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Abstract. We propose a new notion of multi-valued almost
(GF, δb)-contractions involving rational terms under δ-distance
on b-metric spaces and give its relevance to fixed point results
in orbitally complete b-metric spaces. An ordered version of our
main result is also proved with some weaker contractive condi-
tions. Some examples are given to show the usability of the results
proved herein. Moreover, application of our result to the nonlinear
integral equation is given.
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1. Introduction

Nonlinear analysis is a remarkable confluence of topology, analysis and
applied mathematics. Indeed, the fixed point theory is one of the most
rapidly growing topic of nonlinear functional analysis. It is a vast and
inter-disciplinary subject whose study belongs to several mathematical do-
mains. Most important nonlinear problems of applied mathematics reduce
to finding solutions of nonlinear functional equations. It can be formu-
lated in terms of finding the fixed points of a given nonlinear mapping on
an infinite dimensional function space X into itself. Fixed point theory is
an important and actual topic of nonlinear analysis. Moreover, it is well
known that the contraction mapping principle, formulated and proved in
the Ph.D. dissertation of Banach in 1920 which was published in 1922 is one
of the most important theorems in classical functional analysis. The Banach
Contraction Principle is a very popular tool in solving existence problems
in many branches of Mathematical Analysis and its applications. It is no
surprise that there is a great number of generalizations of this fundamental
theorem. They go in several directions-modifying the basic contractive con-
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dition or changing the ambiental space. Due to its simplicity and generality,
the contraction principle has drawn attention of a very large number of
mathematicians.

The advancement of geometric fixed point theory for multivalued map-
pings was initiated in the work of Nadler, Jr. in 1969 [14]. He used the
concept of Hausdorff-Pompeiu metric to establish the multivalued contrac-
tion principle containing the Banach contraction principle as a special case.
Since then, this discipline has been more developed, and many profound
concepts and results have been set up in more generalized spaces. Many
fixed point theorems have been proved by various authors as generalizations
of Nadler’s theorem (see, e.g., [20, 21] and references cited therein).

In this paper, we propose a new notion−almost GF -contraction involving
rational terms for multivalued mappings under δ-distance in the setting of
b-metric spaces [3, 5, 8, 9, 12, 24] and a concept of F -contractions in the
sense of Cosentino et al. [7]. Also, some fixed point results in ordered spaces
with weaker contractive conditions are proved. We designed the paper as
follows. Section 2 is introductory in character wherein we have discussed the
past development of fixed point theory and visited significant preliminary
concepts, definitions and important results relevant to our following discus-
sions. In Section 3, we introduce the notion of almost F -contraction for a
multivalued mapping T under δ-distance in a b-metric space and originate
fixed point results in orbitally complete b-metric spaces, while in Section 4,
we prove an ordered version of the main result of Section 3 with some weaker
contractive conditions and with some additional conditions on ordered space.
In the final Section 5, application of our result to nonlinear integral equa-
tion is discussed. Some suitable examples are furnished to demonstrate the
validity of our results and to distinguish them from some known ones.

The present work improves and extends the works done in the papers
[1, 2, 4, 7, 11, 17, 18, 19] by taking into account of orbitally complete
b-metric space, and endowed with ordered spaces under weaker contractive
conditions.

2. Preliminaries

Bakhtin [5] introduced the notion of b-metric spaces as an extension of
metric spaces and then extensively used by Czerwik in [8, 9, 10]. After that,
a lot of work have been done on the fixed point theory of various classes of
single-valued and multi-valued operators in this type of spaces. We recall
here just some basic definitions and notation that we are going to use. R+

and R+
0 will denote the set of all positive, resp. nonnegative real numbers

and N will be the set of positive integers.
A b-metric on a nonempty set E is a function db : E × E → R+

0 such that
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for a constant s ≥ 1 and for all x, y, z ∈ E the following three conditions
hold true:
(M1) db(x, y) = 0 ⇐⇒ x = y,
(M2) db(x, y) = db(y, x),
(M3) db(x, y) ≤ s[db(x, z) + db(z, y)].
The triple (E , db, s) is called a b-metric space.

Obviously, each metric space is a b-metric space (for s = 1), but the
converse need not be true. Standard examples of b-metric spaces that are
not metric spaces are the following:
1. E = R and db : E × E → R defined by db(x, y) = |x− y|2 for all x, y ∈ E ,

with s = 2.
2. E = `p(R) := {{xn} ⊂ R :

∑∞
n=1 |xn|p < ∞}, 0 < p < 1, db : `p(R) ×

`p(R)→ R given by

db({xn}, {yn}) =

( ∞∑
n=1

|xn − yn|p
)1/p

for all {xn}, {yn} ∈ `p(R); here s = 21/p.
3. E = Lp([0, 1]) 3 f : [0, 1] → R such that

∫ 1
0 |f(t)|pdt < ∞, p > 1,

db : Lp([0, 1])× Lp([0, 1])→ R given by

db(f, g) =

∫ 1

0
|f(t)− g(t)|p

for all f, g ∈ Lp([0, 1]); here s = 2p−1.
The topology on b-metric spaces and the notions of convergent and Cauchy

sequences, as well as the completeness of the space are defined in a similar
way as for standard metric spaces. However, one has to be aware of some
differences. For instance, a b-metric need not be a continuous mapping in
both variables (see, e.g., [15]).

Further, we give a brief background for the δ-distance and multivalued
mappings defined on a b-metric space (E , db, s).

