DE GRUYTER

2017 DOI:10.1515/fascmath-2017-0001

Ahu Acikgoz, Takashi Noiri and Nihal Tas CONTRA (m_X, m_Y) -SEMICONTINUOUS FUNCTIONS IN *m*-SPACES

ABSTRACT. In this paper, we introduce the notion of contra (m_X, m_Y) -semicontinuous functions between *m*-spaces. We obtain many characterizations of these functions and deal with decompositions of the functions and other related functions.

KEY WORDS: contra (m_X, m_Y) -semicontinuity, m_X -semi-closed set, m_X -semi-open set, minimal structure, minimal space.

AMS Mathematics Subject Classification: 54C10, 54C08, 54D10.

1. Introduction

Generalizations of open sets in a topological space: α -sets [8], preopen sets [3], semi-open sets [1] and β -open sets etc are very important for generalizing continuity in topological spaces. Various generalizations of continuity are defined and investigated by many authors. As a generalization of the topology, Maki [2] define the notion of minimal structures. A subfamily mof the power set P(X) on a nonemty set X is called a minimal structure [2] if $\emptyset \in m$ and $X \in m$. The pair (X, m) is called a minimal space. The elements of m are said to be m-open. Recently, several generalizations of m-open sets have been defined and investigated in [4, 5, 6] and [15]. Quite recently, Sengul and Rosas [14] introduced the notion of contra (m_X, m_Y) -continuity between m-spaces.

The purpose of the present paper is to introduce and study the notion of contra (m_X, m_Y) -semicontinuous functions between *m*-spaces. In Section 3, we obtain many characterizations of contra (m_X, m_Y) -semicontinuity. In Section 4, we deal with decompositions of contra (m_X, m_Y) -semicontinuity and other related functions. The last section gives some properties of strongly $S - m_X$ -closed spaces.

Nr 58

2. Preliminaries

Definition 1 ([2, 11]). A subfamily m_X of the power set P(X) of a nonempty set X is called a minimal structure (briefly, m-structure) on X if $\emptyset \in m_X$ and $X \in m_X$. The pair (X, m_X) is called a minimal space (briefly, m-space). A member of m_X is said to be m_X -open and the complement of an m_X -open set is said to be m_X -closed.

Definition 2 ([2, 11]). Let (X, m_X) be a minimal space. For a subset A of X, the m_X -closure of A and the m_X -interior of A are defined as follows:

(1)
$$m_X - Cl(V) = \bigcap \{F : A \subseteq F, X - F \in m_X\}.$$

(2) $m_X - Int(V) = \bigcup \{U : U \subseteq A, U \in m_X\}.$

Lemma 1 ([2, 11]). Let (X, m_X) be a minimal space and $A, B \subseteq X$. Then the followings hold:

- (1) $m_X Cl(\emptyset) = \emptyset, m_X Cl(X) = X.$
- (2) $m_X Int(\emptyset) = \emptyset, m_X Int(X) = X.$
- (3) If $X A \in m_X$, then $m_X Cl(A) = A$.
- (4) If $A \in m_X$, then $m_X Int(A) = A$.
- (5) $A \subseteq m_X Cl(A), m_X Int(A) \subseteq A.$
- (6) $m_X Cl(X A) = X (m_X Int(A)).$
- (7) $m_X Int(X A) = X (m_X Cl(A)).$
- (8) $m_X Cl(m_X Cl(A)) = m_X Cl(A).$
- (9) $m_X Int(m_X Int(A)) = m_X Int(A).$
- (10) If $A \subseteq B$, then $m_X Cl(A) \subseteq m_X Cl(B)$.
- (11) If $A \subseteq B$, then $m_X Int(A) \subseteq m_X Int(B)$.

Definition 3 ([2]). Let (X, m_X) be a minimal space. The m-structure m_X is said to have property \mathcal{B} if the union of any family of subsets belonging to m_X belongs to m_X .

Lemma 2 ([11]). Let (X, m_X) be a minimal space and m_X satisfy property of \mathcal{B} . For $A \subseteq X$, the followings hold:

- (1) $A \in m_X$ if and only if $m_X Int(A) = A$.
- (2) A is m_X -closed if and only if $m_X Cl(A) = A$.
- (3) $m_X Int(A) \in m_X$.
- (4) $m_X Cl(A)$ is m_X -closed.

Lemma 3 ([11]). Let (X, m_X) be a minimal space and $A \subseteq X$. Then $x \in m_X - Cl(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in m_X$ such that $x \in U$.

Definition 4. Let (X, m_X) be a minimal space. A subset A of X is said to be m_X -clopen if it is m_X -open and m_X -closed.

