Ajai P. Terwase and Maslina Darus *

## ON COEFFICIENT PROBLEMS OF AN OPERATOR WITH RESPECT TO SYMMETRIC POINT


#### Abstract

In this research work, we study the properties of a certain differential subordination involving an operator with respect to a symmetric point. We establish coefficient estimates as our main results. KEY words: subordination, starlikeness, convexity, symmetric point, coefficient estimates.


AMS Mathematics Subject Classification: 30C45.

## 1. Introduction

Let $\mathcal{A}$ denote a class of all analytic functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z:|z|<1\}$ and normalized by $f(0)=f^{\prime}(0)-1=0$. Let S be the subclass of $\mathcal{A}$ consisting of analytic univalent function of the form (1.1). Kanas and Ronning[6] introduced an interesting analytic function $A(\omega)$ defined as follows:

$$
\begin{equation*}
f(z)=(z-\omega)+\sum_{k=0}^{\infty} a_{k}(z-\omega)^{k} \tag{2}
\end{equation*}
$$

which are analytic and univalent in the unit disk $U=\{z:|z|<1\}$ and normalized by the condition

$$
f(\omega)=0 \quad \text { and } \quad f^{\prime}(\omega)=1
$$

[^0]and $\omega$ is fix in $U$. Using (2) the following classes are accordingly defined as in [5]:
\[

$$
\begin{gathered}
S T(\omega)=S^{*}(\omega)=\left\{f(z) \in S(\omega): \Re \frac{(z-\omega) f^{\prime}(z)}{f(z)}>0, z \in U\right\} \\
C V(\omega)=S^{c}(\omega)=\left\{f(z) \in S(\omega): 1+\Re \frac{(z-\omega) f^{\prime \prime}(z)}{f^{\prime}(z)}>0, z \in U\right\}
\end{gathered}
$$
\]

known respectively as $\omega$-starlike and $\omega$-convex functions. Many contributors in the like of Darus[4], Acu and Owa [1], Oladipo [7], Olatunji and Oladipo [8] and many others have worked on these classes mostly viewing them with different mathematical angles of interest.

Let $H(\omega) \in S(\omega)$ be of the form (2) which are analytic and normalized as stated above. Let $f(z)$ be defined as in (2) and $f \in H(\omega)$ satisfy

$$
\Re \frac{(z-\omega) f^{\prime}(z)}{f(z)}>0
$$

Then $f(\omega) \in T^{*}(\omega)$ where $T^{*}(\omega)$ is a subfamily of $S^{*}(\omega)$ and $\omega$ is a fixed point $U$. Let $f(z)$ be defined as stated above and $f \in H(\omega)$ satisfy

$$
\Re\left\{1+\frac{(z-\omega) f^{\prime \prime}(z)}{f^{\prime}(z)}>0, \quad z \in U\right\}
$$

then $f \in K^{c}(\omega) \in S^{c}(\omega)$ and $\omega$ is a fixed point in $U$. These classes are respectively subfamilies of $\omega$-starlike and $\omega$-convex.

## 2. Definition of terms and preliminaries

The linear operator $T_{\lambda}^{m, l}(a, c): \mathcal{A} \rightarrow \mathcal{A}$ defined and studied in [2] is stated as follows:

If $f \in \mathcal{A}$ is of the form (1.1)then

$$
\begin{equation*}
T_{\lambda}^{l, m}(a, c) f(z)=z+\sum_{k=2}^{\infty}(1+\lambda(k-1))^{l}\left[\frac{(a)_{k-1}}{(c)_{k-1}}\right]^{m} a_{k} z^{k} \tag{3}
\end{equation*}
$$

$\left(\lambda \geq 0, a \in \mathbb{R}, c \in \mathbb{R} / \in \mathbb{Z}_{\circ}^{-} ; \mathbb{Z}_{\circ}^{-}=\{0,-1,-2, \cdots\} ; m, l \in \mathbb{N}_{\circ}=\mathbb{N} \cup\{0\}\right)$. It is easily seen from (3) that

$$
\begin{aligned}
& T_{\lambda}^{0,0}(a, c) f(z)=f(z) \\
& T_{\lambda}^{0,1}(a, c) f(z)=\ell(a, c) f(z)
\end{aligned}
$$

where $\ell(a, c) f(z)$ is the familiar Carson-Shaffer operator [3]. Our objectives in this work are to establish coefficient estimates of the stated operator with respect to a fix point.

