Nr 58

2017

DOI:10.1515/fascmath-2017-0006

ARTION KASHURI AND ROZANA LIKO

HERMITE-HADAMARD TYPE INEQUALITIES FOR MT_m -PREINVEX FUNCTIONS

ABSTRACT. In the present paper, the notion of MT_m -preinvex function is introduced and some new integral inequalities for the left-hand side of Gauss-Jacobi type quadrature formula involving MT_m -preinvex functions along with beta function are given. Moreover, some generalizations of Hermite-Hadamard type inequalities for MT_m -preinvex functions via classical integrals and Riemann-Liouville fractional integrals are established. At the end, some applications to special means are given. These results not only extend the results appeared in the literature (see [13]), but also provide new estimates on these types.

KEY WORDS: Hermite-Hadamard type inequality, MT-convex function, Hölder's inequality, power mean inequality, fractional integral, m-invex, P-function.

AMS Mathematics Subject Classification: 26A33, 26A51, 33B15, 26B25, 26D07, 26D10, 26D15.

1. Introduction and preliminaries

The following notations are used throughout this paper. We use I to denote an interval on the real line $\mathbb{R} = (-\infty, +\infty)$ and I° to denote the interior of I. For any subset $K \subseteq \mathbb{R}^n$, K° is used to denote the interior of K. \mathbb{R}^n is used to denote a generic n-dimensional vector space. The nonnegative real numbers are denoted by $\mathbb{R}_{\circ} = [0, +\infty)$. The set of integrable functions on the interval [a, b] is denoted by $L_1[a, b]$.

The following inequality, named Hermite-Hadamard inequality, is one of the most famous inequalities in the literature for convex functions.

Theorem 1. Let $f: I \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ be a convex function on an interval I of real numbers and $a, b \in I$ with a < b. Then the following inequality holds:

(1)
$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x)dx \le \frac{f(a)+f(b)}{2}.$$

In recent years, various generalizations, extensions and variants of such inequalities have been obtained. For other recent results concerning Hermite-Hadamard type inequalities through various classes of convex functions, (see [9], [13], [6], [21], [5], [11], [10], [4], [17], [3]) and the references cited therein. In (see [19], [14]) and the references cited therein, Tunç and Yildirim defined the following so-called MT-convex function:

Definition 1. A function $f: I \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ is said to belong to the class of MT(I), if it is nonnegative and for all $x, y \in I$ and $t \in (0,1)$ satisfies the following inequality:

(2)
$$f(tx + (1-t)y) \le \frac{\sqrt{t}}{2\sqrt{1-t}}f(x) + \frac{\sqrt{1-t}}{2\sqrt{t}}f(y).$$

Fractional calculus (see [13]) and the references cited therein, was introduced at the end of the nineteenth century by Liouville and Riemann, the subject of which has become a rapidly growing area and has found applications in diverse fields ranging from physical sciences and engineering to biological sciences and economics.

Definition 2. Let $f \in L_1[a,b]$. The Riemann-Liouville integrals $J_{a+}^{\alpha}f$ and $J_{b-}^{\alpha}f$ of order $\alpha > 0$ with $a \geq 0$ are defined by

$$J_{a+}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (x-t)^{\alpha-1} f(t) dt, \quad x > a$$

and

$$J_{b-}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{b} (t-x)^{\alpha-1} f(t) dt, \quad b > x,$$

where
$$\Gamma(\alpha) = \int_0^{+\infty} e^{-u} u^{\alpha-1} du$$
. Here $J_{a+}^0 f(x) = J_{b-}^0 f(x) = f(x)$.

In the case of $\alpha = 1$, the fractional integral reduces to the classical integral.

Due to the wide application of fractional integrals, some authors extended to study fractional Hermite-Hadamard type inequalities for functions of different classes (see [13]) and the references cited therein.

Now, let us recall some definitions of various convex functions.

Definition 3 (see [7]). A nonnegative function $f: I \subseteq \mathbb{R} \longrightarrow \mathbb{R}_{\circ}$ is said to be P-function or P-convex, if

$$f(tx + (1-t)y) \le f(x) + f(y), \quad \forall x, y \in I, \ t \in [0,1].$$

Definition 4 (see [1]). A set $K \subseteq \mathbb{R}^n$ is said to be invex with respect to the mapping $\eta: K \times K \longrightarrow \mathbb{R}^n$, if $x + t\eta(y, x) \in K$ for every $x, y \in K$ and $t \in [0, 1]$.

Notice that every convex set is invex with respect to the mapping $\eta(y, x) = y - x$, but the converse is not necessarily true. For more details please see (see [1],[20]) and the references therein.

Definition 5 (see [16]). The function f defined on the invex set $K \subseteq \mathbb{R}^n$ is said to be preinvex with respect η , if for every $x, y \in K$ and $t \in [0, 1]$, we have

$$f(x + t\eta(y, x)) \le (1 - t)f(x) + tf(y).$$

The concept of preinvexity is more general than convexity since every convex function is preinvex with respect to the mapping $\eta(y, x) = y - x$, but the converse is not true.

The Gauss-Jacobi type quadrature formula has the following

(3)
$$\int_{a}^{b} (x-a)^{p} (b-x)^{q} f(x) dx = \sum_{k=0}^{+\infty} B_{m,k} f(\gamma_{k}) + R_{m}^{\star} |f|,$$

for certain $B_{m,k}$, γ_k and rest $R_m^*|f|$ (see [18]).

Recently, Liu (see [12]) obtained several integral inequalities for the left-hand side of (3) under the Definition 3 of P-function. Also in (see [15]), Özdemir et al. established several integral inequalities concerning the left-hand side of (3) via some kinds of convexity.

Motivated by these results, in Section 2, the notion of MT_m -preinvex function is introduced and some new integral inequalities for the left-hand side of (3) involving MT_m -preinvex functions are given. In Section 3, some generalizations of Hermite-Hadamard type inequalities for MT_m -preinvex functions via classical integrals are given. In Section 4, some generalizations of Hermite-Hadamard type inequalities for MT_m -preinvex functions via fractional integrals are given. In Section 5, some applications to special means are given. These results given in Sections 3-4 not only extend the results appeared in the literature (see [13]), but also provide new estimates on these types.

2. New integral inequalities for MT_m -preinvex functions

Definition 6 (see [8]). A set $K \subseteq \mathbb{R}^n$ is said to be m-invex with respect to the mapping $\eta: K \times K \times (0,1] \longrightarrow \mathbb{R}^n$ for some fixed $m \in (0,1]$, if $mx + t\eta(y,x,m) \in K$ holds for each $x,y \in K$ and any $t \in [0,1]$.

Remark 1. In Definition 6, under certain conditions, the mapping $\eta(y, x, m)$ could reduce to $\eta(y, x)$. For example when m = 1, then the m-invex set degenerates an invex set on K.

We next give new definition, to be referred as MT_m -preinvex function.

Definition 7. Let $K \subseteq \mathbb{R}^n$ be an open m-invex set with respect to $\eta: K \times K \times (0,1] \longrightarrow \mathbb{R}^n$. For $f: K \longrightarrow \mathbb{R}$ and any fixed $m \in (0,1]$, if

(4)
$$f(my + t\eta(x, y, m)) \le \frac{m\sqrt{t}}{2\sqrt{1-t}}f(x) + \frac{m\sqrt{1-t}}{2\sqrt{t}}f(y),$$

is valid for all $x, y \in K$ and $t \in (0,1)$, then we say that f(x) belong to the class of $MT_m(K)$ with respect to η .