Definition 5. Let (X, m_X) be a minimal space. A subset A of X is called

- (1) an αm_X open set [6] if $A \subseteq m_X Int(m_X Cl(m_X Int(A)))$.
- (2) an m_X -preopen set [4, 13] if $A \subseteq m_X Int(m_X Cl(A))$.
- (3) $a \beta m_X$ -open set [7, 15] if $A \subseteq m_X Cl(m_X Int(m_X Cl(A)))$.

Definition 6 ([5]). Let (X, m_X) be a minimal space. A subset A of X is called an m_X -semiopen set if $A \subseteq m_X - Cl(m_X - Int(A))$. The complement of an m_X -semiopen set is called an m_X -semiclosed set. The family of all m_X -semiopen sets in X is denoted by MSO(X).

Lemma 4 ([5]). Let (X, m_X) be a minimal space and $A \subseteq X$. Then

(1) A is an m_X -semiclosed set if and only if m_X -Int $(m_X$ -Cl(A)) \subseteq A.

(2) MSO(X) is a minimal structure with property \mathcal{B} .

Definition 7 ([5]). Let (X, m_X) be a minimal space and $A \subseteq X$. The m_X -semi-closure of A and the m_X -semi-interior of A are defined as follows:

- (1) $m_X sCl(A) = \bigcap \{F : A \subseteq F, F \text{ is } m_X \text{-semiclosed in } X\}.$
- (2) $m_X sInt(A) = \bigcup \{U : U \subseteq A, U \text{ is } m_X \text{-semiopen in } X\}.$

Lemma 5. Let (X, m_X) be a minimal space. For a subset of A of X, the following hold:

- (1) A is m_X -semiopen if and only if m_X sInt(A) = A.
- (2) A is m_X -semiclosed if and only if $m_X sCl(A) = A$.

Proof. This follows easily from Lemmas 2 and 4.

Definition 8 ([13]). Let (X, m_X) be a minimal space. Then a subset A of X is said to be m_X -gs-closed if $m_X sCl(A) \subseteq U$ whenever $A \subseteq U$ and $U \in m_X$.

Definition 9 ([13]). Let (X, m_X) be a minimal space. Then $A \subseteq X$ is called an m_X -regular open set if $A = m_X - Int(m_X - Cl(A))$. Also $A \subseteq X$ is called an m_X -regular closed set if X - A is m_X -regular open.

If A is m_X -closed, then $m_X - cl(A) = A$ but the converse is not always true. Therefore, m_X -regular open (resp. m_X - regular closed) is not always m_X -open (resp. m_X -closed).

Definition 10 ([12]). A subset U of a nonempty set X with a minimal structure m_X is said to be m_X -compact relative to (X, m_X) if any cover of U by m_X -open sets has a finite subcover.

Definition 11 ([14]). Let (X, m_X) and (Y, m_Y) be two minimal spaces. Then a function $f : (X, m_X) \to (Y, m_Y)$ is said to be contra (m_X, m_Y) -continuous if $f^{-1}(V) = m_X - Cl(f^{-1}(V))$ for every m_Y -open set V of Y.

3. Contra (m_X, m_Y) -semi continuous functions

In this section, we introduce the concept of a contra (m_X, m_Y) -semi continuous function between *m*-spaces and investigate some characterizations of this continuity.

Definition 12. Let (X, m_X) and (Y, m_Y) be two minimal spaces. Then a function $f : (X, m_X) \to (Y, m_Y)$ is said to be contra (m_X, m_Y) -semi continuous if $f^{-1}(V)$ is m_X -semiclosed in X for every m_Y -open set V of Y.

Lemma 6. Every contra (m_X, m_Y) -continuous function is contra (m_X, m_Y) -semi continuous.

Proof. Let $f : (X, m_X) \to (Y, m_Y)$ be a contra (m_X, m_Y) -continuous function and V be any m_Y -open set of Y. Then $m_X - Cl(f^{-1}(V)) = f^{-1}(V)$ and $m_X - Int(m_X - Cl(f^{-1}(V))) = m_X - Intf^{-1}(V) \subseteq f^{-1}(V)$. Therefore, Lemma 4, $f^{-1}(V)$ is m_X -semiclosed and f is contra (m_X, m_Y) -semi continuous.

Remark 1. The converse of Lemma 6 is not always true as the following example shows.

