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1. Introduction and preliminaries

One of the central problems in general topology is to establish relation-
ships between various topological spaces and metric spaces by means of var-
ious maps. Some characterizations for certain quotient π-images of metric
spaces are obtained by means of σ-strong networks ([8]), and some charac-
terizations around sequence-covering quotient π-images of metric spaces are
obtained in terms of symmetric spaces ([13]).

In this paper, we prove that a Cauchy symmetric space has a point-countable
cs-network if and only if it is a 1-sequence-covering compact-covering quo-
tient π, s-image of a metric space, if and only if it is a sequence-covering
quotient π, s-image of a metric space.

We assume that all spaces are T1 and regular, all maps are continuous and
onto, N denotes the set of all natural numbers. Let P and Q be two families
of subsets of X, we denote (P)x = {P ∈ P : x ∈ P}, P

∧
Q = {P ∩Q : P ∈

P, Q ∈ Q} and St(x, P ) = {P ∈ P : x ∈ P}. For a sequence {xn} converging
to x, we say that {xn} is eventually in P , if {x}

⋃
{xn : n ≥ m} ⊂ P for

some m ∈ N, and {xn} is frequently in P , if some subsequence of {xn} is
eventually in P .

Definition 1 ([13]). Let P be a family of subsets of a space X.
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(a) P is point-countable, if each point x ∈ X belongs to only countably
many members of P.

(b) P is a network at x in X, if x ∈ P for every P ∈ P, and whenever
x ∈ U with U is open in X, then x ∈ P ⊂ U for some P ∈ P.

(c) P is a cs-network for X, if each sequence S converging to a point
x ∈ U with U open in X, S is eventually in P ⊂ U for some P ∈ P.

(d) P is a cfp-cover for X, if whenever K is compact subset of X, there
exists a finite family {Ki : i ≤ n} of closed subsets of K and {Pi : i ≤
n} ⊂ P such that K =

⋃
{Ki : i ≤ n} and each Ki ⊂ Pi.

(e) P is a cs-cover for X, if every convergent sequence is eventually in
some P ∈ P.

(f) P is an sn-cover for X, if for every P ∈ P, P is a sequential neigh-
borhood of some x ∈ X, and for every x ∈ X there exists P ∈ P such
that P is a sequential neighborhood of x.

Definition 2 ([2]). Let P =
⋃
{Px : x ∈ X} be a cover of a space X.

Assume that P satisfies the following (1) and (2) for every x ∈ X.
(a) Px is a network at x.
(b) If P1, P2 ∈ Px, then P ⊂ P1 ∩ P2 for some P ∈ Px.
P is a weak base for X, if for G ⊂ X, G is open in X if and only if for
every x ∈ G, there exists P ∈ Px such that P ⊂ G; Px is said to be a weak
neighborhood base at x.

Definition 3 ([5, 11]). Let d be a d-function on a space X.
(a) For each x ∈ X, n ∈ N, let

Sn(x) =
{
y ∈ X : d(x, y) <

1

n

}
.

(b) For every P ⊂ X, put

d(P ) = sup{d(x, y) : x, y ∈ P}.

(c) X is symmetric, if {Sn(x) : n ∈ N} is a weak neighborhood base at x
for each x ∈ X.

(d) X is Cauchy symmetric, if X is symmetric and every convergent
sequence is d-Cauchy.

Remark 1 ([11]). X is Cauchy symmetric if and only if for each x ∈ X,
d
(
Sn(x)

)
converges to 0.

Definition 4 ([8]). Let {Pn : n ∈ N} be a sequence of covers of a space
X such that Pn+1 refines Pn for every n ∈ N.

(a)
⋃
{Pn : n ∈ N} is a σ-strong network for X, if {St(x,Pn) : n ∈ N} is

a network at each point x ∈ X.
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(b)
⋃
{Pn : n ∈ N} is a σ-point-countable strong network for X, if it is

a σ-strong network and each Pn is point-countable.
(c)

⋃
{Pn : n ∈ N} is a σ-point-countable strong network consisting of

cs-covers (resp., sn-covers) for X, if it is a σ-strong network and each
Pn is a point-countable cs-cover (resp., sn-cover).

Definition 5 ([1, 8, 13]). Let f : X → Y be a map.
(a) f is weak-open, if there exists a weak base B =

⋃
{By : y ∈ Y } for

Y , and for every y ∈ Y , there exists x ∈ f−1(y) such that for each open
neighborhood U of x, B ⊂ f(U) for some B ∈ By.

(b) f is 1-sequence-covering, if for each y ∈ Y , there exists x ∈ f−1(y)
such that each sequence converging to y is an image of some sequence
converging to x.

