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1. Introduction and preliminaries

In 1922, Banach proved a remarkable and powerful result on the existence
of fixed points in complete metric spaces, called the Banach contraction prin-
ciple. Because of its fruitful applications, a lot of authors ([3], [5], [6], [12],
[15], [16]) established generalizations and extensions of it in many directions.

In 1977, Jaggi [13] introduced a new type of contractions involving ra-
tional expressions and proved the existence of fixed points of such map-
pings. The latest development in this direction are Hieu and Dung [9],
Haung, Ansari, Diana Dolicanin-Dekic, and Radenovic [10], and Huang,
Deng, Chen, Radenovic [11].

In 1997, Alber and Guerre-Delabriere [2] introduced the notion of weakly
contractive maps in Hilbert spaces and proved that any weakly contrac-
tive map defined on Hilbert spaces has a unique fixed point. Rhoades [20]
reintroduced the notion of weakly contractive maps in the setting of metric
spaces and proved that any weakly contractive map defined on complete
metric spaces has a unique fixed point. In 2008, Dutta and Choudhury [8]
introduced (ψ,ϕ)-weakly contractive maps and proved the existence of fixed
points in complete metric spaces. Interestingly, Doric [7] extended it to a
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pair of generalized (ψ,ϕ)-weakly contractive maps. Recently, Singh, Kamal,
Sen and Chugh [22] further generalized Doric [7] result in complete spaces.

On the other direction, Wardowski [23] introduced a new contraction
called F -contraction and proved a fixed point result as a generalization of
the Banach contraction principle. Many authors ([24], [19], [1]) studied fixed
point results for F -contraction type maps. Recently Piri and Kumam [18]
proved some Wardowski and Suzuki type fixed point results in metric spaces.

Throughout this paper, N denotes the set of all natural numbers.
Now, we begin with some basic well-known definitions and results which

will be used in the rest of this paper.
Samet, Vetro and Vetro [21] introduced the concept of α-admissible map-

pings in the following.

Definition 1 ([21]). Let T : X → X be a mapping and let α : X ×
X → [0,∞) be a function. We say that T is an α-admissible mapping if
x, y ∈ X,α(x, y) > 1 =⇒ α(Tx, Ty) > 1.

Definition 2 ([14]). Let T : X → X and α : X ×X → [0,∞). We say
that T is a triangular α-admissible mapping if

(i) T is α-admissible mapping and
(ii) α(x, y) > 1 and α(y, z) > 1 =⇒ α(x, z) > 1, x, y, z ∈ X.

Lemma 1 ([14], Lemma 7). Let T be a triangular α-admissible mapping.
Assume that there exists x0 ∈ X such that α(x0, Tx0) > 1. We define a
sequence {xn} by xn+1 = Txn. Then α(xm, xn) > 1 for all m,n ∈ N with
m < n.

Definition 3 ([12]). Let (X, d) be a metric space and α : X×X → [0,∞)
be a mapping. A metric space X is said to be α-complete if every Cauchy
sequence {xn} in X with α(xn, xn+1) > 1 for all n ∈ N converges in X.

If X is a complete metric space, then X is also an α-complete metric
space, but its converse is not true ([17], Example 1.8).

Theorem 1 ([8], Theorem 2.1). Let (X, d) be a complete metric space
and T : X → X be a selfmap of X. Suppose that

(1) ψ(d(Tx, Ty)) 6 ψ(d(x, y))− ϕ(d(x, y)) for all x, y ∈ X,

where ψ, : [0,∞) → [0,∞) is continuous, non-decreasing and ψ(t) = 0 if
and only if t = 0, and ϕ : [0,∞)→ [0,∞) is continuous, non-decreasing and
ϕ(t) = 0 if and only if t = 0. Then T has a unique fixed point.

Doric [7] proved the following result as an extension of Theorem 1.
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Theorem 2 ([7], Theorem 2.2). Let (X, d) be a complete metric space
and let T : X → X be a selfmap satisfying the inequality

(2) ψ(d(Tx, Ty)) 6 ψ(M(x, y))− ϕ(M(x, y)),

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)2 }, ψ : [0,∞)
→ [0,∞) is continuous, non-decreasing and ψ(t) = 0 if and only if t = 0,
and ϕ : [0,∞)→ [0,∞) is lower semi-continuous function with ϕ(t) = 0 if
and only if t = 0. Then T has a unique fixed point.