Remark 2. In Definition 7, it is worthwhile to note that the class $MT_m(K)$ is a generalization of the class MT(I) given in Definition 1 on K = I with respect to $\eta(x, y, 1) = x - y$ and m = 1.

Example 1. $f,g:(1,\infty) \longrightarrow \mathbb{R}, \ f(x)=x^p, g(x)=(1+x)^p, \ p \in (0,\frac{1}{1000}); \ h:[1,3/2] \longrightarrow \mathbb{R}, \ h(x)=(1+x^2)^k, \ k \in (0,\frac{1}{100}), \ \text{are simple examples of the new class of } MT_m\text{-preinvex functions with respect to } \eta(x,y,m)=x-my \text{ for any fixed } m \in (0,1], \ \text{but they are not convex.}$

In this section, in order to prove our main results regarding some new integral inequalities involving MT_m -preinvex functions along with beta function, we need the following new lemma:

Lemma 1. Let $f: K = [ma, ma + \eta(b, a, m)] \longrightarrow \mathbb{R}$ be a continuous function on the interval of real numbers K° with a < b and $ma < ma + \eta(b, a, m)$. Then for any fixed $m \in (0, 1]$ and any fixed p, q > 0, we have

$$\int_{ma}^{ma+\eta(b,a,m)} (x-ma)^p (ma+\eta(b,a,m)-x)^q f(x) dx$$

$$= \eta(b,a,m)^{p+q+1} \int_0^1 t^p (1-t)^q f(ma+t\eta(b,a,m)) dt.$$

Proof. It is easy to observe that

$$\int_{ma}^{ma+\eta(b,a,m)} (x-ma)^p (ma+\eta(b,a,m)-x)^q f(x) dx$$

$$= \eta(b,a,m) \int_0^1 (ma+t\eta(b,a,m)-ma)^p (ma+\eta(b,a,m)$$

$$-ma-t\eta(b,a,m))^q f(ma+t\eta(b,a,m)) dt$$

$$= \eta(b,a,m)^{p+q+1} \int_0^1 t^p (1-t)^q f(ma+t\eta(b,a,m)) dt.$$

The following definition will be used in the sequel.

Definition 8. The Euler Beta function is defined for x, y > 0 as

$$\beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$$

Theorem 2. Let $f: K = [ma, ma + \eta(b, a, m)] \longrightarrow \mathbb{R}$ be a continuous function on the interval of real numbers K° , a < b with $ma < ma + \eta(b, a, m)$. If |f| is a MT_m -preinvex function on K for any fixed $m \in (0, 1]$, then for any fixed p, q > 0, we have

$$\int_{ma}^{ma+\eta(b,a,m)} (x-ma)^p (ma+\eta(b,a,m)-x)^q f(x) dx$$

$$\leq \frac{m}{2} \eta(b,a,m)^{p+q+1} \left[|f(a)|\beta \left(p+\frac{1}{2},q+\frac{3}{2}\right)+|f(b)|\beta \left(p+\frac{3}{2},q+\frac{1}{2}\right) \right].$$

Proof. Since |f| is a MT_m -preinvex function on K, we have

$$\left| f(ma + t\eta(b, a, m)) \right| \le \frac{m\sqrt{t}}{2\sqrt{1 - t}} |f(b)| + \frac{m\sqrt{1 - t}}{2\sqrt{t}} |f(a)|$$

for all $t \in (0,1)$ and for any fixed $m \in (0,1]$. By Lemma 1 and the fact that |f| is a MT_m -preinvex function on K, we get

$$\begin{split} & \int_{ma}^{ma+\eta(b,a,m)} (x-ma)^p (ma+\eta(b,a,m)-x)^q f(x) dx \\ & \leq \eta(b,a,m)^{p+q+1} \int_0^1 t^p (1-t)^q \Big| f(ma+t\eta(b,a,m)) \Big| dt \\ & \leq \eta(b,a,m)^{p+q+1} \int_0^1 t^p (1-t)^q \left[\frac{m\sqrt{t}}{2\sqrt{1-t}} |f(b)| + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f(a)| \right] dt \\ & = \frac{m}{2} \eta(b,a,m)^{p+q+1} \left[|f(a)| \beta \left(p + \frac{1}{2}, q + \frac{3}{2} \right) + |f(b)| \beta \left(p + \frac{3}{2}, q + \frac{1}{2} \right) \right]. \end{split}$$

Theorem 3. Let $f: K = [ma, ma + \eta(b, a, m)] \longrightarrow \mathbb{R}$ be a continuous function on the interval of real numbers K° , a < b with $ma < ma + \eta(b, a, m)$. Let k > 1 and $|f|^{\frac{k}{k-1}}$ be a MT_m -preinvex function on K for any fixed $m \in (0,1]$. Then for any fixed p, q > 0, we have

$$\int_{ma}^{ma+\eta(b,a,m)} (x-ma)^{p} (ma+\eta(b,a,m)-x)^{q} f(x) dx$$

$$\leq \left(\frac{m\pi}{4}\right)^{\frac{k-1}{k}} \eta(b,a,m)^{p+q+1} \left[\beta(kp+1,kq+1)\right]^{\frac{1}{k}}$$

$$\times \left(|f(a)|^{\frac{k}{k-1}} + |f(b)|^{\frac{k}{k-1}}\right)^{\frac{k-1}{k}}.$$

Proof. Since $|f|^{\frac{k}{k-1}}$ is a MT_m -preinvex function on K, combining with Lemma 1 and Hölder inequality for all $t \in (0,1)$ and for any fixed $m \in (0,1]$, we get

$$\begin{split} \int_{ma}^{ma+\eta(b,a,m)} &(x-ma)^p (ma+\eta(b,a,m)-x)^q f(x) dx \\ &\leq \eta(b,a,m)^{p+q+1} \Bigg[\int_0^1 t^{kp} (1-t)^{kq} dt \Bigg]^{\frac{1}{k}} \\ &\times \Bigg[\int_0^1 \left| f(ma+t\eta(b,a,m)) \right|^{\frac{k}{k-1}} dt \Bigg]^{\frac{k-1}{k}} \\ &\leq \eta(b,a,m)^{p+q+1} \Big[\beta(kp+1,kq+1) \Big]^{\frac{1}{k}} \\ &\times \Bigg[\int_0^1 \left(\frac{m\sqrt{t}}{2\sqrt{1-t}} |f(b)|^{\frac{k}{k-1}} + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f(a)|^{\frac{k}{k-1}} \right) dt \Bigg]^{\frac{k-1}{k}} \\ &= \left(\frac{m\pi}{4} \right)^{\frac{k-1}{k}} \eta(b,a,m)^{p+q+1} \Big[\beta(kp+1,kq+1) \Big]^{\frac{1}{k}} \\ &\times \Big(|f(a)|^{\frac{k}{k-1}} + |f(b)|^{\frac{k}{k-1}} \Big)^{\frac{k-1}{k}}. \end{split}$$

Theorem 4. Let $f: K = [ma, ma + \eta(b, a, m)] \longrightarrow \mathbb{R}$ be a continuous function on the interval of real numbers K° , a < b with $ma < ma + \eta(b, a, m)$. Let $l \ge 1$ and $|f|^l$ be a MT_m -preinvex function on K for any fixed $m \in (0, 1]$. Then for any fixed p, q > 0, we have

$$\int_{ma}^{ma+\eta(b,a,m)} (x-ma)^{p} (ma+\eta(b,a,m)-x)^{q} f(x) dx
\leq \left(\frac{m}{2}\right)^{\frac{1}{l}} \eta(b,a,m)^{p+q+1} \left[\beta(p+1,q+1)\right]^{\frac{l-1}{l}}
\times \left[|f(a)|^{l} \beta\left(p+\frac{1}{2},q+\frac{3}{2}\right)+|f(b)|^{l} \beta\left(p+\frac{3}{2},q+\frac{1}{2}\right)\right]^{\frac{1}{l}}.$$