Example 1. Let $X = \{a, b, c\}$ and m_{X_1}, m_{X_2} be two minimal structures on X as follows:

$$m_{X_1} = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}, m_{X_2} = \{\emptyset, X, \{c\}\}.$$

Define a function $f: (X, m_{X_1}) \to (X, m_{X_2})$ as follows:

$$f(a) = b, \quad f(b) = c, \quad f(c) = a.$$

Then f is contra (m_X, m_Y) -semi continuous, but it is not contra (m_X, m_Y) -continuous.

Theorem 1. A function $f : (X, m_X) \to (Y, m_Y)$ is contra (m_X, m_Y) -semi continuous if and only if $f : (X, MSO(X)) \to (Y, m_Y)$ is contra (m_X, m_Y) -continuous.

Proof. Necessity. Let $f: (X, m_X) \to (Y, m_Y)$ be contra (m_X, m_Y) -semi continuous and V be any m_Y -open set of Y. Then, by hypothesis $f^{-1}(V)$ is m_X -semiclosed in X and, by Lemma 5, $f^{-1}(V) = m_X sCl(f^{-1}(V))$. Therefore, $f: (X, MSO(X)) \to (Y, m_Y)$ is contra (m_X, m_Y) -continuous.

Sufficienty. Let V be any m_Y -open set of Y. By hypothesis, $f^{-1}(V) = m_X sCl(f^{-1}(V))$ and, by Lemma 5, $f^{-1}(V)$ is m_X -semi-closed. Therefore, $f: (X, m_X) \to (Y, m_Y)$ is contra (m_X, m_Y) -semi continuous.

Definition 13. Let (X, m_X) and (Y, m_Y) be two minimal spaces. Then a function $f : (X, m_X) \to (Y, m_Y)$ is said to be contra (m_X, m_Y) -semicontinuous at $x \in X$ if for each m_Y -closed V of Y containing f(x), there exists an m_X -semiopen set U of X containing x such that $f(U) \subseteq V$.

Theorem 2. Let (X, m_X) , (Y, m_Y) be two minimal spaces. A function $f : (X, m_X) \to (Y, m_Y)$ is contra (m_X, m_Y) -semi continuous if and only if f is contra (m_X, m_Y) -semicontinuous at each point $x \in X$.

Proof. Necessity. Let $x \in X$ and V be any m_Y -closed set of Y containing f(x). Then Y - V is m_Y -open. By hypothesis, $f^{-1}(Y - V)$ is an m_X -semiclosed subset of X. Thus $f^{-1}(V)$ is m_Y -semiopen. Put $U = f^{-1}(V)$. Then $x \in U$ and $f(U) \subseteq V$. This shows that f is contrating (m_X, m_Y) -semicontinuous at each point $x \in X$.

Sufficiency. Let V be any m_Y -open set of Y and $x \in f^{-1}(Y - V)$. Then $f(x) \in Y - V$ and Y - V is m_Y -closed. By hypothesis, there exists an m_X -semiopen set U_x containing x such that $f(U_X) \subseteq Y - V$; hence $x \in U_x \subseteq f^{-1}(Y - V)$. Therefore, we have $\cup \{U_x : x \in f^{-1}(Y - V)\} = f^{-1}(Y - V)$. Since MSO(X) satisfies property \mathcal{B} , $f^{-1}(Y - V)$ is m_X -semiopen and $f^{-1}(V)$ is m_X -semiclosed in X. This shows that f contra (m_X, m_Y) -semi continuous.

Theorem 3. Let (X, m_X) and (Y, m_Y) be two minimal spaces. For a function $f : (X, m_X) \to (Y, m_Y)$, the following statements are equivalent:

- (1) f is contra (m_X, m_Y) -semi continuous;
- (2) $f^{-1}(V)$ is m_X -semiopen in X for every m_Y -closed subset V of Y;

(3) $m_X - Int(m_X - Cl(f^{-1}(V))) = m_X - Int(f^{-1}(V))$ for every m_Y -open subset V of Y;

(4) $m_X - Cl(m_X - Int(f^{-1}(V))) = m_X - Cl(f^{-1}(V))$ for every m_Y -closed subset V of Y.

Proof. (1) \Rightarrow (2). Let V be any m_Y -closed set of Y. Then Y - V is m_Y -open. Using the hypothesis, $f^{-1}(Y-V) = X - f^{-1}(V)$ is m_X -semiclosed in X. As a consequence, $f^{-1}(V)$ is m_X -semiopen in X.

