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BEST APPROXIMATION IN METRIC SPACES

Abstract. The aim of this paper is to prove some results on the
existence and uniqueness of elements of best approximation and
continuity of the metric projection in metric spaces. For a subset
M of a metric space (X, d), the nature of set of those points of
X which have at most one best approximation in M has been
discussed. Some equivalent conditions under which an M -space is
strictly convex have also been given in this paper.
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1. Introduction

For a non-empty subset M of a metric space (X, d) and x ∈ X, one of
the main problem of approximation theory is to find an element m0 ∈ M
such that

d(x,m0) = inf
m∈M

d(x,m) ≡ d(x,M).

The set of all best approximations to x in M is denoted by PM (x). The
set M is called proximinal if for every x ∈ X, the set PM (x) is non-empty.
If for each x ∈ X, the set PM (x) is a singleton then the set M is called
Chebyshev.

The set-valued mapping PM : X → 2M (≡ the set of all subsets of M)
defined by PM (x) = {y ∈ M : d(x, y) = d(x,M)} is called metric projec-
tion.

The problem of finding elements of best approximation have been dis-
cussed by many researchers in normed linear linear spaces (see e.g. [2],[3],[12],
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[13] and references cited therein) but only a few have taken up this study in
more general abstract spaces viz. metric linear spaces, convex metric spaces
and metric spaces (see e.g. [1], [6], [8]-[10] and [13]). In this paper, we also
discuss this problem in metric spaces and convex metric spaces.

We denote an open ball with center at x and radius r by B(x, r) and by
B[x, r] the corresponding closed ball. For a subset A of a metric space, we
denote the set of limit points, the closure and the complement respectively
of A by A′, A and Ac.

A subset M of a metric space (X, d) is said to be approximatively
compact for x ∈ X if every minimizing sequence {yn} ⊆ M for x, i.e.,
limn→∞ d(x, yn) = d(x,M), has a convergent subsequence in M .

A subset M of a metric space (X, d) is said to be strongly approxima-
tively compact for x ∈ X if every minimizing sequence {yn} ⊆M for x is
convergent in M .

The set M is said to be approximatively compact (strongly approxima-
tively compact) in X if it is approximatively compact (strongly approxima-
tively compact) for every x ∈ X.

It is well-known that an approximatively compact set is proximinal and
closed (see [13]–p.382). The notion of strong approximative compactness
was introduced and discussed in [2] under the name strongly Chebyshev.

The set M is said to be boundedly compact if every bounded sequence
in M has a subsequence converging to some point of M.

A metric space (X, d) is said to be metrically convex or convex (in
the sense of Menger [7]) if for any two distinct points x and y of X there
exist at least one z ∈ X, x 6= z 6= y such that

d(x, z) + d(z, y) = d(x, y).

A point z satisfying the above condition is called a between point of
x and y, and the set of all between points of x and y, denoted by [x, y] is
called a metric segment joining x and y.

Following Menger [7], one can also define a convex metric space as:
A metric space (X, d) is said to be convex (see Khalil [6]) if

B[x, r] ∩B[y, λ− r] 6= ∅, λ = d(x, y), r ∈ [0, λ].

Another form of convexity was introduced in metric spaces by Takahashi
[15] as under:

For a metric space (X, d) and closed interval I = [0, 1], a continuous
mapping W : X × X × I → X is said to be a convex structure on X if
for all x, y ∈ X, λ ∈ I

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y) for all u ∈ X.
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The metric space (X, d) together with a convex structure W , denoted by
(X, d,W ), is called a convex metric space.

A metric space (X, d) is said to be an M-space (see [6]) if for any two
distinct points x and y of X with d(x, y) = λ, and for every r ∈ [0, λ], there
exists a unique zr ∈ X such that

B[x, r]
⋂
B[y, λ− r] = {zr}.

An M -space (X, d) is called externally convex (see [4], [6]) if for every
distinct x, y ∈ X, the equalities

d(x, z1) = d(x, y) + d(y, z1) = d(x, y) + d(y, z2) = d(x, z2)

for z1, z2 ∈ X imply z1 = z2.
In normed linear spaces, this property is equivalent to strict convexity.
A convex metric space (X, d) is said to be strictly convex (see Khalil

[6]) if for all z ∈ X and for all x, y ∈ B[z, r] with d(x, y) = λ, we have
B[x, (1− t)λ] ∩B[y, tλ] ⊆ B(z, r) for all 0 < t < 1.