Following terminologies are used in the paper:
Pb(E): the class of non-empty and bounded subsets of E ,
Pcb(E): the class of non-empty, closed and bounded subsets of E .
For U ,V,W ∈ Pb(E), we define:

Db(U ,V) = inf{db(u, v) : u ∈ U , v ∈ V} and

δb(U ,V) = sup{db(u, v) : u ∈ U , v ∈ V}

with Db(w,W) = Db({w},W) = inf{db(w, x) : x ∈ W}.
The following are some easy properties of Db and δb (see, e.g., [8, 9, 10]).

(i) if U = {u} and V = {v} then Db(U ,V) = δb(U ,V) = db(u, v),
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(ii) Db(U ,V) ≤ δb(U ,V),
(iii) Db(x,V) ≤ db(x, b) for any b ∈ V,
(iv) δb(U ,V) ≤ s[δb(U ,W) + δb(W,V)],
(v) δb(U ,V) = 0 iff U = V = {v}.

It is obvious that δb(U ,U) is need not to be zero. Indeed δb(U ,U) = dia(U),
where dia(U) = sup{db(u, v) : u, v ∈ U} is called the diameter of the set U .

Recall that z ∈ E is called a fixed point of a multi-valued mapping T :
E → Pb(E) if z ∈ T z.

The concepts of an orbit, the orbital completeness and the orbital con-
tinuous mappings given in [6, 13, 22] for metric spaces, can be extended to
the case of b-metric spaces, as follows:

Definition 1. Let (E , db, s) be a b-metric space and T : E → Pb(E) be a
mapping.

1. The orbit of the mapping T at point x0 ∈ E is the set O(x0; T ) =
{x0} ∪ {xn : xn ∈ T xn−1, n = 1, 2, . . .}.

2. The space (E , db, s) is said to be T -orbitally complete at x0 ∈ E if every
Cauchy subsequence {xni} in O(x0; T ) converges in E.

3. The mapping T is said to be orbitally continuous at a point x0 ∈ E if
for any sequence {xn}n≥0 ⊂ O(x0; T ) and z ∈ E, d(xn, z)→ 0 as n→∞
implies δb(T xn, T z) → 0 as n → ∞. T is called orbitally continuous in
E if it is orbitally continuous at every point of E.

4. The graph G(T ) of T is defined as G(T ) = {(x, y) : x ∈ E , y ∈ T x}.
The graph G(T ) of T is called T -orbitally closed if, for any sequence
{xn}, we have (x, x) ∈ G(T ) whenever (xn, xn+1) ∈ G(T ) for all n ∈ N
and limn→∞ xn = x.

Wardowski [25] introduced a new type of contractions which he called
F -contractions. Several authors proved various variants of fixed point results
using such contractions. In particular, Acar and Altun proved in [1] a fixed
point theorem for multivalued mappings under δ-distances.

Acclimatizing Wardowski’s approach to b-metric space, Cosentino et al.
used in [7] the set of functions Fs defined as follows:

Definition 2. Let s ≥ 1 be a real number. We denote by Fs the family
of all functions F : R+ → R with the following properties:

(F1) F is strictly increasing,
(F2) for each sequence {αn} of positive numbers, limn→∞ αn = 0 if and
only if limn→∞ F (αn) = −∞,

(F3) for each sequence {αn} of positive numbers with limn→∞ αn = 0,
there exists k ∈ (0, 1) such that limn→∞ α

k
nF (αn) = 0,
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(F4) there exists τ ∈ R+ such that for each sequence {αn} of positive
numbers, if τ + F (sαn) ≤ F (αn−1) for all n ∈ N, then τ + F (snαn) ≤
F (sn−1αn−1) for all n ∈ N.

Example 1. Let F : R+ → R be defined by F (α) = lnα or F (α) =
α + lnα. It can be easily checked [7, Example 3.2] that F satisfies the
properties (F1)-(F4).

Cosentino et al. [7] proved the following theorem (note that Hb here
denotes the b-Hausdorff-Pompeiu metric):

Theorem 1 ([7], Theorem 3.4). Let (E , db, s) be a complete b-metric
space and let T : E → Pcb(E). Assume that there exists a continuous from
the right function F ∈ Fs and τ ∈ R+ such that

(1) 2τ + F (sHb(T x, T y)) ≤ F (db(x, y)),

for all x, y ∈ E, T x 6= T y. Then T has a fixed point.

3. Result-1

In this section, we prove results on multivalued almost (GF, δb)-contraction
in a b-metric space. For this, we first introduce the notion of multivalued
almost (GF, δb)-contraction in a b-metric space and then derive fixed point
results.

To define multivalued almost (GF, δb)-contraction, we need following fam-
ily of new functions (see also, [11]).

Let ∆G denotes the set of all functions G :
(
R+

0

)4 → R+
0 satisfying:

(G) there exists τ > 0 such that limn→∞G(a, b, c, εn) = τ for all a, b, c ∈
R+

0 and for every sequence {εn} ⊂ R+
0 with limn→∞ εn = 0.

Example 2. If G(a, b, c, d) = Lmin{a, b, c, d} + τ where L ∈ R+ and
τ > 0, then G ∈ ∆G.

Example 3. If G(a, b, c, d) = τeLmin{a,b,c,d} where L ∈ R+ and τ > 0,
then G ∈ ∆G.

Example 4. If G(a, b, c, d) = L ln(min{a, b, c, d}+ 1) + τ where L ∈ R+

τ > 0, then G ∈ ∆G.