Proof. Since $|f|^l$ is a MT_m -preinvex function on K, combining with Lemma 1 and Hölder inequality for all $t \in (0,1)$ and for any fixed $m \in (0,1]$, we get

$$\int_{ma}^{ma+\eta(b,a,m)} (x-ma)^p (ma+\eta(b,a,m)-x)^q f(x) dx$$

$$\begin{split} &= \eta(b,a,m)^{p+q+1} \int_{0}^{1} \left[t^{p}(1-t)^{q} \right]^{\frac{l-1}{l}} \\ &\times \left[t^{p}(1-t)^{q} \right]^{\frac{1}{l}} f(ma+t\eta(b,a,m)) dt \\ &\leq \eta(b,a,m)^{p+q+1} \left[\int_{0}^{1} t^{p}(1-t)^{q} dt \right]^{\frac{l-1}{l}} \\ &\times \left[\int_{0}^{1} t^{p}(1-t)^{q} \left| f(ma+t\eta(b,a,m)) \right|^{l} dt \right]^{\frac{1}{l}} \\ &\leq \eta(b,a,m)^{p+q+1} \left[\beta(p+1,q+1) \right]^{\frac{l-1}{l}} \\ &\times \left[\int_{0}^{1} t^{p}(1-t)^{q} \left(\frac{m\sqrt{t}}{2\sqrt{1-t}} |f(b)|^{l} + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f(a)|^{l} \right) dt \right]^{\frac{1}{l}} \\ &= \left(\frac{m}{2} \right)^{\frac{1}{l}} \eta(b,a,m)^{p+q+1} \left[\beta(p+1,q+1) \right]^{\frac{l-1}{l}} \\ &\times \left[|f(a)|^{l} \beta\left(p + \frac{1}{2}, q + \frac{3}{2} \right) + |f(b)|^{l} \beta\left(p + \frac{3}{2}, q + \frac{1}{2} \right) \right]^{\frac{1}{l}}. \end{split}$$

Remark 3. In Theorem 4, if we choose l = 1, we get Theorem 2.

3. Hermite-Hadamard type classical integral inequalities for MT_m -preinvex functions

In this section, in order to prove our main results regarding some generalizations of Hermite-Hadamard type inequalities for MT_m -preinvex functions via classical integrals, we need the following new lemma:

Lemma 2. Let $K \subseteq \mathbb{R}$ be an open m-invex subset with respect to $\eta: K \times K \times (0,1] \longrightarrow \mathbb{R}$ for any fixed $m \in (0,1]$ and let $a,b \in K$, a < b with $ma < ma + \eta(b,a,m)$. Assume that $f: K \longrightarrow \mathbb{R}$ is a differentiable function on K° and f' is integrable on $[ma, ma + \eta(b,a,m)]$. Then, for each $x \in [ma, ma + \eta(b,a,m)]$, we have

(5)
$$\frac{\eta(x, a, m) f(ma) - \eta(x, b, m) f(mb)}{\eta(b, a, m)} - \frac{1}{\eta(b, a, m)} \left[\int_{ma}^{ma + \eta(x, a, m)} f(u) du - \int_{mb}^{mb + \eta(x, b, m)} f(u) du \right]$$

$$= \frac{\eta(x, a, m)^2}{\eta(b, a, m)} \int_0^1 (t - 1) f'(ma + t\eta(x, a, m)) dt + \frac{\eta(x, b, m)^2}{\eta(b, a, m)} \int_0^1 (1 - t) f'(mb + t\eta(x, b, m)) dt.$$

Proof. Denote

$$\begin{split} I \; = \; \frac{\eta(x,a,m)^2}{\eta(b,a,m)} \int_0^1 (t-1)f'(ma+t\eta(x,a,m))dt \\ \; + \; \frac{\eta(x,b,m)^2}{\eta(b,a,m)} \int_0^1 (1-t)f'(mb+t\eta(x,b,m))dt. \end{split}$$

Integrating by parts, we get

$$I = \frac{\eta(x, a, m)^{2}}{\eta(b, a, m)} \left[(t - 1) \frac{f(ma + t\eta(x, a, m))}{\eta(x, a, m)} \Big|_{0}^{1} - \int_{0}^{1} \frac{f(ma + t\eta(x, a, m))}{\eta(x, a, m)} dt \right]$$

$$+ \frac{\eta(x, b, m)^{2}}{\eta(b, a, m)} \left[(1 - t) \frac{f(mb + t\eta(x, b, m))}{\eta(x, b, m)} \Big|_{0}^{1} + \int_{0}^{1} \frac{f(mb + t\eta(x, b, m))}{\eta(x, b, m)} dt \right]$$

$$= \frac{\eta(x, a, m) f(ma) - \eta(x, b, m) f(mb)}{\eta(b, a, m)}$$

$$- \frac{1}{\eta(b, a, m)} \left[\int_{ma}^{ma + \eta(x, a, m)} f(u) du - \int_{mb}^{mb + \eta(x, b, m)} f(u) du \right].$$

Remark 4. Clearly, if we choose m=1 and $\eta(x,y,1)=x-y$ in Lemma 2, we get (see [9], Lemma 1).

Using the Lemma 2 the following results can be obtained.

Theorem 5. Let $A \subseteq \mathbb{R}_0$ be an open m-invex subset with respect to $\eta: A \times A \times (0,1] \longrightarrow \mathbb{R}_0$ for any fixed $m \in (0,1]$ and let $a,b \in A, a < b$ with $ma < ma + \eta(b,a,m)$. Assume that $f: A \longrightarrow \mathbb{R}$ is a differentiable function on A° . If |f'| is a MT_m -preinvex function on $[ma, ma + \eta(b,a,m)]$ and $|f'(x)| \leq M$, then for each $x \in [ma, ma + \eta(b,a,m)]$, we have

(6)
$$\left| \frac{\eta(x, a, m) f(ma) - \eta(x, b, m) f(mb)}{\eta(b, a, m)} - \frac{1}{\eta(b, a, m)} \left[\int_{ma}^{ma + \eta(x, a, m)} f(u) du - \int_{mb}^{mb + \eta(x, b, m)} f(u) du \right] \right|$$

$$\leq \frac{Mm\pi}{4|\eta(b, a, m)|} \left[\eta(x, a, m)^2 + \eta(x, b, m)^2 \right].$$

Proof. Using Lemma 2, MT_m -preinvexity of |f'|, the fact that $|f'(x)| \le M$ for each $x \in [ma, ma + \eta(b, a, m)]$, and taking the modulus, we have

$$\begin{split} &\left| \frac{\eta(x,a,m)f(ma) - \eta(x,b,m)f(mb)}{\eta(b,a,m)} \right. \\ &\left. - \frac{1}{\eta(b,a,m)} \left[\int_{ma}^{ma + \eta(x,a,m)} f(u) du - \int_{mb}^{mb + \eta(x,b,m)} f(u) du \right] \right| \\ &\leq \frac{\eta(x,a,m)^2}{|\eta(b,a,m)|} \int_0^1 |t-1| |f'(ma + t\eta(x,a,m))| dt \\ &+ \frac{\eta(x,b,m)^2}{|\eta(b,a,m)|} \int_0^1 |1-t| |f'(mb + t\eta(x,b,m))| dt \\ &\leq \frac{\eta(x,a,m)^2}{|\eta(b,a,m)|} \int_0^1 (1-t) \left[\frac{m\sqrt{t}}{2\sqrt{1-t}} |f'(x)| \right. \\ &\left. + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f'(a)| \right] dt \\ &+ \frac{\eta(x,b,m)^2}{|\eta(b,a,m)|} \int_0^1 (1-t) \left[\frac{m\sqrt{t}}{2\sqrt{1-t}} |f'(x)| + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f'(b)| \right] dt \\ &\leq \frac{Mm\pi}{4|\eta(b,a,m)|} \left[\eta(x,a,m)^2 + \eta(x,b,m)^2 \right]. \end{split}$$

Remark 5. In Theorem 5, if we choose m = 1 and $\eta(x, y, 1) = x - y$ then we get (see [13], Theorem 2.2).