(c) f is sequence-covering, if every convergent sequence of Y is the image
of some convergent sequence of X.

(d) f is compact-covering, if for each compact subset K of Y , there exists
a compact subset L of X such that f(L) = K.

(e) f is quotient, if whenever U ⊂ Y , U open in Y if and only if f−1(U)
open in X.

(f) f is a π-map, if for every y ∈ Y and for every neighborhood U of
y in Y , d

(
f−1(y);X − f−1(U)

)
> 0, where X is a metric space with a

metric d.
(g) f is an s-map, if f−1(y) is separable in X for each y ∈ Y .

Notation. Let
⋃
{Pn : n ∈ N} be a σ-strong network for a space X.

For each n ∈ N, put Pn = {Pα : α ∈ Λn} and endow Λn with the discrete
topology. Then,

M =
{
α = (αn) ∈

∏
n∈N

Λn : {Pαn} forms a network at some point xα ∈ X
}

is a metric space and the point xα is unique in X for every α ∈M . Define
f : M → X by f(α) = xα. Let us call (f,M,X,Pn) a Ponomarev’s system,
following [4].

For some undefined or related concepts, we refer the reader to [3], [12]
and [13].

2. Main results

Theorem 1. The following are equivalent for a space X.
(a) X is a Cauchy symmetric space has a point-countable cs-network;
(b) X is a 1-sequence-covering compact-covering quotient π, s-image of
metric space;
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(c) X is a sequence-covering quotient π, s-image of metric space.

Proof. (a) =⇒ (b). LetX be a Cauchy symmetric and U be a point-coun-
table cs-network for X. We can assume that U is closed under finite inter-
sections. Put

Px =
{
P ∈ U : Sn(x) ⊂ P for some n ∈ N

}
.

Claim. For each U open in X and x ∈ U , there exists P ∈ Px such that
P ⊂ U .

In fact, conversely assume that there exist U open in X and x ∈ U such
that P 6⊂ U for all P ∈ Px. Let

{P ∈ Px : x ∈ P ⊂ U} = {Pm(x) : m ∈ N}.

Then Sn(x) 6⊂ Pm(x) for all n,m ∈ N, so choose xn,m ∈ Sn(x)−Pm(x). For
n ≥ m, we denote xn,m = yk with k = m + n(n − 1)/2. Because {Sn(x)}
is a decreasing weak neighborhood base at x, the sequence {yk : k ∈ N}
converges to the point x in X. Thus, there exist m, i ∈ N such that

{x}
⋃
{yk : k ≥ i} ⊂ Pm(x) ⊂ U.

Take j ≥ i with yj = xn,m for some n ≥ m. Then xn,m ∈ Pm(x). This is a
contradiction.

Then we have
(a) Px is a network at x in X. Let U be an open subset of X and x ∈ U .

Then there exists P ∈ Px such that P ⊂ U by the Claim.
(b) Let P1, P2 ∈ Px and P = P1 ∩ P2. Hence, there exist n,m ∈ N such

that Sm(x) ⊂ P1 and Sn(x) ⊂ P2. If put k = max{m,n}, then Sk(x) ⊂ P ∈
U . Thus, P ∈ Px and P ⊂ P1 ∩ P2.

(c) Let U be an open subset of X. By the Claim, there exists P ∈ Px
such that P ⊂ G. Conversely, if G ⊂ X satisfies that for each x ∈ G, there
exists P ∈ Px with P ⊂ G, then for each x ∈ G, there exists n ∈ N such that
Sn(x) ⊂ G. Because {Sn(x)} is a weak neighborhood at x for all x ∈ X, G
is open in X.

Therefore, P =
⋃
{Px : x ∈ X} is a weak base for X and P ⊂ U .

Since U is a σ-point-countable cs-network, P is a σ-point-countable weak
base. For each m,n ∈ N, put

Qm,n(x) =
{
P ∈ Px : Sm(x) ⊂ P and d(P ) <

1

n

}
,

Am,n = {x ∈ X : Qm,n(x) = ∅},

Bm,n = X −Am,n
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Qm,n =
⋃
{Qm,n(x) : x ∈ Bm,n},

Fm,n = Qm,n
⋃
{Am,n}

Then, each Fm,n is point-countable. Furthermore, we have
(i) Each Fm,n is a cs-cover for X.
Let x ∈ X and S = {xi : i ∈ N} be a sequence converging to x in X,

then
Case 1. If x ∈ Bm,n, then there is P ∈ Qm,n(x) such that Sm(x) ⊂ P .

Hence, S is eventually in P ∈ Fm,n.
Case 2. If x /∈ Bm,n and S ∩ Bm,n is finite, then S is eventually in

Am,n ∈ Fm,n.
Case 3. If x /∈ Bm,n and S ∩Bm,n is infinite, then we can assume that

S ∩Bm,n = {xik : k ∈ N}.