Recently, Singh, Kamal, Sen and Chugh [22] obtained the following result
as a generalization of Theorem 2.

Theorem 3 ([22], Theorem 2.1). Let X be a complete metric space and
T : X → X be a selfmap of X such that for every x, y ∈ X,

1

2
d(x, Tx) 6 d(x, y) implies(3)

ψ(d(Tx, Ty)) 6 ψ(M(x, y))− ϕ(M(x, y))

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)2 }, ψ : [0,∞)
→ [0,∞) is continuous, non-decreasing and ψ(t) = 0 if and only if t = 0,
and ϕ : [0,∞)→ [0,∞) is lower semi-continuous function with ϕ(t) = 0 if
and only if t = 0. Then T has a unique fixed point.

On the other hand, Piri and Kumam [18] proved the following fixed point
results in metric spaces.

Theorem 4 ([18], Theorem 2.2). Let X be a complete metric space and
T : X → X be a selfmap of X. Assume that there exists τ > 0 such that for
all x, y ∈ X with Tx 6= Ty,

1

2
d(x, Tx) 6 d(x, y) =⇒ τ + F (d(Tx, Ty)) 6 F (d(x, y))

where F : (0,∞) → (−∞,∞) is continuous strictly increasing and inf F =
−∞.

Then T has a unique fixed point z ∈ X and for every x ∈ X, the sequence
{Tnx} converges to z.

We denote
Ψ = {ψ : [0,∞)→ [0,∞)| ψ is continuous and non-decreasing function},
Φ = {φ : [0,∞)→ [0,∞)| limn→∞ φ(tn) = 0 =⇒ limn→∞ tn = 0} and
Ψ1 = {ψ1 : [0,∞)6 → [0,∞)| (i) ψ1 is continuous and non-decreasing

in each coordinate, (ii) ψ1(t1, t2, t3, t4, t5, t6) = 0 implies
t1 = t2 = t3 = t4 = t5 = t6 = 0 and (iii) ψ1(t, t, t, t, t, t) 6 t for
all t > 0}.
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Remark 1. If φ ∈ Φ then φ(t) = 0 =⇒ t = 0.

Motivated by the works of Piri and Kumam [18] and Singh, Kamal, Sen
and Chugh [22], we now introduce a generalized (α,ψ, φ)-rational contractive
mappings in metric spaces in the following.

Definition 4. Let (X, d) be a metric space and α : X×X → [0,∞) be a
given map. Let T : X → X be a selfmap of X. If there exist ψ ∈ Ψ, φ ∈ Φ
and ψ1 ∈ Ψ1 such that

for all x, y ∈ X with
1

2
d(x, Tx) 6 d(x, y) and α(x, y) > 1 implies(4)

ψ(d(Tx, Ty)) 6 ψ(Mψ1(x, y))− φ(Mψ1(x, y)),

where

Mψ1(x, y) = ψ1(d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2
,(5)

d(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)
,
d(y, Tx)[1 + d(x, Ty)]

1 + d(x, y)
),

then we say that T is a generalized (α,ψ, φ)-rational contractive mapping.

Example 1. Let X = [0, 10) with the usual metric. We define T : X
→ X by

Tx =

{
3x
8 if x ∈ [0, 1]

x if x ∈ (1, 10)

and α : X ×X → [0,∞) by

α(x, y) =

{
2 if|; x ∈ [0, 1]

0 otherwise.

Since α(x, y) > 1 if and only if x, y ∈ [0, 1], we verify the inequality (4) for
x, y ∈ [0, 1] with 1

2d(x, Tx) 6 d(x, y). For this purpose, we choose

ψ, φ : [0,∞)→ [0,∞) by ψ(t) =
8

3
t and φ(t) =

{
2 if t = 0
5t
3 if t 6= 0

and ψ1 : [0,∞)6 → [0,∞) by ψ1(t1, t2, t3, t4, t5, t6) = max{t1, t2, t3, t4, t5.t6}.
Let x, y ∈ [0, 1]. We assume without loss of generality that x 6 y. Let
1
2d(x, Tx) 6 d(x, y) i.e., 13

8 x 6 y. Now,

ψ(d(Tx, Ty)) = ψ(d(
3x

8
,
3y

8
)) = ψ(|3y

8
− 3x

8
|) =

8

3
|3y

8
− 3x

8
| = |y − x|

6 Mψ1(x, y) =
8

3
Mψ1 −

5

3
Mψ1(x, y),

= ψ(Mψ1(x, y))− φ(Mψ1(x, y)).