The corresponding version for power of the absolute value of the first derivative is incorporated in the following results.

Theorem 6. Let $A \subseteq \mathbb{R}_0$ be an open m-invex subset with respect to $\eta: A \times A \times (0,1] \longrightarrow \mathbb{R}_0$ for any fixed $m \in (0,1]$ and let $a,b \in A$, a < b with $ma < ma + \eta(b,a,m)$. Assume that $f: A \longrightarrow \mathbb{R}$ is a differentiable function on A° . If $|f'|^q$ is a MT_m -preinvex function on $[ma, ma + \eta(b,a,m)], q > 1$, $p^{-1} + q^{-1} = 1$ and $|f'(x)| \leq M$, then for each $x \in [ma, ma + \eta(b,a,m)]$, we have

(7)
$$\left| \frac{\eta(x, a, m) f(ma) - \eta(x, b, m) f(mb)}{\eta(b, a, m)} - \frac{1}{\eta(b, a, m)} \left[\int_{ma}^{ma + \eta(x, a, m)} f(u) du - \int_{mb}^{mb + \eta(x, b, m)} f(u) du \right] \right| \\ \leq \frac{M}{(p+1)^{1/p}} \left(\frac{m\pi}{2} \right)^{\frac{1}{q}} \left[\frac{\eta(x, a, m)^2 + \eta(x, b, m)^2}{|\eta(b, a, m)|} \right].$$

Proof. Suppose that q > 1. Using Lemma 2, MT_m -preinvexity of $|f'|^q$, Hölder inequality, the fact that $|f'(x)| \leq M$ for each $x \in [ma, ma + \eta(b, a, m)]$, and taking the modulus, we have

$$\begin{split} \frac{\eta(x,a,m)f(ma) - \eta(x,b,m)f(mb)}{\eta(b,a,m)} \\ &- \frac{1}{\eta(b,a,m)} \left[\int_{ma}^{ma + \eta(x,a,m)} f(u)du - \int_{mb}^{mb + \eta(x,b,m)} f(u)du \right] \right| \\ &\leq \frac{\eta(x,a,m)^2}{|\eta(b,a,m)|} \int_0^1 |t-1||f'(ma+t\eta(x,a,m))|dt \\ &+ \frac{\eta(x,b,m)^2}{|\eta(b,a,m)|} \int_0^1 |1-t||f'(mb+t\eta(x,b,m))|dt \\ &\leq \frac{\eta(x,a,m)^2}{|\eta(b,a,m)|} \left(\int_0^1 (1-t)^p dt \right)^{\frac{1}{p}} \left(\int_0^1 |f'(ma+t\eta(x,a,m))|^q dt \right)^{\frac{1}{q}} \\ &+ \frac{\eta(x,b,m)^2}{|\eta(b,a,m)|} \left(\int_0^1 (1-t)^p dt \right)^{\frac{1}{p}} \left(\int_0^1 |f'(mb+t\eta(x,b,m))|^q dt \right)^{\frac{1}{q}} \\ &\leq \frac{\eta(x,a,m)^2}{|\eta(b,a,m)|} \left(\int_0^1 (1-t)^p dt \right)^{\frac{1}{p}} \left[\int_0^1 \left(\frac{m\sqrt{t}}{2\sqrt{1-t}} |f'(x)|^q \right) dt \right]^{\frac{1}{q}} \\ &+ \frac{\eta(x,b,m)^2}{|\eta(b,a,m)|} \left(\int_0^1 (1-t)^p dt \right)^{\frac{1}{p}} \left[\int_0^1 \left(\frac{m\sqrt{t}}{2\sqrt{1-t}} |f'(x)|^q \right) dt \right]^{\frac{1}{q}} \\ &\leq \frac{M}{(p+1)^{1/p}} \left(\frac{m\pi}{2} \right)^{\frac{1}{q}} \left[\frac{\eta(x,a,m)^2 + \eta(x,b,m)^2}{|\eta(b,a,m)|} \right]. \end{split}$$

Remark 6. In Theorem 6, if we choose m = 1 and $\eta(x, y, 1) = x - y$ then we get (see [13], Theorem 2.4).

Theorem 7. Let $A \subseteq \mathbb{R}_0$ be an open m-invex subset with respect to $\eta: A \times A \times (0,1] \longrightarrow \mathbb{R}_0$ for any fixed $m \in (0,1]$ and let $a,b \in A$, a < b with $ma < ma + \eta(b,a,m)$. Assume that $f: A \longrightarrow \mathbb{R}$ is a differentiable function on A° . If $|f'|^q$ is a MT_m -preinvex function on $[ma, ma + \eta(b,a,m)], q \ge 1$ and $|f'(x)| \le M$, then for each $x \in [ma, ma + \eta(b,a,m)],$ we have

(8)
$$\frac{\eta(x,a,m)f(ma) - \eta(x,b,m)f(mb)}{\eta(b,a,m)}$$

$$-\frac{1}{\eta(b,a,m)} \left[\int_{ma}^{ma+\eta(x,a,m)} f(u)du - \int_{mb}^{mb+\eta(x,b,m)} f(u)du \right]$$

$$- \le M \left(\frac{1}{2} \right)^{1+\frac{1}{q}} (m\pi)^{\frac{1}{q}} \left[\frac{\eta(x,a,m)^2 + \eta(x,b,m)^2}{|\eta(b,a,m)|} \right].$$