Example 5. If G(a, b, c, d) = τ − τd

L+ d
where L ∈ R+ τ > 0, then

G ∈ ∆G.
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Definition 3. Let (E , db, s) be a b-metric space with s > 1. We say that a
multi-valued mapping T : E → Pb(E) is a multi-valued almost (GF, δb)-con-
traction if F ∈ Fs, G ∈ ∆G and there exists λ ≥ 0 such that

G(Db(x, T x),Db(y, T y),Db(x, T y),Db(y, T x)) + F (sδb(T x, T y))(2)

≤ F (Θ1(x, y) + λΘ2(x, y)),

for all x, y ∈ E with min{δb(T x, T y), db(x, y)} > 0, where

Θ1(x, y) = max

{
db(x, y),Db(x, T x),Db(y, T y), Db(x,T y)+Db(y,T x)

2s ,
Db(y,T y)[1+Db(x,T x)]

s[1+db(x,y)] , Db(y,T x)[1+Db(x,T x)]
s[1+db(x,y)]

}
(3)

and

Θ2(x, y) = min{Db(x, T x),Db(y, T y),Db(x, T y),Db(y, T x)}.

If (2) is satisfied just for x, y ∈ O(x0; T ) (for some x0 ∈ E), we say that T
is a multi-valued almost orbitally (GF, δb)-contraction at x0.

Now we are position to state our first main result.

Theorem 2. Let (E , db, s) be a b-metric space with s > 1 and let T : E →
Pb(E) be a multi-valued almost orbitally (GF, δb)-contraction at x0 ∈ E.
Suppose that (E , db, s) is T -orbitally complete at x0. If F is continuous and
T x is closed for all x ∈ O(x0; T ); or T has T -orbitally closed graph, then
T has a fixed point in E.

Proof. Since T : E → Pb(E), let x1 ∈ T x0. Continuing in this manner,
we can choose a sequence {xn} in E such that xn+1 ∈ T xn, for all n ∈ N∪{0}.
Now, if xn0 ∈ T xn0 for some n0 ∈ N, then xn0 is a fixed point of T and the
proof is finished. Therefore, we assume that xn /∈ T xn, i.e., xn 6= xn+1 for
all n ≥ 0. So db(xn, xn+1) > 0 and δb(T xn, T xn+1) > 0 for all n ∈ N ∪ {0}.

Using the condition (2) for the elements x = xn, y = xn+1, arbitrary
n ∈ N ∪ {0} we obtain

G(Db(xn, T xn),Db(xn+1, T xn+1),Db(xn, T xn+1),Db(xn+1, T xn))(4)

+ F (sδb(T xn, T xn+1))

≤ F (Θ1(xn, xn+1) + λΘ2(xn, xn+1)).

Since xn+1 ∈ T xn for all n ≥ 0, by definition we have

Db(xn+1, T xn) = Db({xn+1}, T xn) = inf {db(xn+1, z) : z ∈ T xn} = 0.

Again, since xn+1 ∈ T xn for all n ≥ 0, by definition we have

db(xn+1, xn+2) ≤ sup {db(u, v) : u ∈ T xn, v ∈ T xn+1}
= δb(T xn, T xn+1).



Some fixed point theorems for almost . . . 129

Therefore, it follows from the inequality (4) and (F1) that

G(Db(xn, T xn),Db(xn+1, T xn+1),Db(xn, T xn+1), 0)(5)

+ F (sdb(xn+1, xn+2))

≤ G(Db(xn, T xn),Db(xn+1, T xn+1),Db(xn, T xn+1), 0)

+ F (sδb(T xn, T xn+1))

≤ F (Θ1(xn, xn+1) + λΘ2(xn, xn+1))

where

Θ1(xn, xn+1)

= max


db(xn, xn+1),Db(xn, T xn),Db(xn+1, T xn+1),

1
2s [Db(xn, T xn+1) +Db(xn+1, T xn)]

Db(xn+1,T xn+1)[1+Db(xn,T xn)]
s[1+db(xn,xn+1)] , Db(xn+1,T xn)[1+Db(xn,T xn)]

s[1+db(xn,xn+1)]


≤ max

{
db(xn, xn+1), db(xn, xn+1), db(xn+1, xn+2),

1
2sdb(xn, xn+2)), 1

sdb(xn+1, xn+2))

}
= max

{
db(xn, xn+1), db(xn+1, xn+2),

1

2s
db(xn, xn+2)

}
and

Θ2(xn, xn+1)

= min {Db(xn, T xn),Db(xn+1, T xn+1),Db(xn, T xn+1),Db(xn+1, T xn)}
= 0.

Now,

1

2s
db(xn, xn+2) ≤ 1

2
[db(xn, xn+1) + db(xn+1, xn+2)]

≤ max{db(xn, xn+1), db(xn+1, xn+2)}.

Also, since G ∈ ∆G, there exist τ > 0, such that

G(db(xn, xn+1), db(xn+1, xn+2), db(xn, xn+2), 0) = τ.

Therefore the above inequalities with (5) yields

(6) τ + F (sdb(xn+1, xn+2)) ≤ F (max{db(xn, xn+1), db(xn+1, xn+2)}).

Suppose that db(xn, xn+1) ≤ db(xn+1, xn+2), for some n ∈ N. Then from
(6), we have

τ + F (sdb(xn+1, xn+2)) ≤ F (db(xn+1, xn+2)),
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which with (F1) yields a contradiction (since τ > 0). Hence, we must have

max{db(xn, xn+1), db(xn+1, xn+2)} = db(xn, xn+1),

and consequently from (6) we have

(7) τ + F (sdb(xn+1, xn+2)) ≤ F (db(xn, xn+1)) for all n ∈ N ∪ {0}.