Hence T is a generalized (α,ψ, φ)-rational contractive mapping.
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In Section 2, we prove our main results in which we study the exis-
tence of fixed points of generalized (α,ψ, φ)-rational contractive mappings
in α-complete metric spaces. We provide corollaries and examples in support
of our results in Section 3.

The following lemma is useful in our subsequent discussion.

Lemma 2 ([4], Lemma 1.4). Suppose (X, d) is a metric space. Let {xn}
be a sequence in X such that d(xn, xn+1) → 0 as n → ∞. If {xn} is not a
Cauchy sequence then there exists an ε > 0 and sequences of positive integers
{mk} and {nk} with nk > mk > k such that d(mk, nk) > ε. For each k > 0,
corresponding to mk, we can choose nk to be the smallest positive integer
such that d(xmk

, xnk
) > ε, d(xmk

, xnk−1) < ε and
(i) limk→∞ d(xnk

, xmk+1) = ε,
(ii) limk→∞ d(xnk

, xmk
) = ε,

(iii) limk→∞ d(xmk−1, xnk
) = ε and

(iv) limk→∞ d(xnk
, xmk+1) = ε.

2. Main results

Theorem 5. Let (X, d) be a metric space and T : X → X be a generalized
(α,ψ, φ)-rational contractive mapping. Suppose that the following conditions
hold:

(i) (X, d) is α-complete metric space,
(ii) T is a triangular α-admissible mapping,
(iii) there exists x0 ∈ X such that α(x0, Tx0) > 1, and
(iv) T is continuous.

Then T has a fixed point in X.

Proof. By hypotheses (iii), we have x0 ∈ X is such that α(x0, Tx0) > 1.
With this x0 ∈ X as an initial point, we define an iterative sequence {xn}
by xn+1 = Txn for n = 0, 1, 2, . . . . If xn0+1 = xn0 for some n0 ∈ N ∪ {0},
we have Txn0 = xn0+1 = xn0 , so that xn0 is a fixed point of T and we are
through.

Hence, without loss of generality, we assume that xn+1 6= xn for all n ∈
N ∪ {0}. Since T is α-admissible mapping and α(x0, x1) = α(x0, Tx0) > 1,
we deduce that α(x1, x2) = α(Tx0, Tx1) > 1. On continuing this process,
we get that

(6) α(xn, xn+1) > 1 for all n ∈ N ∪ {0}.

First we show that limn→∞ d(xn, xn+1) = 0. Since α(xn, xn+1) > 1 for
all n ∈ N ∪ {0}, and 1

2d(xn, Txn) 6 d(xn, Txn) = d(xn, xn+1), and hence by
(4), we have

(7) ψ(d(Txn, Txn+1)) 6 ψ(Mψ1(xn, xn+1))− φ(Mψ1(xn, xn+1)),
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where

Mψ1(xn, xn+1) = ψ1(d(xn,xn+1), d(xn, Txn), d(xn+1, Txn+1),

d(xn, Txn+1) + d(xn+1, Txn)

2
,

d(xn+1, Txn+1)[1 + d(xn, Txn)]

1 + d(x,xn+1)
,

d(xn+1, Txn)[1 + d(xn, Txn+1)]

1 + d(xn, xn+1)
),

= ψ1(d(xn,xn+1), d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2)

2
, d(xn+1, xn+2), 0).