Proof. Using Lemma 2, MT_m -preinvexity of $|f'|^q$, the well-known power mean inequality, the fact that $|f'(x)| \leq M$ for each $x \in [ma, ma + \eta(b, a, m)]$, and taking the modulus, we have

$$\begin{split} &\left| \frac{\eta(x,a,m)f(ma) - \eta(x,b,m)f(mb)}{\eta(b,a,m)} \right| \\ &- \frac{1}{\eta(b,a,m)} \left[\int_{ma}^{ma + \eta(x,a,m)} f(u) du - \int_{mb}^{mb + \eta(x,b,m)} f(u) du \right] \right| \\ &\leq \frac{\eta(x,a,m)^2}{|\eta(b,a,m)|} \int_0^1 |t-1||f'(ma + t\eta(x,a,m))| dt \\ &+ \frac{\eta(x,b,m)^2}{|\eta(b,a,m)|} \int_0^1 |1-t||f'(mb + t\eta(x,b,m))| dt \\ &\leq \frac{\eta(x,a,m)^2}{|\eta(b,a,m)|} \left(\int_0^1 (1-t) dt \right)^{1-\frac{1}{q}} \left(\int_0^1 (1-t)|f'(ma + t\eta(x,a,m))|^q dt \right)^{\frac{1}{q}} \\ &+ \frac{\eta(x,b,m)^2}{|\eta(b,a,m)|} \left(\int_0^1 (1-t) dt \right)^{1-\frac{1}{q}} \left(\int_0^1 (1-t)|f'(mb + t\eta(x,b,m))|^q dt \right)^{\frac{1}{q}} \\ &\leq \frac{\eta(x,a,m)^2}{|\eta(b,a,m)|} \left(\int_0^1 (1-t) dt \right)^{1-\frac{1}{q}} \\ &\times \left[\int_0^1 (1-t) \left(\frac{m\sqrt{t}}{2\sqrt{1-t}} |f'(x)|^q + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f'(a)|^q \right) dt \right]^{\frac{1}{q}} \\ &+ \frac{\eta(x,b,m)^2}{|\eta(b,a,m)|} \left(\int_0^1 (1-t) dt \right)^{1-\frac{1}{q}} \\ &\times \left[\int_0^1 (1-t) \left(\frac{m\sqrt{t}}{2\sqrt{1-t}} |f'(x)|^q + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f'(b)|^q \right) dt \right]^{\frac{1}{q}} \\ &\leq M \left(\frac{1}{2} \right)^{1+\frac{1}{q}} \left(m\pi \right)^{\frac{1}{q}} \left[\frac{\eta(x,a,m)^2 + \eta(x,b,m)^2}{|\eta(b,a,m)|} \right]. \end{split}$$

Remark 7. In Theorem 7, if we choose m=1 and $\eta(x,y,1)=x-y$ then we get (see [13], Theorem 2.6). Also, in Theorem 7, if we choose q=1, we get Theorem 5.

4. Hermite-Hadamard type fractional integral inequalities for MT_m -preinvex functions

In this section, in order to prove our main results regarding some generalizations of Hermite-Hadamard type inequalities for MT_m -preinvex functions via fractional integrals, we need the following new lemma:

Lemma 3. Let $K \subseteq \mathbb{R}$ be an open m-invex subset with respect to $\eta: K \times K \times (0,1] \longrightarrow \mathbb{R}$ for any fixed $m \in (0,1]$ and let $a,b \in K$, a < b with $ma < ma + \eta(b,a,m)$. Assume that $f: K \longrightarrow \mathbb{R}$ is a differentiable function on K° and f' is integrable on $[ma, ma + \eta(b,a,m)]$. Then, for each $x \in [ma, ma + \eta(b,a,m)]$ and $\alpha > 0$, we have

(9)
$$\frac{\eta(x, a, m)^{\alpha} f(ma) - \eta(x, b, m)^{\alpha} f(mb)}{\eta(b, a, m)} - \frac{\Gamma(\alpha + 1)}{\eta(b, a, m)} \left[J^{\alpha}_{(ma + \eta(x, a, m)) -} f(ma) - J^{\alpha}_{(mb + \eta(x, b, m)) -} f(mb) \right]$$
$$= \frac{\eta(x, a, m)^{\alpha + 1}}{\eta(b, a, m)} \int_{0}^{1} (t^{\alpha} - 1) f'(ma + t\eta(x, a, m)) dt + \frac{\eta(x, b, m)^{\alpha + 1}}{\eta(b, a, m)} \int_{0}^{1} (1 - t^{\alpha}) f'(mb + t\eta(x, b, m)) dt,$$

where $\Gamma(\alpha) = \int_0^{+\infty} e^{-u} u^{\alpha-1} du$ is the Euler Gamma function.

Proof. Denote

$$I = \frac{\eta(x, a, m)^{\alpha+1}}{\eta(b, a, m)} \int_0^1 (t^{\alpha} - 1) f'(ma + t\eta(x, a, m)) dt + \frac{\eta(x, b, m)^{\alpha+1}}{\eta(b, a, m)} \int_0^1 (1 - t^{\alpha}) f'(mb + t\eta(x, b, m)) dt.$$

Integrating by parts, we get

$$I = \frac{\eta(x, a, m)^{\alpha+1}}{\eta(b, a, m)} \left[(t^{\alpha} - 1) \frac{f(ma + t\eta(x, a, m))}{\eta(x, a, m)} \right]_{0}^{1}$$

$$- \alpha \int_{0}^{1} \frac{t^{\alpha-1} f(ma + t\eta(x, a, m))}{\eta(x, a, m)} dt$$

$$+ \frac{\eta(x, b, m)^{\alpha+1}}{\eta(b, a, m)} \left[(1 - t^{\alpha}) \frac{f(mb + t\eta(x, b, m))}{\eta(x, b, m)} \right]_{0}^{1}$$

$$+ \alpha \int_{0}^{1} \frac{t^{\alpha-1} f(mb + t\eta(x, b, m))}{\eta(x, b, m)} dt$$

$$\begin{split} &=\frac{\eta(x,a,m)^{\alpha}f(ma)-\eta(x,b,m)^{\alpha}f(mb)}{\eta(b,a,m)}\\ &-\frac{\Gamma(\alpha+1)}{\eta(b,a,m)}\Big[J^{\alpha}_{(ma+\eta(x,a,m))-}f(ma)-J^{\alpha}_{(mb+\eta(x,b,m))-}f(mb)\Big]. \end{split}$$

Remark 8. Clearly, if we choose m = 1 and $\eta(x, y, 1) = x - y$ in Lemma 3, we get (see [13], Lemma 3.1).

By using Lemma 3, one can extend to the following results.

Theorem 8. Let $A \subseteq \mathbb{R}_0$ be an open m-invex subset with respect to $\eta: A \times A \times (0,1] \longrightarrow \mathbb{R}_0$ for any fixed $m \in (0,1]$ and let $a,b \in A$, a < b with $ma < ma + \eta(b,a,m)$. Assume that $f: A \longrightarrow \mathbb{R}$ is a differentiable function on A° . If |f'| is a MT_m -preinvex function on $[ma, ma + \eta(b,a,m)]$ and $|f'(x)| \leq M$, then for each $x \in [ma, ma + \eta(b,a,m)]$ and $\alpha > 0$, we have

$$(10) \left| \frac{\eta(x,a,m)^{\alpha} f(ma) - \eta(x,b,m)^{\alpha} f(mb)}{\eta(b,a,m)} - \frac{\Gamma(\alpha+1)}{\eta(b,a,m)} \left[J^{\alpha}_{(ma+\eta(x,a,m))-} f(ma) - J^{\alpha}_{(mb+\eta(x,b,m))-} f(mb) \right] \right|$$

$$\leq \frac{Mm}{2} \left[\frac{|\eta(x,a,m)|^{\alpha+1} + |\eta(x,b,m)|^{\alpha+1}}{|\eta(b,a,m)|} \right] \left[\pi - \frac{\Gamma\left(\alpha + \frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma(\alpha+1)} \right].$$