It follows by (7) and the property (F4) that

(8) τ + F (sndb(xn, xn+1)) ≤ F (sn−1db(xn−1, xn)) for all n ∈ N.

Denote %n = db(xn, xn+1) for n = 0, 1, 2, . . . . Then, %n > 0 for all n and,
using (8), the following holds:

(9) F (sn%n) ≤ F (sn−1%n−1)− τ ≤ F (sn−2%n−2)− 2τ ≤ · · · ≤ F (%0)− nτ

for all n ∈ N. From (9), we get F (sn%n) → −∞ as n → ∞. Thus, from
(F2), we have

(10) sn%n → 0 as n→∞.

Now, by the property (F3) there exists k ∈ (0, 1) such that

(11) lim
n→∞

(sn%n)kF (sn%n) = 0.

By (9), the following holds for all n ∈ N:

(12) (sn%n)kF (sn%n)− (sn%n)kF (%0) ≤ (sn%n)k(−nτ) ≤ 0.

Passing to the limit as n→∞ in (12) and using (10) and (11), we obtain

lim
n→∞

n(sn%n)k = 0

and hence limn→∞ n
1/ksn%n = 0. Now, the last limit implies that the series

Σ∞n=1s
n%n is convergent and hence {xn} is a Cauchy sequence in O(x0; T ).

Since E is T -orbitally complete, there exists a z ∈ E such that

xn → z as n→∞.

We shall show that z ∈ T z, i.e., z is a fixed point of T .
First, suppose that F is continuous and T z is closed.
We observe that, if there exists an increasing sequence {nk} ⊂ N such

that xnk
∈ T z for all k ∈ N, since T z is closed and limk→∞ xnk

= z, we
deduce that z ∈ T z and hence the proof is completed. Therefore, we assume
that there exists n0 ∈ N such that xn /∈ T z for all n ∈ N with n > n0. It
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follows that δb(T xn, T z) > 0 for all n > n0. Using the condition (2) for
x = xn, y = z, we have

G(Db(xn, T xn),Db(z, T z),Db(xn, T z),Db(z, T xn))(13)

+ F (sδb(T xn, T z))
≤ F (Θ1(xn, z) + λΘ2(xn, z))).

Since xn+1 ∈ T xn we have

(14) Db(xn+1, T z) = inf{db(xn+1, v) : v ∈ T z} ≤ δb(T xn, T z),

(15) Db(z, T xn) = inf{db(z, u) : u ∈ T xn, } ≤ db(z, xn+1).

So, it follows from the inequality (14) and (F1) that F (sDb(xn+1, T z)) ≤
F (sδb(T xn, T z)) which with (13) yields

G(Db(xn, T xn),Db(z, T z),Db(xn, T z),Db(z, T xn))(16)

+ F (sDb(xn+1, T z))
≤ F (Θ1(xn, z) + λΘ2(xn, z))

where

Θ1(xn, z) = max

{
db(xn, z),Db(xn, T xn),Db(z, T z), Db(xn,T z)+Db(z,T xn)

2s
Db(z,T z)[1+Db(xn,T xn)]

s[1+db(xn,z)]
, Db(z,T xn)[1+Db(xn,T xn)]

s[1+db(xn,z)]

}

≤ max

{
db(xn, z), db(xn, xn+1),Db(z, T z), Db(xn,T z)+db(z,xn+1)

2s
Db(z,T z)[1+Db(xn,xn+1)]

s[1+db(xn,z)]
, Db(z,xn+1)[1+Db(xn,xn+1)]

s[1+db(xn,z)]

}
→ Db(z, T z), as n→∞,

and

Θ2(xn, z) = min
{
Db(xn, T xn),Db(z, T z),Db(xn, T z),Db(z, T xn)

}
≤ min

{
db(xn, xn+1),Db(z, T z),Db(xn, T z), db(z, xn+1)

}
→ 0, as n→∞.

Since limn→∞ db(z, xn) = 0, from inequality (15) and the property (G), there
exist τ > 0 such that

lim
n→∞

G(Db(xn, T xn),Db(z, T z),Db(xn, T z),Db(z, T xn)) = τ.

Therefore, it follows from the continuity of F and the inequality (16) that

F
(
s lim
n→∞

Db(xn+1, T z)
)
≤ F (Db(z, T z))− τ.
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Also, since F is strictly increasing and τ > 0, it follows from the above
inequality that

(17) s lim
n→∞

Db(xn+1, T z) < Db(z, T z).

On the other hand,

Db(z, T z) ≤ s[db(z, xn+1) +Db(xn+1, T z)].

Letting n→∞ and using (25) we have

Db(z, T z) ≤ s lim
n→∞

Db(xn+1, T z) < Db(z, T z).

This contradiction shows that Db(z, T z) = 0, and, since T z is closed, we
have z ∈ T z. Thus, z is a fixed point of T .

Now, suppose that G(T ) is T -orbitally closed.
Since (xn, xn+1) ∈ G(T ) for all n ∈ N and limn→∞ xn = z, we have

(z, z) ∈ G(T ) by the T -orbitally closedness. Hence, z ∈ T z. Thus, z is a
fixed point of T . �

Example 6. Let E = [0, 1] and define a function db : E × E → R+
0 by

db(x, x) = 0, db(x, y) = [max{x, y}]2 + (x− y)2 for x 6= y.