 $(2) \Rightarrow (3)$. Let V be any m_Y -open set of Y. Then Y - V is m_Y -closed. By (2), $f^{-1}(Y - V)$ is m_X - semiopen and $f^{-1}(V)$ is m_X - semiclosed in X. By Lemma 4, $m_X - Int(m_X - Cl(f^{-1}(V))) \subseteq f^{-1}(V)$ and hence by Lemma 1 $m_X - Int(m_X - Cl(f^{-1}(V))) \subseteq m_X - Int(f^{-1}(V)) \subseteq m_X - Int(m_X - Cl(f^{-1}(V)))$. Therefore, we obtain (3).

 $(3) \Rightarrow (4)$. It is clear from the complement of (3).

(4) \Rightarrow (1). Let V be any m_Y -open subset of Y. Then Y - V is m_Y -closed. By hypothesis,

$$m_X - Cl(m_X - Int(f^{-1}(Y - V))) = m_X - Cl(f^{-1}(Y - V)).$$

Then we obtain that

$$m_X - Int(m_X - Cl(f^{-1}(V))) = m_X - Int(f^{-1}(V)) \subseteq f^{-1}(V).$$

By Lemma 4, $f^{-1}(V)$ is m_X -semiclosed in X.

Theorem 4. Let (X, m_X) , (Y, m_Y) be two minimal spaces and m_Y satisfy property \mathcal{B} . For a function $f : (X, m_X) \to (Y, m_Y)$, the following statements are equivalent:

(1) f is contra (m_X, m_Y) -semi continuous;

(2) $f^{-1}(B)$ is m_X -semiopen in X for every m_Y -closed set B in Y; (3) $f^{-1}(B) \subseteq m_X - Cl(m_X - Int(f^{-1}(m_Y - Cl(B))))$ for every subset

B in Y;(d) $f = (D) \subseteq m_X = Cr(m_X = Im(f = (D)))) f = Cr(D))) f = Cr(D)$

(4) $m_X - Int(m_X - Cl(f^{-1}(m_Y - Int(B)))) \subseteq f^{-1}(B)$ for every subset B in Y;

(5) $A \subseteq m_X - Cl(m_X - Int(f^{-1}(m_Y - Cl(f(A)))))$ for every subset A in X.

Proof. (1) \Leftrightarrow (2). It is obvious from Theorem 3.

 $(2) \Rightarrow (3)$. Let $B \subseteq Y$. Then $m_Y - Cl(B)$ is an m_Y -closed set in Y since m_Y satisfies property \mathcal{B} . By (2), $f^{-1}(m_Y - Cl(B))$ is m_X -semiopen in X. Therefore, $f^{-1}(m_Y - Cl(B)) \subseteq m_X - Cl(m_X - Int(f^{-1}(m_Y - Cl(B))))$. As a consequence, $f^{-1}(B) \subseteq f^{-1}(m_Y - Cl(B)) \subseteq m_X - Cl(m_X - Int(f^{-1}(m_Y - Cl(B))))$.

 $(3) \Leftrightarrow (4)$. It is clear from the complement.

 $(4) \Rightarrow (5).$ Let $A \subseteq X$. Then $f(A) \subseteq Y$. By $(3), A \subseteq f^{-1}(f(A)) \subseteq m_X - Cl(m_X - Int(f^{-1}(m_Y - Cl(f(A))))).$

 $(5) \Rightarrow (2)$. Let B be any m_Y - closed set in Y. Then $f^{-1}(B) \subseteq X$. By (5), $f^{-1}(B) \subseteq m_X - Cl(m_X - Int(f^{-1}(m_Y - Cl(f(f^{-1}(B)))))) \subseteq m_X - Cl(m_X - Int(f^{-1}(m_Y - Cl(B))))$. Then we obtain

$$f^{-1}(B) \subseteq m_X - Cl(m_X - Int(f^{-1}(B)))$$

since B is m_Y -closed in Y. As a consequence, $f^{-1}(B)$ is m_X -semiopen in X.

Theorem 5. Let (X, m_X) , (Y, m_Y) be two minimal spaces and m_X , m_Y satisfy property \mathcal{B} . For a function $f : (X, m_X) \to (Y, m_Y)$, the following statements are equivalent:

- (1) f is contra (m_X, m_Y) -semi continuous;
- (2) $f^{-1}(V)$ is m_X -semiopen in X for every m_Y -closed subset V of Y;

(3) There exists an m_X -semiclosed set U such that $x \notin U$ and $f^{-1}(V) \subseteq U$ for each $x \in X$ and each m_Y -open V with $f(x) \notin V$;

(4) $f^{-1}(F) \subseteq m_X sInt(f^{-1}(F))$ for any m_Y -closed set F in Y; (5) $m_X sCl(f^{-1}(F)) \subseteq f^{-1}(F)$ for any m_Y -open set F in Y; (6) $m_X sCl(f^{-1}(m_Y - Int(F))) \subseteq f^{-1}(m_Y - Int(F))$ for any subset $F \subseteq Y$; (7) $f^{-1}(m_Y - Cl(F)) \subseteq m_X sInt(f^{-1}(m_Y - Cl(F)))$ for any subset $F \subseteq Y$.