The following definitions are analogue of the definitions defined in [5], [9] and [8], and we shall modified some of them for the purpose of these work.

Definition 1. Let $T_{c}^{*}(\omega)$ be the subclass of $S$ consisting of

$$
\Re\left\{\frac{f^{\prime}(z)}{f(z)-f(-z)}\right\}>0, \quad z \in U .
$$

This is known as the class of $\omega$-starlike with respect to symmetric point. While the following is known as $\omega$-starlike with respect to conjugate point.

$$
\Re\left\{\frac{(z-\omega) f^{\prime}(z)}{f(z)+\overline{f(\bar{z})}}\right\}>0, \quad z \in U
$$

Moreover, we let $K_{s}^{c}(\omega)$ be the subclass of $S(\omega)$ consisting function given by (1.2) satisfying the following condition:

$$
\Re\left\{\frac{\left((z-\omega) f^{\prime}(z)\right)}{(f(z)-f(-z))^{\prime}}\right\}>0, \quad z \in U
$$

This class is known the class of $\omega$-convex with respect to symmetric point.
In subordination form, Goel and Mehrok [5], Selvaraj and Vasanthi[9] introduced a subclass $S_{s}^{*}$ denoted by $S_{s}^{*}(A, B)$ and $f$ is of the form (2). Olatunji and Oladipo [8] considered and viewed it in terms of symmetric point. Analogously going by their definitions, we define the following:

Let $T_{s}^{*}(\omega, A, B)$ be the class of functions $f$ of the form (3) defined by an operator stated above satisfying the condition
$\frac{2(z-\omega) T_{\lambda}^{l, m}(a, c) f^{\prime}(z)}{T_{\lambda}^{l, m}(a, c) f(z)-T_{\lambda}^{l, m}(a, c) f(-z)} \prec \frac{1+A(z-\omega)}{1+B(z-\omega)},-1 \leq B<A \leq 1, \quad z \in U$.
Let $T_{c}^{*}(\omega, A, B)$ be the subclass of functions of the form (3) and satisfying

$$
\frac{2\left((z-\omega) T_{\lambda}^{l, m}(a, c) f^{\prime}(z)\right)^{\prime}}{T_{\lambda}^{l, m}(a, c) f(z)+\overline{T_{\lambda}^{l, m}(a, c) f(\bar{z})}} \prec \frac{1+A(z-\omega)}{1+B(z-\omega)}, \quad-1 \leq B<A \leq 1, \quad z \in U .
$$

In this paper we introduce the class $\Psi_{s}(\omega, A, B)$ consisting of analytic function of the form (3) and satisfying the condition

$$
\begin{align*}
& \frac{2(z-\omega) T_{\lambda}^{l, m}(a, c) f^{\prime}(z)+2 \alpha(z-\omega)^{2} T_{\lambda}^{l, m}(a, c) f^{\prime \prime}(z)}{[(1-\alpha)+\alpha(z-\omega)]\left(T_{\lambda}^{l, m}(a, c) f(z)-T_{\lambda}^{l, m}(a, c) f(-z)\right)}  \tag{4}\\
& \prec \frac{1+A(z-\omega)}{1+B(z-\omega)}, \quad-1 \leq B<A \leq 1, \quad z \in U .
\end{align*}
$$

Also we introduce the class $\Psi_{c}(\omega, A, B)$ consisting of analytic function $f$ of the form (3) satisfying the condition

$$
\begin{align*}
& \frac{2(z-\omega) T_{\lambda}^{l, m}(a, c) f^{\prime}(z)+2 \alpha(z-\omega)^{2} T_{\lambda}^{l, m}(a, c) f^{\prime \prime}(z)}{[(1-\alpha)+\alpha(z-\omega)]\left(T_{\lambda}^{l, m}(a, c) f(z)-\overline{T_{\lambda}^{l, m}(a, c) f(\bar{z})}\right)}  \tag{5}\\
& \prec \frac{1+A(z-\omega)}{1+B(z-\omega)}, \quad-1 \leq B<A \leq 1, \quad z \in U .
\end{align*}
$$