Proof. Using Lemma 3, MT_m -preinvexity of |f'|, the fact that $|f'(x)| \le M$ for each $x \in [ma, ma + \eta(b, a, m)]$, $\alpha > 0$, and taking the modulus, we have

$$\left| \frac{\eta(x,a,m)^{\alpha}f(ma) - \eta(x,b,m)^{\alpha}f(mb)}{\eta(b,a,m)} - \frac{\Gamma(\alpha+1)}{\eta(b,a,m)} \left[J_{(ma+\eta(x,a,m))-}^{\alpha}f(ma) - J_{(mb+\eta(x,b,m))-}^{\alpha}f(mb) \right] \right|$$

$$\leq \frac{|\eta(x,a,m)|^{\alpha+1}}{|\eta(b,a,m)|} \int_{0}^{1} |t^{\alpha} - 1| |f'(ma+t\eta(x,a,m))| dt$$

$$+ \frac{|\eta(x,b,m)|^{\alpha+1}}{|\eta(b,a,m)|} \int_{0}^{1} |1 - t^{\alpha}| |f'(mb+t\eta(x,b,m))| dt$$

$$\leq \frac{|\eta(x,a,m)|^{\alpha+1}}{|\eta(b,a,m)|} \int_{0}^{1} (1-t^{\alpha}) \left[\frac{m\sqrt{t}}{2\sqrt{1-t}} |f'(x)| + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f'(a)| \right] dt$$

$$+ \frac{|\eta(x,b,m)|^{\alpha+1}}{|\eta(b,a,m)|} \int_{0}^{1} (1-t^{\alpha}) \left[\frac{m\sqrt{t}}{2\sqrt{1-t}} |f'(x)| + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f'(b)| \right] dt$$

$$\leq \frac{Mm}{2} \left\lceil \frac{|\eta(x,a,m)|^{\alpha+1} + |\eta(x,b,m)|^{\alpha+1}}{|\eta(b,a,m)|} \right\rceil \left\lceil \pi - \frac{\Gamma\left(\alpha + \frac{1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma(\alpha+1)} \right\rceil.$$

Remark 9. In Theorem 8, if we choose m = 1 and $\eta(x, y, 1) = x - y$ then we get (see [13], Theorem 3.2). Also, in Theorem 8, if we choose $\alpha = 1$, we get the inequality in Theorem 5.

Theorem 9. Let $A \subseteq \mathbb{R}_0$ be an open m-invex subset with respect to $\eta: A \times A \times (0,1] \longrightarrow \mathbb{R}_0$ for any fixed $m \in (0,1]$ and let $a,b \in A, a < b$ with $ma < ma + \eta(b,a,m)$. Assume that $f: A \longrightarrow \mathbb{R}$ is a differentiable function on A° . If $|f'|^q$ is a MT_m -preinvex function on $[ma, ma + \eta(b, a, m)]$, q > 1, $p^{-1} + q^{-1} = 1$ and $|f'(x)| \leq M$, then for each $x \in [ma, ma + \eta(b, a, m)]$ and $\alpha > 0$, we have

$$(11) \left| \frac{\eta(x,a,m)^{\alpha} f(ma) - \eta(x,b,m)^{\alpha} f(mb)}{\eta(b,a,m)} - \frac{\Gamma(\alpha+1)}{\eta(b,a,m)} \left[J_{(ma+\eta(x,a,m))-}^{\alpha} f(ma) - J_{(mb+\eta(x,b,m))-}^{\alpha} f(mb) \right] \right|$$

$$\leq M \left(\frac{m\pi}{2} \right)^{\frac{1}{q}} \left[\frac{|\eta(x,a,m)|^{\alpha+1} + |\eta(x,b,m)|^{\alpha+1}}{|\eta(b,a,m)|} \right] \left[\frac{\Gamma(p+1)\Gamma\left(\frac{1}{\alpha}\right)}{\alpha\Gamma\left(p+1+\frac{1}{\alpha}\right)} \right]^{\frac{1}{p}}.$$

Proof. Suppose that q > 1. Using Lemma 3, MT_m -preinvexity of $|f'|^q$, Hölder inequality, the fact that $|f'(x)| \leq M$ for each $x \in [ma, ma + \eta(b, a, m)]$, $\alpha > 0$, and taking the modulus, we have

$$\left| \frac{\eta(x,a,m)^{\alpha}f(ma) - \eta(x,b,m)^{\alpha}f(mb)}{\eta(b,a,m)} - \frac{\Gamma(\alpha+1)}{\eta(b,a,m)} \left[J_{(ma+\eta(x,a,m))-}^{\alpha}f(ma) - J_{(mb+\eta(x,b,m))-}^{\alpha}f(mb) \right] \right|$$

$$\leq \frac{|\eta(x,a,m)|^{\alpha+1}}{|\eta(b,a,m)|} \int_{0}^{1} |t^{\alpha} - 1| |f'(ma + t\eta(x,a,m))| dt$$

$$+ \frac{|\eta(x,b,m)|^{\alpha+1}}{|\eta(b,a,m)|} \int_{0}^{1} |1 - t^{\alpha}| |f'(mb + t\eta(x,b,m))| dt$$

$$\leq \frac{|\eta(x,a,m)|^{\alpha+1}}{|\eta(b,a,m)|} \left(\int_{0}^{1} (1 - t^{\alpha})^{p} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} |f'(ma + t\eta(x,a,m))|^{q} dt \right)^{\frac{1}{q}}$$

$$+ \frac{|\eta(x,b,m)|^{\alpha+1}}{|\eta(b,a,m)|} \left(\int_{0}^{1} (1 - t^{\alpha})^{p} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} |f'(mb + t\eta(x,b,m))|^{q} dt \right)^{\frac{1}{q}}$$

$$\leq \frac{|\eta(x,a,m)|^{\alpha+1}}{|\eta(b,a,m)|} \left(\int_0^1 (1-t^\alpha)^p dt \right)^{\frac{1}{p}} \\ \times \left[\int_0^1 \left(\frac{m\sqrt{t}}{2\sqrt{1-t}} |f'(x)|^q + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f'(a)|^q \right) dt \right]^{\frac{1}{q}} \\ + \frac{|\eta(x,b,m)|^{\alpha+1}}{|\eta(b,a,m)|} \left(\int_0^1 (1-t^\alpha)^p dt \right)^{\frac{1}{p}} \\ \times \left[\int_0^1 \left(\frac{m\sqrt{t}}{2\sqrt{1-t}} |f'(x)|^q + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f'(b)|^q \right) dt \right]^{\frac{1}{q}} \\ \leq M \left(\frac{m\pi}{2} \right)^{\frac{1}{q}} \left[\frac{|\eta(x,a,m)|^{\alpha+1} + |\eta(x,b,m)|^{\alpha+1}}{|\eta(b,a,m)|} \right] \left[\frac{\Gamma(p+1)\Gamma\left(\frac{1}{\alpha}\right)}{\alpha\Gamma\left(p+1+\frac{1}{\alpha}\right)} \right]^{\frac{1}{p}}.$$

Remark 10. In Theorem 9, if we choose m=1 and $\eta(x,y,1)=x-y$ then we get (see [13], Theorem 3.5). Also, in Theorem 9, if we choose $\alpha=1$, we get the inequality in Theorem 6.