Proof. (1) \Leftrightarrow (2) is already shown in Theorem 3.

 $(1) \Rightarrow (3)$. Let $x \in X$ and V be any m_Y -open subset of Y with $f(x) \notin V$. Then $f^{-1}(V)$ is m_X -semiclosed. Put $U = f^{-1}(V)$. Then $f^{-1}(V) \subseteq U$ and $x \notin U$.

 $(3) \Rightarrow (1)$. Let V be any m_Y -open subset of Y. For each $x \in f^{-1}(Y-V)$, $f(x) \notin V$. By hypothesis, there exists an m_X -semiclosed set U_x such that $x \notin U_x$ and $f^{-1}(V) \subseteq U_x$. Then $x \in X - U_x \subseteq X - f^{-1}(V) = f^{-1}(Y-V)$. We obtain

$$\bigcup_{x \in f^{-1}(Y-V)} \{x\} \subseteq \bigcup_{x \in f^{-1}(Y-V)} (X - U_x) \subseteq f^{-1}(Y - V).$$

Hence $f^{-1}(Y - V) = \bigcup_{x \in f^{-1}(Y - V)} (X - U_x)$ is m_X -semiopen. Thus $f^{-1}(V)$ is m_X -semiclosed. As a consequence, f is contra (m_X, m_Y) -semi continuous.

 $(1) \Rightarrow (4)$. Let F be any m_Y -closed subset of Y. For each $x \in f^{-1}(F)$, $f(x) \in F$. By Theorem 2, there exists an m_X -semiopen set U such that $x \in U$ and $f(U) \subseteq F$. Since $x \in U \subseteq f^{-1}(F)$, we obtain $x \in m_X sInt(f^{-1}(F))$. As a consequence, $f^{-1}(F) \subseteq m_X sInt(f^{-1}(F))$.

 $(4) \Rightarrow (5)$. It is obvious from taking the complement of (4).

 $(5) \Rightarrow (6)$. Let F be any subset of Y. Since m_Y satisfies property \mathcal{B} , $m_Y - Int(F)$ is an m_Y -open subset of Y and by (5), we obtain

$$m_X sCl(f^{-1}(m_Y - Int(F))) \subseteq f^{-1}(m_Y - Int(F)).$$

 $(6) \Rightarrow (7)$. It is clear from the complement of (6).

 $(7) \Rightarrow (1).$ Let V be any m_Y -open subset of Y. Then Y-V is m_Y -closed. By $(7), X-f^{-1}(V) = f^{-1}(Y-V) = f^{-1}(m_Y-Cl(Y-V)) \subseteq m_X sInt(f^{-1}(m_Y-Cl(Y-V))) = m_X sInt(f^{-1}(Y-V)) = X - m_X sCl(f^{-1}(V))$. Therefore, $m_X - sCl(f^{-1}(V)) \subseteq f^{-1}(V)$ and hence $m_X - sCl(f^{-1}(V)) = f^{-1}(V)$. Since m_X satisfies property $\mathcal{B}, f^{-1}(V)$ is m_X -semiclosed in X. As a consequence, f is contra (m_X, m_Y) -semi continuous.

4. Decompositions of contra (m_X, m_Y) -semicontinuity

In this section, we obtain decompositions of contra (m_X, m_Y) -semicontinuous functions and other related functions.

Definition 14. Let (X, m_X) be a minimal space. A subset A of X is called

- (1) an m_X -semi-regular set if A is both m_X -semiopen and m_X -semiclosed.
- (2) an m_X -B-set if $A = U \cap V$, where $U \in m_X$ and V is m_X -semiclosed.

Lemma 7. Let (X, m_X) be a minimal space and $A \subseteq X$. Then the following conditions are equivalent:

- (1) A is m_X -semi-regular;
- (2) A is both βm_X -open and m_X -semiclosed.

Proof. It is obvious by Lemma 4.

Remark 2. A βm_X -open set and an m_X -semiclosed set are independent of each other as the following examples show.

Example 2. Let $X = \{a, b, c\}$ and $m_X = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Then $A = \{a, b\}$ is an m_X -open set and hence βm_X -open, but it is not an m_X -semiclosed set.