Equivalently, the above can be stated in terms of subordination as follows: $f \in \Psi_{s}(\omega, A, B)$ if and only if

$$
\begin{align*}
& \frac{2(z-\omega) T_{\lambda}^{l, m}(a, c) f^{\prime}(z)+2 \alpha(z-\omega)^{2} T_{\lambda}^{l, m}(a, c) f^{\prime \prime}(z)}{[(1-\alpha)+\alpha(z-\omega)]\left(T_{\lambda}^{l, m}(a, c) f(z)-T_{\lambda}^{l, m}(a, c) f(-z)\right)}  \tag{6}\\
& =\frac{1+A h(z)}{1+B(h(z)}=p(z)
\end{align*}
$$

$h \in U$ and $h$ is of the form

$$
h(z)=(z-\omega)+\sum_{b=0}^{\infty} b_{k}(z-\omega)^{k}
$$

$h(\omega)=0$ and $|h(z)|<1, h$ is analytic and univalent, and that $f \in$ $\Psi_{c}(\omega, A, B)$ if and only if

$$
\begin{align*}
& \frac{2(z-\omega) T_{\lambda}^{l, m}(a, c) f^{\prime}(z)+2 \alpha(z-\omega)^{2} T_{\lambda}^{l, m}(a, c) f^{\prime \prime}(z)}{[(1-\alpha)+\alpha(z-\omega)]\left(T_{\lambda}^{l, m}(a, c) f(z)-\overline{T_{\lambda}^{l, m}(a, c) f(\bar{z})}\right)}  \tag{7}\\
& =\frac{1+A h(z)}{1+B h(z)}=p(z)
\end{align*}
$$

where $p(z)$ is given here as

$$
p(z)=1+\sum_{k=1}^{\infty} p_{k}(z-\omega)^{k}
$$

and

$$
\begin{equation*}
\left|p_{k}\right| \leq \frac{(A-B)}{(1+d)(1-d)^{k}}, \quad k \geq 1, \quad|\omega|=d \tag{8}
\end{equation*}
$$

In the preceding section we shall study the classes $\Psi_{c}(\omega, A, B)$ and $\Psi_{s}(\omega$, $A, B)$ in which the coefficient estimate for functions $f$ in these classes are obtained.

## 3. Coefficient estimate

Theorem 1. Let $f$ as defined in (3) be in the class $\Psi_{s}(\omega, A, B)$, then for $k=2,3,4, \cdots, \quad 0 \leq \alpha \leq 1$, we have

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{A-B}{2(1+d)(1-d)(1+\alpha) 4(1+\lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m}} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{A-B}{(1+d)(1-d)^{2}(1-\alpha)^{2} 2(1+2 \lambda)^{l}(3+\alpha)\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m}} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\left|a_{4}\right| \leq \frac{A-B}{2(1+d)(1-d)(\alpha) 4(1+\lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m}} \tag{11}
\end{equation*}
$$

Proof. Considering (5) and (8) we have the following:

$$
\begin{align*}
2(z-\omega)+ & (1+\alpha) 4(1+\lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m} a_{2}(z-\omega)^{2}  \tag{12}\\
& +(1+2 \alpha) 6(1+2 \lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m} a_{3}(z-\omega)^{3}+\cdots= \\
2(z-\omega)+ & 2 p_{1}(z-\omega)^{2}+p_{2}(z-\omega)^{3}  \tag{13}\\
& +4 \alpha(1+2 \lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m} a_{3}(z-\omega)^{3}+\cdots .
\end{align*}
$$

Equating coefficients

$$
\begin{gathered}
2 p_{1}=(1+\alpha) 4(1+\lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m} a_{2} \\
p_{2}+4 \alpha(1+2 \lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m} a_{3}=(1+2 \alpha) 6(1+2 \lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m} a_{3}
\end{gathered}
$$

and applying (8) we have

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{A-B}{2(1+d)(1-d)(1+\alpha) 4(1+\lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m}} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{A-B}{(1+d)(1-d)^{2}(1-\alpha)^{2} 2(1+2 \lambda)^{l}(3+\alpha)\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m}} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{4}\right| \leq \frac{A-B}{2(1+d)(1-d)(\alpha) 4(1+\lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m}} \tag{16}
\end{equation*}
$$