A convex metric space (X, d) is said to be strictly convex (see Narang
[8]) if for every pair x, y ∈ X and r > 0,

d(x, p) ≤ r, d(y, p) ≤ r imply d(z, p) < r

unless x = y, where p is arbitrary but fixed point of X and z 6= x 6= y is any
point between x and y.

It is known (see [6]) that a strictly convex metric space is an M-space but
the converse is not true.

The convexity of Menger and that of Khalil, and strict convexity of
Narang and that of Khalil are equivalent in complete metric spaces (see
[5]–p.24, [11]).

A non-empty subset M of a metric space (X, d) is said to be
(1) dense in X if the closure of M is the space X.
(2) nowhere dense in X if the interior of the closure of M is empty.
(3) an Fσ-set if M can be written as a countable union of closed sets.
(4) a Gδ − set if M can be written as a countable intersection of open

sets.
Clearly, if a set is Fσ−set then its complement is aGδ−set and conversely.
A metric space (X, d) is said to be of Baire’s first category if it can

be written as a countable union of nowhere dense subsets of X.
In this paper, we use strong approximative compactness to prove some

results on the existence and uniqueness of best approximation, and conti-
nuity of the metric projection in metric spaces. Some equivalent conditions
under which an M -space is strictly convex have been given. For a subset M



116 T.D. Narang and Sahil Gupta

of a metric space (X, d), the nature of the set of those points of X which
have at most one best approximation in M are also discussed in this paper.
The results proved in this paper generalize and extend some results of [2],
[3] and [14].

2. Main results

We start with the following theorem which deals with the continuity of
the metric projection.

Theorem 1. Let M be a closed subset of a metric space (X, d) and
x ∈ X. If every minimizing sequence for x converges then PM (x) is a
singleton and PM is continuous at x.

Proof. Let x ∈ X. Since d(x,M) = infm∈M d(x,m), there exist a
sequence {yn} ⊆M such that

(1) lim
n→∞

d(x, yn) = d(x,M)

i.e., {yn} is a minimizing sequence for x. Then by the hypothesis, {yn} →
y0 ∈M . Therefore using (1), y0 ∈ PM (x). Suppose y1, y2 ∈ PM (x), y1 6= y2.
Then the sequence {yn} defined by y2n = y1 and y2n+1 = y2 is a minimizing
sequence for x which is not convergent, a contradiction. Therefore, PM (x)
is a singleton. Now to prove the continuity of PM , let {xn} be a sequence
in X such that xn → x and {yn} = PM (xn); n = 1, 2, 3.... Then

(2) d(xn, yn) = d(xn,M), n = 1, 2, 3, ... .

Since d(x,M) ≤ d(x, yn) ≤ d(x, xn)+d(xn, yn) = d(x, xn)+d(xn,M), on
taking limit, we get

(3) lim
n→∞

d(x, yn) = d(x,M)

i.e., {yn} ⊆M is a minimizing sequence for x and so by the hypothesis {yn}
converges to some y ∈ M . Then it follows from (3) that d(x, y) = d(x,M)
and so {y} = PM (x). Hence PM is continuous at x. �

Remarks. A strongly approximatively compact subset of a metric space
is Chebyshev and the metric projection PM is continuous.

The following lemma (see [1]) shows that in a convex metric space (X, d,W ),
the set PM (x) is a part of the boundary of M .

Lemma 1 ([1]). Let M be a closed subset of a convex metric space
(X, d,W ) then for any x ∈ X, PM (x) ⊂ bd(M).
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The following example (see [13]) shows that an element of best approx-
imation may be an interior point of the set and so the above lemma does
not hold in non convex metric spaces.

Example. Let X = {x, y} ⊂ R, with x 6= y and M = {y}. Then M is
convex and PM (x) = {y} = Int(M). Since bd(M) = φ, PM (x) * bd(M).

Using Lemma 1, we prove the following:

Proposition 1. Let M be a closed subset of a convex metric space
(X, d,W ) such that x0 ∈ X\M has a best approximation in M then d(x0,M)
= d(x0, bd(M)).

Proof. Suppose y0 ∈ PM (x) then by Lemma 1, y0 ∈ bd(M). There-
fore, d(x0,M) ≤ d(x0, bd(M)) ≤ d(x0, y0) = d(x0,M) gives d(x0,M) =
d(x0, bd(M)). �

The following theorem shows that strict convexity of the space is closely
related to approximation properties of the space.