Example 3. Let $X = \{a, b, c\}$ and $m_X = \{\emptyset, X, \{a\}, \{c\}, \{b, c\}\}$. Then $A = \{a, b\}$ is an m_X -closed set and hence m_X -semiclosed set, but it is not a βm_X -open set.

Lemma 8. Let (X, m_X) be a minimal space and m_X satisfy property \mathcal{B} . Then for a subset A of X, the following conditions are equivalent:

- (1) A is both m_X -open and m_X -semiclosed;
- (2) A is both αm_X -open and m_X -semiclosed;
- (3) A is both m_X -preopen and m_X -semiclosed.

Proof. It is clear.

Remark 3. An m_X -preopen set and an m_X -semiclosed set are independent of each other as the following example shows.

Example 4. Consider Example 2, then the set $A = \{a, b\}$ is an m_X -preopen set, but it is not m_X -semiclosed. Also in Example 3, the set A is an m_X -semiclosed set, but it is not an m_X -preopen set.

Lemma 9. Let (X, m_X) be a minimal space and $A \subseteq X$. If A is both βm_X -open and m_X -closed, then it is m_X -regular closed.

Proof. It is an immediate result.

Remark 4. A βm_X -open set and an m_X -closed set are independent of each other as the following example shows.

Example 5. Consider Example 2, then the set $A = \{a, b\}$ is a βm_X -open set, but it is not an m_X -closed set. Also in Example 3, the set A is an m_X -closed set, but it is not a βm_X -open set.

Definition 15. Let (X, m_X) and (Y, m_Y) be two minimal spaces. Then a function $f : (X, m_X) \to (Y, m_Y)$ is said to be

(1) (m_X, m_Y) -perfectly continuous if $f^{-1}(V)$ is m_X -clopen in X for every m_Y -open set V of Y,

(2) (m_X, m_Y) -completely continuous if $f^{-1}(V)$ is m_X -regular open in X for every m_Y -open set V of Y,

(3) (m_X, m_Y) -semi-regular continuous (briefly, $(m_X, m_Y) - SR$ -continuous) if $f^{-1}(V)$ is m_X -semi-regular open in X for every m_Y -open set V of Y,

(4) (m_X, m_Y) -regular closed continuous (briefly, $(m_X, m_Y) - RC$ -continuous) if $f^{-1}(V)$ is m_X -regular closed in X for every m_Y -open set V of Y,

(5) (m_X, m_Y) - B-continuous if $f^{-1}(V)$ is an m_X - B-set in X for every m_Y -open set V of Y.

Definition 16 ([7]). Let m_X , m_Y be two minimal structures. A function $f: (X, m_X) \to (Y, m_Y)$ is said to be $M - \beta$ -continuous if $f^{-1}(V)$ is βm_X -open in X for every m_Y -open set V of Y.

Theorem 6. For a function $f : (X, m_X) \to (Y, m_Y)$, the following statements are equivalent:

- (1) f is (m_X, m_Y) SR-continuous;
- (2) f is M β -continuous and contra (m_X, m_Y) -semi continuous.

Proof. It is an immediate result of Lemma 7.

Definition 17 ([4]). Let m_X , m_Y be two minimal structures. A function $f : (X, m_X) \to (Y, m_Y)$ is said to be *M*-pre continuous if $f^{-1}(V)$ is m_X -preopen in X for every m_Y -open set V of Y.

Theorem 7. If a function $f : (X, m_X) \to (Y, m_Y)$ is *M*-pre continuous and contra (m_X, m_Y) -semi continuous, it is (m_X, m_Y) -completely continuous.

Proof. It is clear from the fact that every m_X -preopen and m_X -semiclosed set is m_X -regular open.

Theorem 8. If a function $f : (X, m_X) \to (Y, m_Y)$ is $M - \beta$ -continuous and contra (m_X, m_Y) -continuous, it is (m_X, m_Y) - RC-continuous.

Proof. It is obvious from Lemma 9.

Definition 18. A function $f : (X, m_X) \to (Y, m_Y)$ is said to be contra (m_X, m_Y) - gs-continuous if $f^{-1}(V)$ is m_X - gs-closed in X for every m_Y -open set V of Y.

Theorem 9. For a function $f : (X, m_X) \to (Y, m_Y)$, the following statements are equivalent:

(1) f is contra (m_X, m_Y) -semi continuous;

(2) f is (m_X, m_Y) - B-continuous and contra (m_X, m_Y) - gs-continuous.

Proof. $(1) \Rightarrow (2)$. It is clear.