Suppose we have $d=0$ in Theorem 1, we have
Corollary 1. Let $f$ as defined in (3) be in the class $\Psi_{s}(\omega, A, B)$, then for $k=2,3,4 \cdots, 0 \leq \alpha \leq 1$, we have

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{A-B}{2(1+\alpha) 4(1+\lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m}} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{A-B}{(1-\alpha)^{2} 2(1+2 \lambda)^{l}(3+\alpha)\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m}} \tag{18}
\end{equation*}
$$

If we set $\alpha=0$ in Corollary 1 we have
Corollary 2. Let $f$ as defined in (3) be in the class $\Psi_{s}(\omega, A, B)$, then for $k=2,3,4, \cdots, 0 \leq \alpha \leq 1$, we have

$$
\begin{equation*}
19 .\left|a_{2}\right| \leq \frac{A-B}{8(1+\lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m}} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{A-B}{6(1+2 \lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m}} \tag{20}
\end{equation*}
$$

Next we continue with the following theorem.
Theorem 2. Let $f$ as defined in (3) be in the class $\Psi_{c}(\omega, A, B)$, then for $k=2,3,4, \cdots, 0 \leq \alpha \leq 1$, we have

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{A-B}{(1+d)(1-\alpha)^{2}(1+\alpha)(1+\lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m}} \tag{21}
\end{equation*}
$$

and

$$
\begin{align*}
\left|a_{3}\right| \leq & \frac{(A-B)^{2}}{4(1+d)^{2}(1-\alpha)^{4}(1+2 \alpha)(1+2 \lambda)^{l}\left[\frac{(a)_{2}}{(c)_{2}}\right]^{m}}  \tag{22}\\
& +\frac{A-B}{(1+d)(1-\alpha) 2(1+2 \alpha)(1+2 \lambda)^{l}\left[\frac{(a)_{2}}{(c)_{2}}\right]^{m}}
\end{align*}
$$

Proof. Considering (7) and (8) we have

$$
\begin{align*}
&(z-\omega)+ 2(1+\alpha)(1+\lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m} a_{2}(z-\omega)^{2}  \tag{23}\\
&+3(1+2 \alpha)(1+2 \lambda)^{l}\left[\frac{(a)_{2}}{(c)_{2}}\right]^{m} a_{3}(z-\omega)^{3}+\cdots= \\
&\left\{(z-\omega)+(1+\omega)(1+\lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m} a_{2}(z-\omega)^{2}\right. \\
&\left.\quad+(1+\alpha)(1+\lambda)^{l}\left[\frac{(a)_{2}}{(c)_{2}}\right]^{m} a_{3}(z-\omega)^{3}+\cdots\right\} \times \\
&\left\{1+p_{1}(z-\omega)+p_{2}(z-\omega)^{2}+p_{3}(z-\omega)^{3}+\cdots\right\} . \tag{24}
\end{align*}
$$

Expanding and equating coefficients we have the following

$$
\begin{equation*}
2(1+\alpha)(1+\lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m} a_{2}=p_{1}+(1+\alpha)(1+\lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m} a_{2} \tag{25}
\end{equation*}
$$

and

$$
\begin{gather*}
3(1+2 \alpha)(1+2 \lambda)^{l}\left[\frac{(a)_{2}}{(c)_{2}}\right]^{m} a_{3}=(1+2 \alpha)(1+2 \lambda)^{l}\left[\frac{(a)_{2}}{(c)_{2}}\right]^{m} a_{3}  \tag{26}\\
+p_{1}(1+\alpha)(1+\lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m} a_{2}+p_{2}
\end{gather*}
$$

Solving for $a_{2}$ we have

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{A-B}{(1+d)(1-\alpha)^{2}(1+\alpha)(1+\lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m}} \tag{27}
\end{equation*}
$$

and

$$
\begin{align*}
\left|a_{3}\right| \leq & \frac{(A-B)^{2}}{4(1+d)^{2}(1-\alpha)^{4}(1+2 \alpha)(1+2 \lambda)^{l}\left[\frac{(a)_{2}}{(c)_{2}}\right]^{m}}  \tag{28}\\
& +\frac{A-B}{(1+d)(1-\alpha) 2(1+2 \alpha)(1+2 \lambda)^{l}\left[\frac{(a)_{2}}{(c)_{2}}\right]^{m}}
\end{align*}
$$