Theorem 2. Let (X, d) be a complete M-space. Then the following are
equivalent:

(i) (X, d) is strictly convex.
(ii) Every non-empty convex subset of X is semi-Chebyshev.

(iii) Every non-empty closed convex subset of X is semi-Chebyshev.
(iv) Every non-empty proximinal convex subset of X is Chebyshev.

Proof. (i) ⇒ (ii). Let M be a non-empty convex subset of X which
is not semi-Chebyshev i.e. there exists some x ∈ X for which there are
m1,m2 ∈ M such that d(x,m1) = d(x,m2) = d(x,M). Let m ∈ M be the
mid point of m1,m2. Then d(x,M) ≤ d(x,m). Since the space is strictly
convex, d(x,m) < d(x,M), a contradiction. Hence M is semi-Chebyshev.

(ii)⇒ (iii) and (iii)⇒ (iv) are obvious.
(iv)⇒ (i) follows from ([6]–Theorem 2.6). �

We require the following result for our next theorems.

Lemma 2. Let (X, d) be a convex metric space, M ⊆ X, x ∈ X\M and
m0 ∈ PM (x).

1. m0 ∈ PM (y) for every y ∈ (m0, x).
2. If the metric space (X, d) is externally convex , then PM (y) = {m0}
for every y ∈ (m0, x).
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Proof. 1. If for some y ∈ (m0, x), m0 /∈ PM (y), then it would exist
m1 ∈M such that d(y,m1) < d(y,m0), yielding the contradiction

d(x,m1) ≤ d(x, y) + d(y,m1)

≤ d(x, y) + d(y,m0)

= d(x,m0)

2. Suppose that (X, d) is externally convex, and suppose that, for some
y ∈ (m0, x), there exists m1 6= m0 in M such that d(y,m1) = d(y,m0) =
d(y,M). Then

d(x,m0) = d(x,M) ≤ d(x,m1) ≤ d(x, y) + d(y,m1)

= d(x, y) + d(y,m0) = d(x,m0).

It follows

d(x,m0) = d(x, y) + d(y,m0)

= d(x, y) + d(y,m1) = d(x,m1).

Taking into account the external convexity of (X, d), this implies m1 =
m0. �

Next two theorems deal with the uniqueness set of best approximation
in strictly convex metric spaces. For strictly convex normed linear spaces,
these results are well known (see [3], [14]).

Theorem 3. Let M be a non-empty subset of a externally convex metric
space (X, d) then the set U(M) ≡ {x ∈ X : cardPM (x) ≤ 1} is dense in X
for any subset M ⊆ X.

Proof. We have to prove that U(M) = X, i.e., X = U(M)
⋃

[U(M)]′.
Let x ∈ X be arbitrary. If x ∈ U(M) we are done. Suppose x /∈ U(M)
then PM (x) contain at least two distinct points, say m1,m2 and so PM (x) is
non-empty and d(x,m1) = d(x,M) = d(x,m2). Then by using Lemma 2, we
have PM (y) = {m1} for every y ∈ [m1, x), i.e., [m1, x) ⊆ U(M). Therefore,
every neighbourhood of x intersects U(M) in a point other than x and so
x ∈ U(M)′. Therefore, x ∈ U(M) and so X ⊆ U(M). But U(M) ⊆ X.
Therefore U(M) = X. �

Theorem 4. Let M be an approximatively compact subset of an exter-
nally convex metric space (X, d) then X\U(M) is of first Baire’s category
and U(M) is a Gδ − set.
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Proof. Let D(x) = diam(PM (x)) = sup{d(m′,m′′) : m′,m′′ ∈ PM (x)}.
Put Y = X\U(M) and let Yn = {x ∈ X : D(x) ≥ 1

n}, n ∈ N . Since
Y =

⋃∞
n=1 Yn, it is sufficient to prove that each Yn is closed and nowhere

dense.
Yn is closed: Let x be a limit point of Yn. Then there exist a sequence

{xk} in Yn such that xk → x ∈ X. Let m′k,m
′
k ∈ PM (xk) be such that

(4) d(mk
′,mk

′′) ≥ k

(k + 1)n
,

for all k ∈ N. Then

d(x,M) ≤ d(x,m′k) ≤ d(x, xk) + d(xk,m
′
k)

= d(x, xk) + d(xk,M)→ d(x,M).