(2) \Rightarrow (1). Let V be any m_Y -open set of Y. Since f is (m_X, m_Y) -B-continuous, $f^{-1}(V) = U \cap F$, where $U \in m_X$ and F is m_X -semiclosed in X. Then $f^{-1}(V) \subseteq U$ and $U \in m_X$. $f^{-1}(V)$ is m_X - gs-closed and since f is contra (m_X, m_Y) - gs-continuous, $m_X sCl(f^{-1}(V)) \subseteq U$. Since MSO(X)satisfies property \mathcal{B} , $m_X sCl(f^{-1}(V))$ is m_X - semiclosed and by Lemma 4 $m_X - Int(m_X - Cl(f^{-1}(V))) \subseteq m_X - Int(m_X - Cl(m_X sCl(f^{-1}(V)))) \subseteq$ $m_X sCl(f^{-1}(V)) \subseteq U$. On the other hand, F is m_X - semiclosed and by Lemma 4 $m_X - Int(m_X - Cl(f^{-1}(V))) \subseteq m_X - Int(m_X - Cl(F)) \subseteq F$. Therefore, we obtain $m_X - Int(m_X - Cl(f^{-1}(V))) \subseteq U \cap F = f^{-1}(V)$. As a consequence, $f^{-1}(V)$ is m_X -semiclosed.

Remark 5. The notions of (m_X, m_Y) - *B*-continuity and contra (m_X, m_Y) - *gs*-continuity are independent of each other as shown by the following example.

Example 6. Let $X = \{1, 2\}, Y = \{a, b\}, m_X = \{\emptyset, X, \{2\}\}$ and $m_Y = \{\emptyset, Y\}$. Let $f : (X, m_X) \to (X, m_X)$ be the identity function. Then f is (m_X, m_Y) -B-continuous but it is not contra (m_X, m_Y) - gs-continuous. Also, let $g : (Y, m_Y) \to (X, m_X)$ be a function defined as follows:

$$g(a) = 1, \quad g(b) = 2.$$

Then g is contra (m_X, m_Y) -gs-continuous, but it is not (m_X, m_Y) -B-continuous.

Corollary 1. For a function $f : (X, m_X) \to (Y, m_Y)$, the following statements are equivalent:

(1) f is (m_X, m_Y) -SR-continuous;

(2) f is M- β -continuous, (m_X, m_Y) - B-continuous and contra (m_X, m_Y) -gs-continuous.

Proof. It is obvious from Theorems 6 and 9.

Remark 6. The function $f : (X, m_X) \to (X, m_X)$ in Example 6 is (m_X, m_Y) -pre continuous, but it is not contra (m_X, m_Y) -gs-continuous. Also, the function $g : (Y, m_Y) \to (X, m_X)$ in Example 6 is (m_X, m_Y) -pre continuous, but it is not (m_X, m_Y) -B-continuous. **Remark 7.** We obtain the following diagram which shows the relationships between contra (m_X, m_Y) -semicontinuous functions and other related functions.

DIAGRAM

In the diagram, C denotes continuity and m means (m_X, m_Y) .

5. Strongly $S - m_X$ -closed spaces

Definition 19. A minimal space (X, m_X) is said to be (1) m_X -semi-compact if there exists a finite subset J of I such that $X = \bigcup\{U_i : i \in J\}$ for every m_X -semiopen cover $\{U_i : i \in I\}$ of X, (2) m_X -s-closed if there exists a finite subset J of I such that $X = \bigcup\{m_X sCl(U_i) : i \in J\}$ for every m_X -semiopen cover $\{U_i : i \in I\}$ of X, (3) m_X - S-closed if there exists a finite subset J of I such that $X = \{m_X - Cl(U_i) : i \in J\}$ for every m_X -semiopen cover $\{U_i : i \in I\}$ of X, (4) [14] m_X -nearly compact if there exists a finite subset J of I such that $X = \bigcup\{m_X - Int(m_X - Cl(U_i)) : i \in J\}$ for every m_X -open cover $\{U_i : i \in I\}$ of X, (5) [9] m_X -closed if there exists a finite subset J of I such that $X = \bigcup\{m_X - Cl(U_X) : I \in I\}$ of X.

 $\cup \{m_X - Cl(U_i) : i \in J\} \text{ for every } m_X \text{-open cover } \{U_i : i \in I\} \text{ of } X,$ (6) [10] strongly $S \text{-} m_X \text{-} closed \text{ if every } m_X \text{-} closed \text{ cover of } X \text{ has a finite subcover,}$

(7) m_X -mildly compact if every m_X -clopen cover of X has a finite subcover.