Then (E , db, s) is a b-metric space with s = 2. Define a mapping T : E →
Pb(E) by

T x =

{ {
x
8 ,

x
4

}
, if x ∈

(
1
4 ,

1
2

)
,

{1}, otherwise.

Then it is easy to see that E is T -orbitally complete at x0 ∈ E for arbitrary
x0 ∈ E . Let τ > 0, G(a, b, c, d) = τ for all a, b, c, d ∈ R+ and F (t) = ln(t)
for all t ∈ R+, then F is continuous and F ∈ Fs. One can see that T is a
multi-valued almost orbitally (GF, δb)-contraction at x0 ∈ E with τ = ln

(
5
4

)
and λ = 5(2)10. Thus, all the conditions of Theorem 2 are satisfied and we
can conclude the existence of fixed point of T . Indeed, 1 ∈ T 1. On the other
hand, Theorem 1 is not applicable here. Indeed, the contractive condition
(1) is not satisfied, e.g., if y = 1

2 and x ∈
(

1
4 ,

1
2

)
and F ∈ Fs, then we have

(see, [7]):

F (sHb(T x, T y)) = F
(

2Hb
({x

8
,
x

4
,
}
, {1}

))
= F

(
2 max

{
sup

{
1 +

(
1− x

8

)2
, 1 +

(
1− x

4

)2
}
,

inf

{
1 +

(
1− x

8

)2
, 1 +

(
1− x

4

)2
}})

= F

(
2 + 2

(
1− x

8

)2
)
.
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And F (db(x, y)) = F
(
db
(
x, 1

2

))
= F

(
1
4 +

(
1
2 − x

)2)
. Therefore, by the

property (F1) we have F (sHb(T x, T y)) > F (db(x, y)). Thus, the contractive
condition (1) is not satisfied.

Combining Theorem 2 and Example 2 with F (α) = lnα in (2), we get
the following corollary:

Corollary 1. Let (E , db, s) be a b-metric space with s > 1 and let T : E →
Pb(E) be a multivalued mapping satisfying, for some τ > 0, x0 ∈ E, λ ≥ 0,
the condition

sδb(T x, T y) ≤ e−Lmin{Db(x,T x),Db(y,T y),Db(x,T y),Db(y,T x)}−τ

× {Θ1(x, y) + λΘ2(x, y)}

for all x, y ∈ O(x0; T ) with min{δb(T x, T y), db(x, y)} > 0, where Θ1,Θ2 are
given by (3). Suppose that (E , db, s) is T -orbitally complete at x0. If T x is
closed for all x ∈ O(x0; T ); or T has T -orbitally closed graph, then T has
a fixed point in E.

Combining Theorem 2 and Example 3 with F (α) = α + lnα in (2), we
get following corollary:

Corollary 2. Let (E , db, s) be a b-metric space with s > 1 and let T : E →
Pb(E) be a multivalued mapping satisfying, for some τ > 0, x0 ∈ E, L, λ ≥ 0,
the condition

sδb(T x, T y)

Θ1(x, y) + λΘ2(x, y)
esδb(J x,T y)−(Θ1(x,y)+λΘ2(x,y))

≤ e−τLmin{Db(x,T x),Db(y,T y),Db(x,T y),Db(y,T x)}

for all x, y ∈ O(x0; T ) with min{δb(T x, T y), db(x, y)} > 0, where Θ1,Θ2 are
given by (3). Suppose that (E , db, s) is T -orbitally complete at x0. If T x is
closed for all x ∈ O(x0; T ); or T has T -orbitally closed graph, then T has
a fixed point in E.

The following corollary is a special case of Theorem 2 when T is a
single-valued mapping.

Corollary 3. Let (E , db, s) be a b-metric space with s > 1 and let T :
E → E be a self-mapping such that E is T -orbitally complete at some x0 ∈ E.
Suppose that F ∈ Fs, G ∈ ∆G, there exist λ ≥ 0 such that

G(db(x, y), db(x, T x), db(y, T y), db(x, T y), db(y, T x))(18)

+ F (sdb(T x, T y))

≤ F (Θ′1(x, y) + λΘ′2(x, y)),
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for all x, y ∈ O(x0; T ) with min{db(T x, T y), db(x, y)} > 0, where

Θ′1(x, y) = max

{
db(x, y), db(x, T x), db(y, T y), db(x,T y)+db(y,T x)

2s
db(y,T y)[1+db(x,T x)]

s[1+db(x,y)] , db(y,T x)[1+db(x,T x)]
s[1+db(x,y)]

}

and
Θ′2(x, y) = min{db(x, T x), db(y, T y), db(x, T y), db(y, T x)}.

If T is continuous, then T has a fixed point in E.

4. Result-2

In this section, we prove a fixed point result on an ordered b-metric space
with some relaxed contractive conditions on the self-mappings of the space.
For this purpose, we apply some additional conditions on the space.

Let (E , db, s) be a b-metric space with s > 1 and � be a partial order
on E . We say that a multi-valued mapping T : E → Pb(E) is a multi-valued
ordered almost (GF, δb)-contraction if F ∈ Fs, G ∈ ∆G and there exists
λ ≥ 0 such that

G(Db(x, T x),Db(y, T y),Db(x, T y),Db(y, T x))(19)

+ F (sδb(T x, T y))

≤ F (Θ1(x, y) + λΘ2(x, y)),

for all x, y ∈ E with min{δb(T x, T y), db(x, y)} > 0 and x � y, where

Θ1(x, y) = max

{
db(x, y),Db(x, T x),Db(y, T y), Db(x,T y)+Db(y,T x)

2s ,
Db(y,T y)[1+Db(x,T x)]

s[1+db(x,y)] , Db(y,T x)[1+Db(x,T x)]
s[1+db(x,y)]

}
(20)

and

Θ2(x, y) = min{Db(x, T x),Db(y, T y),Db(x, T y),Db(y, T x)}.