Theorem 10. Let $A \subseteq \mathbb{R}_0$ be an open m-invex subset with respect to $\eta: A \times A \times (0,1] \longrightarrow \mathbb{R}_0$ for any fixed $m \in (0,1]$ and let $a,b \in A$, a < b with $ma < ma + \eta(b,a,m)$. Assume that $f: A \longrightarrow \mathbb{R}$ is a differentiable function on A° . If $|f'|^q$ is a MT_m -preinvex function on $[ma, ma + \eta(b,a,m)], q \ge 1$ and $|f'(x)| \le M$, then for each $x \in [ma, ma + \eta(b,a,m)]$ and $\alpha > 0$, we have

$$(12) \qquad \left| \frac{\eta(x,a,m)^{\alpha} f(ma) - \eta(x,b,m)^{\alpha} f(mb)}{\eta(b,a,m)} - \frac{\Gamma(\alpha+1)}{\eta(b,a,m)} \left[J_{(ma+\eta(x,a,m))-}^{\alpha} f(ma) - J_{(mb+\eta(x,b,m))-}^{\alpha} f(mb) \right] \right|$$

$$\leq M \left(\frac{m}{2} \right)^{\frac{1}{q}} \left(\frac{\alpha}{\alpha+1} \right)^{1-\frac{1}{q}} \left[\pi - \frac{\Gamma\left(\alpha+\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma(\alpha+1)} \right]^{\frac{1}{q}}$$

$$\times \left[\frac{|\eta(x,a,m)|^{\alpha+1} + |\eta(x,b,m)|^{\alpha+1}}{|\eta(b,a,m)|} \right].$$

Proof. Using Lemma 3, MT_m -preinvexity of $|f'|^q$, the well-known power mean inequality, the fact that $|f'(x)| \leq M$ for each $x \in [ma, ma + \eta(b, a, m)]$, $\alpha > 0$, and taking the modulus, we have

$$\frac{\eta(x,a,m)^{\alpha}f(ma) - \eta(x,b,m)^{\alpha}f(mb)}{\eta(b,a,m)}$$

$$\begin{split} &-\frac{\Gamma(\alpha+1)}{\eta(b,a,m)} \Big[J_{(ma+\eta(x,a,m))-}^{\alpha} f(ma) - J_{(mb+\eta(x,b,m))-}^{\alpha} f(mb) \Big] \Big| \\ &\leq \frac{|\eta(x,a,m)|^{\alpha+1}}{|\eta(b,a,m)|} \int_{0}^{1} |t^{\alpha} - 1| |f'(ma+t\eta(x,a,m))| dt \\ &+ \frac{|\eta(x,b,m)|^{\alpha+1}}{|\eta(b,a,m)|} \int_{0}^{1} |1 - t^{\alpha}| |f'(mb+t\eta(x,b,m))| dt \\ &\leq \frac{|\eta(x,a,m)|^{\alpha+1}}{|\eta(b,a,m)|} \left(\int_{0}^{1} (1-t^{\alpha}) dt \right)^{1-\frac{1}{q}} \\ &\times \left(\int_{0}^{1} (1-t^{\alpha}) |f'(ma+t\eta(x,a,m))|^{q} dt \right)^{\frac{1}{q}} \\ &+ \frac{|\eta(x,b,m)|^{\alpha+1}}{|\eta(b,a,m)|} \left(\int_{0}^{1} (1-t^{\alpha}) dt \right)^{1-\frac{1}{q}} \\ &\times \left(\int_{0}^{1} (1-t^{\alpha}) |f'(mb+t\eta(x,b,m))|^{q} dt \right)^{\frac{1}{q}} \\ &\leq \frac{|\eta(x,a,m)|^{\alpha+1}}{|\eta(b,a,m)|} \left(\int_{0}^{1} (1-t^{\alpha}) dt \right)^{1-\frac{1}{q}} \\ &\times \left[\int_{0}^{1} (1-t^{\alpha}) \left(\frac{m\sqrt{t}}{2\sqrt{1-t}} |f'(x)|^{q} + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f'(a)|^{q} \right) dt \right]^{\frac{1}{q}} \\ &+ \frac{|\eta(x,b,m)|^{\alpha+1}}{|\eta(b,a,m)|} \left(\int_{0}^{1} (1-t^{\alpha}) dt \right)^{1-\frac{1}{q}} \\ &\times \left[\int_{0}^{1} (1-t^{\alpha}) \left(\frac{m\sqrt{t}}{2\sqrt{1-t}} |f'(x)|^{q} + \frac{m\sqrt{1-t}}{2\sqrt{t}} |f'(b)|^{q} \right) dt \right]^{\frac{1}{q}} \\ &\leq M \left(\frac{m}{2} \right)^{\frac{1}{q}} \left(\frac{\alpha}{\alpha+1} \right)^{1-\frac{1}{q}} \left[\pi - \frac{\Gamma\left(\alpha+\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma(\alpha+1)} \right]^{\frac{1}{q}} \\ &\times \left[\frac{|\eta(x,a,m)|^{\alpha+1} + |\eta(x,b,m)|^{\alpha+1}}{|\eta(b,a,m)|} \right]. \end{split}$$

Remark 11. In Theorem 10, if we choose m = 1 and $\eta(x, y, m) = x - my$ then we get (see [13], Theorem 3.8). Also, in Theorem 10, if we choose $\alpha = 1$, we get Theorem 7.

5. Applications to special means

In the following we give certain generalizations of some notions for a positive valued function of a positive variable.

Definition 9 (see [2]). A function $M : \mathbb{R}^2_+ \longrightarrow \mathbb{R}_+$, is called a Mean function if it has the following properties:

- 1. Homogeneity: M(ax, ay) = aM(x, y), for all a > 0,
- 2. Symmetry: M(x,y) = M(y,x),
- 3. Reflexivity: M(x, x) = x,
- 4. Monotonicity: If $x \le x'$ and $y \le y'$, then $M(x, y) \le M(x', y')$.
- 5. Internality: $\min\{x,y\} \le M(x,y) \le \max\{x,y\}$.

We consider some means for arbitrary positive real numbers α, β ($\alpha \neq \beta$).

1. The arithmetic mean:

$$A := A(\alpha, \beta) = \frac{\alpha + \beta}{2}.$$

2. The geometric mean:

$$G := G(\alpha, \beta) = \sqrt{\alpha \beta}.$$

3. The harmonic mean:

$$H := H(\alpha, \beta) = \frac{2}{\frac{1}{\alpha} + \frac{1}{\beta}}.$$

4. The power mean:

$$P_r := P_r(\alpha, \beta) = \left(\frac{\alpha^r + \beta^r}{2}\right)^{\frac{1}{r}}, \ r \ge 1.$$

5. The identric mean:

$$I := I(\alpha, \beta) = \begin{cases} \frac{1}{e} \left(\frac{\beta^{\beta}}{\alpha^{\alpha}} \right), & \alpha \neq \beta; \\ \alpha, & \alpha = \beta. \end{cases}$$

6. The logarithmic mean:

$$L := L(\alpha, \beta) = \frac{\beta - \alpha}{\log(\beta) - \log(\alpha)}, \quad \alpha \neq \beta.$$

7. The generalized log-mean:

$$L_p := L_p(\alpha, \beta) = \left[\frac{\beta^{p+1} - \alpha^{p+1}}{(p+1)(\beta - \alpha)} \right]^{\frac{1}{p}}; \quad p \in \mathbb{R} \setminus \{-1, 0\}, \quad \alpha \neq \beta.$$

8. The weighted p-power mean:

$$M_p \begin{pmatrix} \alpha_1, & \alpha_2, & \cdots & \alpha_n \\ u_1, & u_2, & \cdots & u_n \end{pmatrix} = \left(\sum_{i=1}^n \alpha_i u_i^p\right)^{\frac{1}{p}}$$

where $0 \le \alpha_i \le 1$, $u_i > 0$ (i = 1, 2, ..., n) with $\sum_{i=1}^{n} \alpha_i = 1$.