Set $d=0$ in Theorem 2, we have the following:
Corollary 3. Let $f$ as defined in (3) be in the class $\Psi_{c}(\omega, A, B)$, then for $k=2,3,4, \cdots, 0 \leq \alpha \leq 1$, we have

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{A-B}{(1-\alpha)^{2}(1+\alpha)(1+\lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m}} \tag{29}
\end{equation*}
$$

and

$$
\begin{align*}
\left|a_{3}\right| \leq & \frac{(A-B)^{2}}{4(1-\alpha)^{4}(1+2 \alpha)(1+2 \lambda)^{l}\left[\frac{(a)_{2}}{(c)_{2}}\right]^{m}}  \tag{30}\\
& +\frac{A-B}{(1-\alpha) 2(1+2 \alpha)(1+2 \lambda)^{l}\left[\frac{(a)_{2}}{(c)_{2}}\right]^{m}}
\end{align*}
$$

Setting $\alpha=0$ in Corollary 1 we have
Corollary 4. Let $f$ as defined in (2.1) be in the class $\Psi_{c}(\omega, A, B)$, then for $k=2,3,4, \cdots, 0 \leq \alpha \leq 1$, we have

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{A-B}{(1+\lambda)^{l}\left[\frac{(a)_{1}}{(c)_{1}}\right]^{m}} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{(A-B)^{2}}{4(1+2 \lambda)^{l}\left[\frac{(a)_{2}}{(c)_{2}}\right]^{m}}+\frac{A-B}{2(1+2 \lambda)^{l}\left[\frac{(a)_{2}}{(c)_{2}}\right]^{m}} \tag{32}
\end{equation*}
$$

Acknowledgements. The authors would like to acknowledge and appreciate the financial support received from Universiti Kebangsaan Malaysia (UKM) under the grant: AP-2013-009. We would also like to thank the referee for the comments on our manuscript.

## References

[1] Acu M., Owa S., On some subclasses of univalent functions, Journal of Inequalities in Pure and Applied Mathematics, 6(2005), 1-14.
[2] Bansal D., Raina R.K., Some subordination theroems associated with a new operator, Le Mathematiche, 25(2010), 33-34.
[3] Carlson B.C., Shaffer D.B., Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15(1984), 737-745.
[4] Darus M., Meromophic functions with positive coefficients, Int. Jour. Math. Math. Sci., 6(2004), 319-324.
[5] Goel R.M., Mehrok B.C., A subclass of starlike functions with respect to symmetric points, Tamkang J. Math., 13(1982), 11-24.
[6] Kanas S., Ronning F., Uniformly starlike and convex functions and other related classes of univalent functions, Ann. Univ. Mariae Curie-Sklodowska, 53(1999), 95-105.
[7] Oladipo A.T., On a subclasses of univalent functions, Advances in Applied Mathematical Analysis, 4(2009), 87-93.
[8] Olatunji S.O., Oladipo A.T., On a new subfamilies of analytic and univalent functions with negative coefficient with respect to other poins, Bull.of Math. Anal. Appl., 3(2011), 20-30.
[9] Selvaraj C., Vasanthi N., Subclasses of analytic functions with respect to symmetric and conjugate points, Tamkang J. Math., 42(2011), 87-94.

Ajai P. Terwase<br>Department of Mathematics<br>Faculty of Physical Sciences<br>Plateau State University Bokkos, Nigeria<br>AND<br>School of Mathematical Sciences<br>Faculty of Science and Technology<br>Universiti Kebangsaan Malaysia<br>43600 UKM Bangi<br>Selangor DE, Malaysia<br>e-mail: philipajai2k2@yahoo.com<br>Maslina Darus<br>School of Mathematical Sciences<br>Faculty of Science and Technology<br>Universiti Kebangsaan Malaysia<br>43600 UKM Bangi<br>Selangor DE, Malaysia<br>e-mail: maslina@ukm.edu.my

Received on 09.09.2015 and, in revised form, on 12.07.2016.


[^0]:    * The author was visiting as a research fellow with the Department of Mathematics University of Kebangsaan, Malaysia.