If (19) is satisfied just for x, y ∈ O(x0; T ) (for some x0 ∈ E) with x � y, we
say that T is a multi-valued ordered almost orbitally (GF, δb)-contraction
at x0.

The following example shows that the condition (19) on multi-valued or-
dered almost (GF, δb)-contraction, is actually a relaxed contractive condition
than the condition (2) on multi-valued almost (GF, δb)-contraction .

Example 7. Let E = {0, 1, 2, 3} and define a function db : E × E → R+
0

by
db(x, y) = (x− y)2 for all x, y ∈ E .
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Then (E , db, s) is a b-metric space with s = 2. Define a mapping T : E →
Pb(E) by

T 0 = {1, 3}, T 1 = {3}, T 2 = {1, 2}, T 3 = {1}.

Define a partial order � on E by

� := {(0, 0), (1, 1), (2, 2), (3, 3), (0, 3), (2, 3)}.

Then O(0; T ) = {0, 1, 3} and it is easy to see that T is a multi-valued
ordered almost (GF, δb)-contraction at 0 ∈ E with G(a, b, c, d) = τ for all
a, b, c, d ∈ R+, 0 < τ < max

{
ln
(

9
8

)
, ln
(

1+λ
8

)}
, where λ > 7; and F (t) =

ln(t) for all t ∈ R+. Indeed, we have to check the validity of (19) only at
points x = y = 0, x = y = 1, x = y = 3 and x = 0, y = 3. Then:

(i) sδb(T 0, T 0) = 8 and Θ1(0, 0) = 1, Θ2(x, y) = 1. Therefore,

τ + ln(δb(T 0, T 0)) ≤ ln(Θ1(0, 0) + λΘ2(0, 0)).

(ii) sδb(T 1, T 1) = 0. Therefore,

τ + ln(δb(T 1, T 1)) ≤ ln(Θ1(1, 1) + λΘ2(1, 1)).

(iii) sδb(T 3, T 3) = 0. Therefore,

τ + ln(δb(T 3, T 3)) ≤ ln(Θ1(3, 3) + λΘ2(3, 3)).

(iv) sδb(T 0, T 3) = 8 and Θ1(0, 3) = 9, Θ2(0, 3) = 0. Therefore,

τ + ln(δb(T 0, T 0)) ≤ ln(Θ1(0, 0) + λΘ2(0, 0)).

On the other hand, there exists no x0 ∈ E such that T is a multi-valued
almost (GF, δb)-contraction at x0 ∈ E .

Definition 4. The mapping T is called db-nondecreasing if

x � y, u ∈ T x, v ∈ T y, db(u, v) < db(x, y) =⇒ u � v.

In addition, we consider the following hypothesis on X:
(UC) For every nondecreasing sequence {xn} (with respect to �) with
xn → x ∈ E we have xn � x for all n ∈ N.

(LC) For every nonincreasing sequence {xn} (with respect to �) with
xn → x ∈ E we have x � xn for all n ∈ N.

Theorem 3. Let (E , db, s) be a b-metric space with s > 1, � a partial
order on E and let T : E → Pb(E) be a multi-valued ordered almost orbitally
(GF, δb)-contraction at x0 ∈ E. Suppose that (E , db, s) is T -orbitally com-
plete at x0 and the following conditions are satisfied:



136 H.K. Nashine, R.P. Agarwal, S. Shukla and A. Gupta

(a) T is db-nondecreasing;
(b) there exists x1 ∈ E such that x1 ∈ T x0 and x0 � x1.

If F is continuous, T x is closed for all x ∈ O(x0; T ) and the property (UC)
holds on E; or T has T -orbitally closed graph, then T has a fixed point in E.

Proof. Let x1 ∈ E be such that x1 ∈ T x0 and x0 � x1. If x0 = x1, then
x0 is itself a fixed point of T . Assume that x0 6= x1, i.e., db(x0, x1) > 0.
Choose x2 ∈ T x1. Again, we can assume that x1 6= x2, otherwise, x1 is a
fixed point of T , and so, δb(T x0, T x1) > 0. Then using (19) for x = x0, y =
x1 we have

G(Db(x0, T x0),Db(x1, T x1),Db(x0, T x1),Db(x1, T x0))(21)

+ F (sδb(T x0, T x1))

≤ F (Θ1(x0, x1) + λΘ2(x0, x1)).

Since x1 ∈ T x0, by definition we have

Db(x1, T x0) = Db({x1}, T x0) = inf {db(x1, z) : z ∈ T x0} = 0.

Since x1 ∈ T x0, x2 ∈ Tx1, by definition we have

db(x1, x2) ≤ sup {db(u, v) : u ∈ T x0, v ∈ T x1} = δb(T x0, T x1).