Since X is Cauchy symmetric and S converges to x, there exists n0 ∈ N
such that

d(xi, xj) <
1

m
and d(x, xi) <

1

m
for every i, j ≥ n0.

Now, we pick k0 ∈ N such that ik0 ≥ n0. Because

d(xik0 , x) <
1

m
and d(xik0 , xi) <

1

m
for every i ≥ n0,

it implies that S is eventually in Sm(xik0 ). Furthermore, since xik0 ∈ Bm,n,
we get Sm(xik0 ) ⊂ P for some P ∈ Qm,n(xik0 ). Hence, P ∈ Fm,n and S is
eventually in P .

Therefore, each Fm,n is a cs-cover for X.
(ii) {St(x,Fm,n) : m,n ∈ N} is a network at x.
Let x ∈ U with U is open in X. Then, Sn(x) ⊂ U for some n ∈ N.

Since X is Cauchy symmetric, there exists j ∈ N such that d
(
Sj(x)

)
< 1/n.

Furthermore, we have P ⊂ Sj(x) for some P ∈ Px. Indeed, since P is
point-countable, we can put

Px = {Pn(x) : n ∈ N}.

On the other hand, because P is a weak base, we can choose sequence
{ni : i ∈ N} such that {Pni(x) : i ∈ N} is a decreasing network at x. Then,
there exists i ∈ N such that Pni(x) ⊂ Sj(x).

Because P is a sequential neighborhood at x, there exists i ∈ N such that
Sm(x) ⊂ P . If not, for each n ∈ N, there exists xn ∈ Sn(x) − P . Hence,
{xn} converges to x. Then, there exists k ∈ N such that xn ∈ P for every
n ≥ k. This is a contradiction.
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Then, we have

Sm(x) ⊂ P ∈ Px.

Since d
(
Sj(x)

)
< 1/n, we get d(P ) < 1/n. This implies that P ∈ Fm,n.

Then, we have

St(x,Fm,n) ⊂ Sn(x) ⊂ U.

It follows that {St(x,Fm,n) : m,n ∈ N} is a network at x.
Next, we write

{Fm,n : m,n ∈ N} = {Hn : n ∈ N},

and for each n ∈ N, put

Gn =
∧
{Hi : i ≤ n}.

Then,
⋃
{Gn : n ∈ N} is a σ-point-countable strong network consisting of

cs-covers for X.
For each i ∈ N, put

Li =
{
P ∈ Gi : there exist x ∈ X,n ∈ N such that Sn(x) ⊂ P

}
.

Then,
(a) For each x ∈ X, by using the proof of the Claim, there exist n ∈ N

and P ∈ Gi such that Sn(x) ⊂ P , it implies that P is a sequential
neighborhood of x and P ∈ Li.

(b) For each P ∈ Li, there exist x ∈ X and n ∈ N such that Sn(x) ⊂ P .
This implies that P is a sequential neighborhood at x.

(c) Since each Li ⊂ Gi,
⋃
{Pn : n ∈ N} is a σ-point-countable strong net-

work.
Therefore,

⋃
{Ln : n ∈ N} is a σ-point-countable strong network consisting

of sn-covers.
Finally, consider the Ponomarev’s system (f,M,X,Ln). Because each

Ln is a point-countable sn-cover, it follow from Theorem 3.7 (1) and Theo-
rem 3.10 in [4] that f is a 1-sequence-covering s-map. On the other hand,
since each Ln is an sn-cover, each Ln is a cfp-cover by Lemma 3.10 in [13].
Thus, f is compact-covering by Lemma 2.2 in [13]. Furthermore, since X is
sequential, it follows from Lemma 3.5 in [10] that f is quotient.

(b) =⇒ (c). It is obvious.
(c) =⇒ (a). Let X be a sequence-covering quotient π, s-image of a metric

space. By Theorem 3.11 in [13], X is Cauchy symmetric. Furthermore, it
follows from Theorem 1.1 in [6] that X has a point-countable cs-network. �

By Corollary 2.8 [1] and Theorem 1, we have
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Corollary 1. The following are equivalent for a space X.
(a) X is a Cauchy symmetric with a point-countable cs-network;
(b) X is a weak-open compact-covering π, s-image of a metric space;
(c) X is a weak-open π, s-image of a metric space;

Example 1 ([7]). There exists a Hausdorff space with a countable base,
which is not a symmetric space. There also exists a regular Cauchy sym-
metric space without point-countable cs-networks.

Question. Is a Cauchy symmetric space has a point-countable cs∗-network
a space with a point-countable cs-network?
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