) + α(z − ω)]
(
T l,mλ (a, c)f(z)− T l,mλ (a, c)f(−z)

)(6)

=
1 +Ah(z)

1 +B(h(z)
= p(z)

h ∈ U and h is of the form

h(z) = (z − ω) +

∞∑
b=0

bk(z − ω)k

h(ω) = 0 and |h(z)| < 1, h is analytic and univalent, and that f ∈
Ψc(ω,A,B) if and only if

2(z − ω)T l,mλ (a, c)f ′(z) + 2α(z − ω)2T l,mλ (a, c)f ′′(z)

[(1− α) + α(z − ω)]
(
T l,mλ (a, c)f(z)− T l,mλ (a, c)f(z)

)(7)

=
1 +Ah(z)

1 +Bh(z)
= p(z)

where p(z) is given here as

p(z) = 1 +

∞∑
k=1

pk(z − ω)k

and

(8) |pk| ≤
(A−B)

(1 + d)(1− d)k
, k ≥ 1, |ω| = d.

In the preceding section we shall study the classes Ψc(ω,A,B) and Ψs(ω,
A,B) in which the coefficient estimate for functions f in these classes are
obtained.
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3. Coefficient estimate

Theorem 1. Let f as defined in (3) be in the class Ψs(ω,A,B), then
for k = 2, 3, 4, · · · , 0 ≤ α ≤ 1, we have

(9) |a2| ≤
A−B

2(1 + d)(1− d)(1 + α)4(1 + λ)l
[
(a)1
(c)1

]m

(10) |a3| ≤
A−B

(1 + d)(1− d)2(1− α)22(1 + 2λ)l(3 + α)
[
(a)1
(c)1

]m

(11) |a4| ≤
A−B

2(1 + d)(1− d)(α)4(1 + λ)l
[
(a)1
(c)1

]m .
Proof. Considering (5) and (8) we have the following:

2(z − ω) + (1 + α)4(1 + λ)l
[

(a)1
(c)1

]m
a2(z − ω)2(12)

+ (1 + 2α)6(1 + 2λ)l
[

(a)1
(c)1

]m
a3(z − ω)3 + · · · =

2(z − ω) + 2p1(z − ω)2 + p2(z − ω)3(13)

+ 4α(1 + 2λ)l
[

(a)1
(c)1

]m
a3(z − ω)3 + · · · .

Equating coefficients

2p1 = (1 + α)4(1 + λ)l
[

(a)1
(c)1

]m
a2

p2 + 4α(1 + 2λ)l
[

(a)1
(c)1

]m
a3 = (1 + 2α)6(1 + 2λ)l

[
(a)1
(c)1

]m
a3

and applying (8) we have

(14) |a2| ≤
A−B

2(1 + d)(1− d)(1 + α)4(1 + λ)l
[
(a)1
(c)1

]m ,

(15) |a3| ≤
A−B

(1 + d)(1− d)2(1− α)22(1 + 2λ)l(3 + α)
[
(a)1
(c)1

]m ,
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and

(16) |a4| ≤
A−B

2(1 + d)(1− d)(α)4(1 + λ)l
[
(a)1
(c)1

]m .
�

Suppose we have d = 0 in Theorem 1, we have

Corollary 1. Let f as defined in (3) be in the class Ψs(ω,A,B), then
for k = 2, 3, 4 · · · , 0 ≤ α ≤ 1, we have

(17) |a2| ≤
A−B

2(1 + α)4(1 + λ)l
[
(a)1
(c)1

]m
and

(18) |a3| ≤
A−B

(1− α)22(1 + 2λ)l(3 + α)
[
(a)1
(c)1

]m .
If we set α = 0 in Corollary 1 we have

Corollary 2. Let f as defined in (3) be in the class Ψs(ω,A,B), then
for k = 2, 3, 4, · · · , 0 ≤ α ≤ 1, we have

(19) 19.|a2| ≤
A−B

8(1 + λ)l
[
(a)1
(c)1

]m
and

(20) |a3| ≤
A−B

6(1 + 2λ)l
[
(a)1
(c)1

]m .
Next we continue with the following theorem.

Theorem 2. Let f as defined in (3) be in the class Ψc(ω,A,B), then
for k = 2, 3, 4, · · · , 0 ≤ α ≤ 1, we have

(21) |a2| ≤
A−B

(1 + d)(1− α)2(1 + α)(1 + λ)l
[
(a)1
(c)1

]m
and

|a3| ≤
(A−B)2

4(1 + d)2(1− α)4(1 + 2α)(1 + 2λ)l
[
(a)2
(c)2

]m(22)

+
A−B

(1 + d)(1− α)2(1 + 2α)(1 + 2λ)l
[
(a)2
(c)2

]m .
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Proof. Considering (7) and (8) we have

(z − ω) + 2(1 + α)(1 + λ)l
[

(a)1
(c)1

]m
a2(z − ω)2(23)

+ 3(1 + 2α)(1 + 2λ)l
[

(a)2
(c)2

]m
a3(z − ω)3 + · · · ={

(z − ω) + (1 + ω)(1 + λ)l
[

(a)1
(c)1

]m
a2(z − ω)2

+(1 + α)(1 + λ)l
[

(a)2
(c)2

]m
a3(z − ω)3 + · · ·

}
×{

1 + p1(z − ω) + p2(z − ω)2 + p3(z − ω)3 + · · ·
}
.(24)

Expanding and equating coefficients we have the following

(25) 2(1 + α)(1 + λ)l
[

(a)1
(c)1

]m
a2 = p1 + (1 + α)(1 + λ)l

[
(a)1
(c)1

]m
a2

and

3(1 + 2α)(1 + 2λ)l
[

(a)2
(c)2

]m
a3 = (1 + 2α)(1 + 2λ)l

[
(a)2
(c)2

]m
a3(26)

+ p1(1 + α)(1 + λ)l
[

(a)1
(c)1

]m
a2 + p2.

Solving for a2 we have

(27) |a2| ≤
A−B

(1 + d)(1− α)2(1 + α)(1 + λ)l
[
(a)1
(c)1

]m
and

|a3| ≤
(A−B)2

4(1 + d)2(1− α)4(1 + 2α)(1 + 2λ)l
[
(a)2
(c)2

]m(28)

+
A−B

(1 + d)(1− α)2(1 + 2α)(1 + 2λ)l
[
(a)2
(c)2

]m .
�

Set d = 0 in Theorem 2, we have the following:

Corollary 3. Let f as defined in (3) be in the class Ψc(ω,A,B), then
for k = 2, 3, 4, · · · , 0 ≤ α ≤ 1, we have

(29) |a2| ≤
A−B

(1− α)2(1 + α)(1 + λ)l
[
(a)1
(c)1

]m
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and

|a3| ≤
(A−B)2

4(1− α)4(1 + 2α)(1 + 2λ)l
[
(a)2
(c)2

]m(30)

+
A−B

(1− α)2(1 + 2α)(1 + 2λ)l
[
(a)2
(c)2

]m .
Setting α = 0 in Corollary 1 we have

Corollary 4. Let f as defined in (2.1) be in the class Ψc(ω,A,B), then
for k = 2, 3, 4, · · · , 0 ≤ α ≤ 1, we have

(31) |a2| ≤
A−B

(1 + λ)l
[
(a)1
(c)1

]m
and

(32) |a3| ≤
(A−B)2

4(1 + 2λ)l
[
(a)2
(c)2

]m +
A−B

2(1 + 2λ)l
[
(a)2
(c)2

]m .
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