Therefore, it follows from the inequality (21) and (F1) that

G(Db(x0, T x0),Db(x1, T x1),Db(x0, T x1), 0) + F (sdb(x1, x2))(22)

≤ G(Db(x0, T x0),Db(x1, T x1),Db(x0, T x1), 0)

+ F (sδb(T x0, T x1))

≤ F (Θ1(x0, x1) + λΘ2(x0, x1))

where

Θ1(x0, x1) = max


db(x0, x1),Db(x0, T x0),Db(x1, T x1),

1
2s [Db(x0, T x1) +Db(x1, T x0)]

Db(x1,T x1)[1+Db(x0,T x0)]
s[1+db(x0,x1)] , Db(x1,T x0)[1+Db(x0,T x0)]

s[1+db(x0,x1)]


≤ max

{
db(x0, x1), db(x0, x1), db(x1, x2),

1

2s
db(x0, x2),

1

s
db(x1, x2), 0

}
= max

{
db(x0, x1), db(x1, x2),

1

2s
db(x0, x2)

}
and

Θ2(x0, x1) = min {Db(x0, T x0),Db(x1, T x1),Db(x0, T x1),Db(x1, T x0)}
= 0.
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Now,

1

2s
db(x0, x2) ≤ 1

2
[db(x0, x1) + db(x1, x2)]

≤ max{db(x0, x1), db(x1, x2)}.

Therefore, following similar arguments to those given in the proof of Theo-
rem 2 we obtain

τ + F (sdb(x1, x2)) ≤ F (db(x0, x1)).

Since s ≥ 1 by (F1) we obtain

τ + F (db(x1, x2)) ≤ τ + F (sdb(x1, x2)) ≤ F (db(x0, x1)).

As τ > 0, again by (F1) we obtain db(x1, x2) < db(x0, x1), which with
condition (a) implies that x1 � x2. Repeating this process one can obtain
that: for all n ∈ N

(23) τ + F (sdb(xn, xn+1)) ≤ F (db(xn−1, xn))

and xn−1 � xn ∈ T xn−1, for all n ∈ N.
Now, repeating similar arguments to those given in the proof of Theo-

rem 2 we obtain: there exists a z ∈ E such that

xn → z as n→∞.

We shall show that z ∈ T z, i.e., z is a fixed point of T .
First, suppose that F is continuous, T z is closed and the property (UC)

holds.
Then, we have xn � z for all n ∈ N. Without loss of generality, we can

assume that there exists n0 ∈ N such that xn /∈ T z for all n ∈ N with
n > n0. It follows that δb(T xn, T z) > 0 for all n > n0. Since xn � z for all
n ∈ N, following the proof of Theorem 2 we obtain

G(Db(xn, T xn),Db(z, T z),Db(xn, T z),Db(z, T xn))(24)

+ F (sDb(xn+1, T z))
≤ F (Θ1(xn, z) + λΘ2(xn, z))

where Θ1(xn, z)→ Db(z, T z) and Θ2(xn, z)→ 0, as n→∞.
Since limn→∞ db(z, xn+1) = 0, we have limn→∞Db(z, T xn) = 0, and so,

by the property (G), there exist τ > 0 such that

lim
n→∞

G(Db(xn, T xn),Db(z, T z),Db(xn, T z),Db(z, T xn)) = τ.
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Therefore, it follows from the continuity of F and the inequality (24) that

F
(
s lim
n→∞

Db(xn+1, T z)
)
≤ F (Db(z, T z))− τ.

which with (F1) implies that

(25) s lim
n→∞

Db(xn+1, T z) < Db(z, T z).

On the other hand,

Db(z, T z) ≤ s[db(z, xn+1) +Db(xn+1, T z)].

Letting n→∞ and using (25) we have

Db(z, T z) ≤ s lim
n→∞

Db(xn+1, T z) < Db(z, T z).

This contradiction shows that Db(z, T z) = 0, and, since T z is closed, we
have z ∈ T z. Thus, z is a fixed point of T .

Now, suppose that G(T ) is T -orbitally closed.
Since (xn, xn+1) ∈ G(T ) for all n ∈ N and limn→∞ xn = z, we have

(z, z) ∈ G(T ) by the T -orbitally closedness. Hence, z ∈ T z. Thus, z is a
fixed point of T . �

Let ∆G′ denotes the set of all functions G′ :
(
R+

0

)4 → R+
0 satisfying:

(G′) there exists τ > 0 such that limn→∞G(a, b, εn, c) = τ for all a, b, c ∈
R+

0 and for every sequence {εn} ⊂ R+
0 with limn→∞ εn = 0.

If we replace the class ∆G by ∆G′ in Theorem 2, then due to the symmetry
of the functions db,Dd, δb, the conclusion of this theorem remains true.
While, if we replace the class ∆G by ∆G′ in the ordered version of Theorem 2,
we obtain the following theorem (the proof of this theorem is similar to that
of the proof of Theorem 3, therefore we omit it):

Theorem 4. Let (E , db, s) be a b-metric space with s > 1, � be a partial
order on E and let T : E → Pb(E) be a multi-valued ordered almost orbitally
(GF, δb)-contraction at x0 ∈ E. Suppose that (E , db, s) is T -orbitally com-
plete at x0 and the following conditions are satisfied:

(a) T is db-nondecreasing;
(b) there exists x1 ∈ E such that x1 ∈ T x0 and x1 � x0.

If F is continuous, T x is closed for all x ∈ O(x0; T ) and the property (LC)
holds on X or T has T -orbitally closed graph, then T has a fixed point in E.
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5. Solution of nonlinear integral equation

In this section, we prove an existence theorem for a solution of the fol-
lowing nonlinear integral equation :

(26) x(t) = g(t) +

∫ b

a
M(t, r, x(r))dr,

where a, b ∈ R such that a < b, x ∈ C[a, b] (the set of all continuous functions
from [a, b] into R), g : [a, b] → R and M : [a, b] × [a, b] × R → R are given
mappings.