We obtain the following diagram:

DIAGRAM

 m_X -semi-compact $\rightarrow m_X$ -s-closed $\rightarrow m_X$ -S-closed strongly S- m_X closed \downarrow \downarrow \downarrow \downarrow m_X -compact $\rightarrow m_X$ -nearly compact $\rightarrow m_X$ -closed $\rightarrow m_X$ -mildly compact **Theorem 10.** Let (X, m_X) , (Y, m_Y) be two minimal spaces and a function $f : (X, m_X) \to (Y, m_Y)$ be a surjection. If one of the following statements holds, then (Y, m_Y) is strongly S-m_Y-closed.

(1) f is contra (m_X, m_Y) -semi continuous and (X, m_X) is m_X -semi-compact,

(2) f is (m_X, m_Y) -perfectly continuous and (X, m_X) is m_X -mildly compact.

Proof. Suppose (2) holds: Let $\{U_i : i \in I\}$ be an m_Y -closed cover of Y. $\{f^{-1}(U_i) : i \in I\}$ is an m_X -clopen cover of X since f is (m_X, m_Y) -perfectly continuous. Then there exists a finite $J \subseteq I$ such that $X = \bigcup_{i \in J} f^{-1}(U_i)$ as (X, m_X) is m_X -mildly compact. Hence $Y = \bigcup_{i \in J} U_i$. As a consequence, (Y, m_Y) is strongly S- m_Y -closed.

Acknowledgement. The authors acknowledge the reviewers and the editors for their valuable suggestions and constructive comments that helped to improve the paper.

References

- LEVINE N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [2] MAKI H., RAO K.C., GANI N., On generalizing semiopen and preopen sets, *Pure Appl. Math. Sci.*, 49(1999), 17-29.
- [3] MASHHOUR A.S., ABD EL-MONSEF M.E., EL-DEEB S.N., On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc.*, 53(1982), 47-53.
- [4] MIN W.K., KIM Y.K., m-preopen sets and M-precontinuity on spaces with minimal structures, Advances in Fuzzy Sets and Systems, 4(3)(2009), 237-245.
- [5] MIN W.K., *m*-semiopen sets and *M*-semicontinuous functions on spaces with minimal structures, *Honam Math. J.*, 31(2)(2009), 239-245.
- [6] MIN W.K., αm-open sets and αM-continuous functions, Commun. Korean Math. Soc., 25(2)(2010), 251-256.
- [7] NASEF A.A., ROY B., m β-open sets and M β-continuous functions on spaces with minimal structures, J. Adv. Res. Appl. Math., 5(1)(2013), 53-59.
- [8] NJASTAD O., On some classes of nearly open sets, Pacific J. Math., 15(3) (1965), 961-970.
- [9] NOIRI T., POPA V., On weakly (τ, m)-continuous functions, *Rend. Circ. Mat. Palermo* (2), 51(2)(2002), 295-316.
- [10] NOIRI T., POPA V., A unified theory of weak contra-continuity, Acta Math. Hungar., 132(1-2)(2011), 63-77.
- [11] POPA V., NOIRI T., On M-continuous functions, Anal. Univ. "Dunarea de Jos" - Galati, Ser. Mat. Fiz. Mec. Teor. Fasc. II, 18(23)(2000), 31-41.
- [12] POPA V., NOIRI T., On the definitions of some generalized forms of continuity under minimal conditions, *Mem. Fac. Sci., Kochi Univ. (Math.)*, 22(2001), 9-18.

- [13] ROSAS E., RAJESH N., CARPINTERO C., Some new types of open and closed sets in minimal structures - I, Internat. Math. Forum, 4(44)(2009), 2169-2184.
- [14] SENGUL U., ROSAS E., Weakly contra almost (m_X, m_Y) -continuous functions, J. Adv. Res. Pure Math., 5(1)(2013), 54-64.
- [15] VINODHINI V., AROCKIARANI I., A new class of β-open sets in minimal structures, Int. J. Adv. Sci. Res. Tech., 3(2)(2012), 523-530.

Ahu Acikgoz Department of Mathematics Balikesir University 10145 Balikesir, Turkey *e-mail:* ahuacikgoz@gmail.com

Takashi Noiri 2949-1, Shiokita-cho, Hinagu Yatsushiro-shi, Kumamoto-ken 869-5142, Japan *e-mail:* t.noiri@nifty.com

NIHAL TAS DEPARTMENT OF MATHEMATICS BALIKESIR UNIVERSITY 10145 BALIKESIR, TURKEY *e-mail:* nihalarabacioglu@hotmail.com

Received on 03.12.2016 and, in revised form, on 07.03.2017.