It is well known that L_p is monotonic nondecreasing over $p \in \mathbb{R}$ with $L_{-1} := L$ and $L_0 := I$. In particular, we have the following inequality $H \leq G \leq L \leq I \leq A$. Now, let a and b be positive real numbers such that a < b. Consider the function $M := M(a,b) : [a,a+\eta(b,a)] \times [a,a+\eta(b,a)] \longrightarrow \mathbb{R}_+$, which is one of the above mentioned means, therefore one can obtain various inequalities using the results of Sections (-) for these means as follows:

Replace $\eta(x, y, m)$ with $\eta(x, y)$ and setting $\eta(a, x) = M(a, x)$ and $\eta(b, x) = M(b, x)$, $\forall x \in A$, for value m = 1 in (7), (8), (11) and (12) one can obtain the following interesting inequalities involving means:

(13)
$$\left| \frac{\eta(a,x)f(a) - \eta(b,x)f(b)}{M(a,b)} \right| \\ - \frac{1}{M(a,b)} \left[\int_{a}^{a+M(a,x)} f(u)du - \int_{b}^{b+M(b,x)} f(u)du \right] \right| \\ \leq \frac{M}{(p+1)^{1/p}} \left(\frac{\pi}{2} \right)^{\frac{1}{q}} \left[\frac{M(a,x)^2 + M(b,x)^2}{M(a,b)} \right],$$

(14)
$$\left| \frac{\eta(a,x)f(a) - \eta(b,x)f(b)}{M(a,b)} - \frac{1}{M(a,b)} \left[\int_{a}^{a+M(a,x)} f(u)du - \int_{b}^{b+M(b,x)} f(u)du \right] \right| \\ \leq M \left(\frac{1}{2} \right)^{1+\frac{1}{q}} (\pi)^{\frac{1}{q}} \left[\frac{M(a,x)^{2} + M(b,x)^{2}}{M(a,b)} \right],$$

$$(15) \qquad \left| \frac{M(a,x)^{\alpha} f(a) - M(b,x)^{\alpha} f(b)}{M(a,b)} - \frac{\Gamma(\alpha+1)}{M(a,b)} \left[J_{(a+M(a,x))-}^{\alpha} f(a) - J_{(b+M(b,x))-}^{\alpha} f(b) \right] \right|$$

$$\leq M \left(\frac{\pi}{2} \right)^{\frac{1}{q}} \left[\frac{M(a,x)^{\alpha+1} + M(b,x)^{\alpha+1}}{M(a,b)} \right] \left[\frac{\Gamma(p+1)\Gamma\left(\frac{1}{\alpha}\right)}{\alpha\Gamma\left(p+1+\frac{1}{\alpha}\right)} \right]^{\frac{1}{p}},$$

(16)
$$\left| \frac{M(a,x)^{\alpha} f(a) - M(b,x)^{\alpha} f(b)}{M(a,b)} - \frac{\Gamma(\alpha+1)}{M(a,b)} \left[J_{(a+M(a,x))-}^{\alpha} f(a) - J_{(b+M(b,x))-}^{\alpha} f(b) \right] \right|$$

$$\leq M \left(\frac{1}{2}\right)^{\frac{1}{q}} \left(\frac{\alpha}{\alpha+1}\right)^{1-\frac{1}{q}} \left[\pi - \frac{\Gamma\left(\alpha + \frac{1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma(\alpha+1)}\right]^{\frac{1}{q}} \times \left[\frac{M(a,x)^{\alpha+1} + M(b,x)^{\alpha+1}}{M(a,b)}\right].$$

Letting M(a, x) and M(b, x) equal to $A, G, H, P_r, I, L, L_p, M_p, \forall x \in A$ in (13), (14), (15) and (16), we get the inequalities involving means for a particular choices of a differentiable MT_1 -preinvex function f. The details are left to the interested reader.

References

- ANTCZAK T., Mean value in invexity analysis, Nonlinear Anal., 60(2005), 1473-1484.
- [2] Bullen P.S., *Handbook of Means and Their Inequalities*, Kluwer Academic Publishers, Dordrecht, (2003).
- [3] CHEN F.X., WU S.H., Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl., 9(2)(2016), 705-716.
- [4] Chu Y.M., Khan M.A., Khan T.U., Ali T., Generalizations of Hermite-Hadamard type inequalities for MT-convex functions, *J. Nonlinear Sci. Appl.*, 9(2016), 4305-4316.
- [5] CHU Y.M., KHAN M.A., KHAN T.U., ALI T., Generalizations of Hermite-Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl., 9(5)(2016), 4305-4316.
- [6] Chu Y.M., Wang G.D., Zhang X.H., Schur convexity and Hadamard's inequality, Math. Inequal. Appl., 13(4)(2010), 725-731.
- [7] Dragomir S.S., Pečarić J., Persson L.E., Some inequalities of Hadamard type, *Soochow J. Math.*, 21(1995), 335-341.
- [8] Du T.S., Liao J.G., Li Y.J., Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions, J. Nonlinear Sci. Appl., 9(2016), 3112-3126.
- [9] KAVURMACI H., AVCI M., ÖZDEMIR M.E, New inequalities of Hermite-Hadamard type for convex functions with applications, arXiv:1006.1593v1 [math. CA], (2010), 1-10.
- [10] Khan M.A., Khurshid Y, Ali T., Hermite-Hadamard inequality for fractional integrals via α -convex functions, *Acta Math. Univ. Comenianae*, 79(1)(2017), 153-164.
- [11] KHAN M.A., KHURSHID Y, ALI T., REHMAN N., Inequalities for three times differentiable functions, J. Math., Punjab Univ., 48(2)(2016), 35-48.
- [12] Liu W., New integral inequalities involving beta function via *P*-convexity, *Miskolc Math. Notes*, 15(2)(2014), 585-591.
- [13] LIU W., WEN W., PARK J., Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9(2016), 766-777.

- [14] LIU W., WEN W., PARK J., Ostrowski type fractional integral inequalities for MT-convex functions, *Miskolc Mathematical Notes*, 16(1)(2015), 249-256.
- [15] ÖZDEMIR M.E., SET E., ALOMARI M., Integral inequalities via several kinds of convexity, *Creat. Math. Inform.*, 20(1)(2011), 62-73.
- [16] Pini R., Invexity and generalized convexity, Optimization, 22(1991), 513-525.
- [17] Shi H.N., Two Schur-convex functions related to Hadamard-type integral inequalities, *Publ. Math. Debrecen*, 78(2)(2011), 393-403.
- [18] STANCU D.D., COMAN G., BLAGA P., Analiză numerică și teoria aproximării, Cluj-Napoca: Presa Universitară Clujeană., 2(2002).
- [19] Tung M., Yildirim H., On MT-Convexity, arXiv: 1205.5453v1 [math. CA], 2012(2012), 1-6.
- [20] YANG X.M., YANG X.Q., TEO K.L., Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl., 117(2003), 607-625.
- [21] ZHANG X.M., CHU Y.M., ZHANG X.H., The Hermite-Hadamard type inequality of GA-convex functions and its applications, *J. Inequal. Appl.*, 2010), Article ID 507560, 11 pages.

ARTION KASHURI
DEPARTMENT OF MATHEMATICS
FACULTY OF TECHNICAL SCIENCE
UNIVERSITY "ISMAIL QEMALI"
VLORA, ALBANIA
e-mail: artionkashuri@gmail.com

ROZANA LIKO
DEPARTMENT OF MATHEMATICS
FACULTY OF TECHNICAL SCIENCE
UNIVERSITY "ISMAIL QEMALI"
VLORA, ALBANIA
e-mail: rozanaliko86@gmail.com

Received on 12.11.2016 and, in revised form, on 29.03.2017.