It follows that {m′k} is a minimizing sequence for x, and so it contains
a subsequence convergent to some m′ ∈ M . Similarly, {m′k} contains a
subsequence convergent to some point m′′ ∈ M , so that we can suppose,
without loss of generality, that the sequences {m′k} and {m′′k} converge to
m′, m′′ ∈ M , respectively, implying m′,m′′ ∈ PM (x). Letting k → ∞ in
(4), one obtains d(m′,m′′) ≥ 1/n, and so diam PM (x) ≥ 1/n, i.e., x ∈ Yn.
Hence Yn is closed.
Yn is nowhere dense: As the set Yn is closed, it is sufficient to show that

int(Yn) = ∅. If x ∈ Yn then there exist m′,m′′ ∈ PM (x) with d(m′,m′′) ≥ 1
n .

By using Lemma 2, PM (x0) = {m′} for every x0 ∈ [m′, x) ⇒ [m′, x) ⊂
U(M) ⊂ X\Yn Therefore, Yn does not contain any ball with center at x.
Hence int(Yn) = ∅.

Therefore, Y = X\U(M) =
⋃∞
n=1 Yn where each Yn is closed and nowhere

dense, i.e., Y is a countable union of closed and nowhere dense sets and
hence Y is an Fσ − set and is of Baire’s first category. Consequently, Y c is
a Gδ − set, i.e., U(M) is a Gδ − set. �

Since an approximatively compact set in a metric space is proximinal, we
obtain that the set U(M) = EU(M) ≡ {x ∈ X : cardPM (x) = 1}.

Corollary 1. Let M be an approximatively compact subset of an exter-
nally convex metric space (X, d) then X\EU(M) is of first Baire’s category
and EU(M) is a Gδ − set.

For a subset M ⊆ X and x ∈ X, we denote by min(x,M) the problem of
best approximation of x by elements of M , i.e., to find m0 ∈ M such that
d(x,m0) = d(x,M). We say that the problem min(x,M) is well-posed if it
has unique solution m0 ∈ M and every minimizing sequence converges to
m0.
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Theorem 5. If M is a non-empty complete subset of a metric space
(X, d) and x ∈ X then the problem min(x,M) is well-posed if and only if
limδ→0 diamPM (x, δ) = 0.

Proof. Suppose that the setM is complete and limδ→0 diamPM (x, δ) = 0.
Let {yn} ⊆ M be any minimizing sequence for x, i.e., limn→∞ d(x, yn) =
d(x,M). Then for any δ > 0, yn ∈ PM (x, δ) after some stage. This im-
plies that for any δ > 0, d(yn, yn+p) ≤ diamPM (x, δ) after some stage.
As limδ→0 diamPM (x, δ) = 0, it follows that the sequence {yn} is Cauchy.
Since M is complete, {yn} → y0 ∈ M , i.e., every minimizing sequence for
x is convergent. Then d(x, y0) = d(x,M), i.e., y0 ∈ PM (x). If x has two
distinct elements of best approximation say y1, y2 ∈ M , then the sequence
{yn} defined by y2n = y1 and y2n+1 = y2 is a minimizing sequence for x
which is not convergent, a contradiction to the result we have just proved.

Conversely, suppose that the problem min(x,M) is well posed. We first
prove that limn→∞ diamPM (x, 1/n) = 0. Put dn = diamPM (x, 1/n) and
choose yn, y

′
n ∈ PM (x, 1/n) such that

d(yn, y
′
n) ≥ n

n+ 1
dn,

for all n ∈ N. Then

d(x,M) ≤ d(x, yn) ≤ 1

n
+ d(x,M)

showing that {yn} is a minimizing sequence. The situation is same for {y′n},
so that, by hypothesis, both sequences {yn}, {y′n} are convergent to some
y0 ∈M , implying limn→∞ d(yn, y

′
n) = 0. The equality

dn ≤
n+ 1

n
d(yn, y

′
n),

valid for every n ∈ N, implies limn→∞ dn = 0. Now, given ε > 0, let n0 ∈ N
be such that dn0 ≤ ε.

Since PM (x, δ1) ⊂ PM (x, δ2) for 0 < δ1 ≤ δ2, it follows PM (x, δ) ⊂
PM (x, 1

n0
), and so diamPM (x, δ) ≤ dn0 ≤ ε for all 0 < δ ≤ 1

n0 . Since ε > 0
is arbitrary, it follows that diamPM (x, δ)→ 0 as δ → 0. �
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