Now, for p ≥ 1, consider the b-metric db on C[a, b] defined by

(27) db(x, y) = ( max
t∈[a,b]

|x(t)− y(t)|)p = max
t∈[a,b]

|x(t)− y(t)|p

for all x, y ∈ C[a, b]. Then (C[a, b], db, 2
p−1) is a complete b-metric space.

Let E = C[a, b] and let T : E → E be defined by

(T x)(t) = g(t) +

∫ b

a
M(t, r, x(r))dr,

for all x ∈ E and t ∈ [a, b].

Theorem 5. Suppose that the following conditions hold:
(i) M : [a, b]× [a, b]×R→ R is continuous and nondecreasing in the third
order,

(ii) there exists a continuous function % : [a, b]× [a, b]→ [0,∞) such that

|M(t, r, u(r))−M(t, r, v(r))|p ≤ %(t, r)

for all t, r ∈ [a, b] and for all u, v ∈ E where p > 1,
(iii) there exists G ∈ ∆G such that

sup
t∈[a,b]

(∫ b

a
%(t, r)dr

)
(28)

<
1

2p−1
e−G(db(u(r),T u(r)),db(v(r),T v(r)),db(u(r),T v(r)),db(v(r),T u(r)))

×


max


db(u(r), v(r)), db(u(r), T u(r)), db(v(r), T v(r)),

db(u(r),T v(r))+db(v(r),T u(r))
2p

Db(v(r),T v(r))[1+Db(u(r),T u(r))]
2p−1[1+db(u(r),v(r))]

,
Db(v(r),T u(r))[1+Db(u(r),T u(r))]

2p−1[1+db(u(r),v(r))]


+ λmin

{
db(u(r), T u(r)), db(v(r), T v(r)),
db(u(r), T v(r))), db(v(r), T u(r)))

}


for all u, v ∈ E where λ ≥ 0.
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Then the nonlinear integral equation (26) has a solution.

Proof. For all u, v ∈ E , it follows from (ii)-(iii) that

db(T u, T v) ≤ max
t∈[a,b]

∫ b

a
|M(t, r, u(r))−M(t, r, v(r))|p dr(29)

≤ e−G(db(u(r),T u(r)),db(v(r),T v(r)),db(u(r),T v(r)),db(v(r),T u(r)))

2p−1

×


max


db(u(r), v(r)), db(u(r), T u(r)), db(v(r), T v(r)),

db(u(r),T v(r))+db(v(r),T u(r))
2p

Db(v(r),T v(r))[1+Db(u(r),T u(r))]
2p−1[1+db(u(r),v(r))]

,
Db(v(r),T u(r))[1+Db(u(r),T u(r))]

2p−1[1+db(u(r),v(r))]


+ λmin

{
db(u(r), T u(r)), db(v(r), T v(r)),
db(u(r), T v(r))), db(v(r), T u(r)))

}


.

Taking logarithms to (29), we have

ln(2p−1db(T u, T v))

≤ ln



e−G(db(u(r),T u(r)),db(v(r),T v(r)),db(u(r),T v(r)),db(v(r),T u(r)))×
max


db(u(r), v(r)), db(u(r), T u(r)), db(v(r), T v(r)),

db(u(r),T v(r))+db(v(r),T u(r))
2p

Db(v(r),T v(r))[1+Db(u(r),T u(r))]
2p−1[1+db(u(r),v(r))]

,
Db(v(r),T u(r))[1+Db(u(r),T u(r))]

2p−1[1+db(u(r),v(r))]


+ λmin

{
db(u(r), T u(r)), db(v(r), T v(r)),
db(u(r), T v(r))), db(v(r), T u(r)))

}




.

Consider the function F : R+ → R defined by F (α) = lnα, belonging to Fs
and on routine calculations for u, v ∈ E , we obtain

G(db(u(r), T u(r)), db(v(r), T v(r)), db(u(r), T v(r)), db(v(r), T u(r)))

+ F (2p−1db(T u, T v))

≤ F


max


db(u(r), v(r)), db(u(r), T u(r)), db(v(r), T v(r)),

db(u(r),T v(r))+db(v(r),T u(r))
2p

Db(v(r),T v(r))[1+Db(u(r),T u(r))]
2p−1[1+db(u(r),v(r))]

,
Db(v(r),T u(r))[1+Db(u(r),T u(r))]

2p−1[1+db(u(r),v(r))]


+ λmin

{
db(u(r), T u(r)), db(v(r), T v(r)),
db(u(r), T v(r))), db(v(r), T u(r)))

}


,

for all r ∈ [a, b].
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Since the above inequality is true for any r ∈ [a, b], we deduce easily that
for all u, v ∈ E

G(db(u, T u), db(v, T v), db(u, T v), db(v, T u)) + F (2p−1db(T u, T v))

≤ F

max

{
db(u, v), db(u, T u), db(v, T v), db(u,T v)+db(v,T u)

2p
Db(v,T v)[1+Db(u,T u)]

2p−1[1+db(u,v)]
, Db(v,T u)[1+Db(u,T u)]

2p−1[1+db(u,v)]

}
+λmin

{
db(u, T u), db(v, T v), db(u, T v)), db(v, T u))

}
 .

Thus all the conditions of Corollary 3 are satisfied s = 2p−1 and hence f
has a fixed point in E (namely, x∗). It follows that x∗ is a solution of the
nonlinear integral equation (26). �
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