Now, if d(xn, xn+1) < d(xn+1, xn+2) for some n ∈ N∪{0}, from property (i)
of ψ1 we have Mψ1(xn, xn+1) 6 d(xn+1, xn+2), and hence from (7) we have

ψ(d(xn+1, xn+2)) = ψ(d(Txn, Txn+1))

6 ψ(Mψ1(xn, xn+1))− φ(Mψ1(xn, xn+1)),

= ψ(d(xn+1, xn+2)) − φ(Mψ1(xn, xn+1)),

which implies that φ(Mψ1(xn, xn+1)) = 0, which further implies thatMψ1(xn,

xn+1) = 0 i.e., ψ1(d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),
d(xn,xn+2)

2 , d(xn+1,
xn+2), 0) = 0. Hence from property (ii) of ψ1 we have d(xn, xn+1) = 0, a
contradiction since xn 6= xn+1. Therefore d(xn, xn+1) > d(xn+1, xn+2) for all
n ∈ N ∪ {0}. Hence the sequence {d(xn, xn+1)} is decreasing and bounded
from below. Thus there exists r > 0 such that limn→∞ d(xn, xn+1) = r.
Now, from (7) we have

ψ(d(xn+1, xn+2)) = ψ(d(Txn, Txn+1))(8)

6 ψ(d(xn, xn+1))− φ(Mψ1(xn, xn+1)).

Since d(xn, xn+1) and d(xn+1, xn+2) are bounded, and d(xn, xn+2) 6 d(xn,
xn+1)+d(xn+1, xn+2) for all n ∈ N∪{0}, we have {d(xn, xn+2)} is a bounded
sequence. Hence there exists a subsequence {d(xnk

, xnk+2)} converges to s
(say), and s > 0. Corresponding to this subsequence and using (8) we have

ψ(d(xnk+1, xnk+2)) = ψ(d(Txnk
, Txnk+1))(9)

6 ψ(d(xnk
, xnk+1))− φ(Mψ1(xnk

, xnk+1))

6 ψ(d(xnk
, xnk+1)).

On letting k → ∞ in (9) and using the continuity of ψ, we have the first
and last terms of (9) converge to the same limit ψ(r), and hence it follows
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that limk→∞(ψ(d(xnk
, xnk+1))− φ(Mψ1(xnk

, xnk+1))) exists and is equal to
ψ(r).

Now φ(Mψ1(xnk
, xnk+1)) = (φ(Mψ1(xnk

, xnk+1)) − ψ(d(xnk
, xnk+1))) +

ψ(d(xnk
, xnk+1)), and on letting k →∞, we get

lim
k→∞

φ(Mψ1(xnk
, xnk+1)) = lim

k→∞
(φ(Mψ1(xnk

, xnk+1))− ψ(d(xnk
, xnk+1)))

+ lim
k→∞

ψ(d(xnk
, xnk+1))

= −ψ(r) + ψ(r) = 0,

and it implies that limk→∞Mψ1(xnk
, xnk+1) = 0. Now by using the con-

tinuity property of ψ1 it follows that ψ1(r, r, r, r, r,
s
2 , 0) = 0. Hence from

property (ii) of ψ1, we have r = 0 and s = 0.
Therefore

(10) lim
n→∞

d(xn, xn+1) = 0.

We now prove that {xn} is a Cauchy sequence. Suppose that {xn} is not
a Cauchy sequence. Then by Lemma 2, there exist ε > 0 and sequences of
positive integers {nk} and {mk} with nk > mk > k satisfying

(11) d(xmk
, xnk

) > ε.

Let us choose the smallest nk satisfying (11). Then we have nk > mk > k
with d(xmk

, xnk
) > ε, d(xmk

, xnk−1) < ε and (i)-(iv) of Lemma 2 hold.
From Lemma 1, we have α(xmk

, xnk
) > 1 and from (10), we can choose

n1 ∈ N ∪ {0} such that 1
2d(xmk

, Txmk
) 6 1

2ε < d(xmk
, xnk

). Hence from (4)
for every k > n1 we have

ψ(d(xmk+1, xnk+1)) = ψ(d(Txmk
, Txnk

))(12)

6 ψ(Mψ1(xmk
, xnk

))− φ(Mψ1(xmk
, xnk

)),

where

Mψ1(xmk
, xnk

) = ψ1(d(xmk
, xnk

), d(xmk
, Txmk

), d(xnk
, Txnk

),(13)

d(Txmk
, xnk

) + d(xmk
, Txnk

)

2
,

d(xnk
, Txnk

)[1 + d(xmk
, Txmk

)]

1 + d(xnk
, xmk

)
,

d(Txmk
, xnk

)[1 + d(xmk
, Txnk

)]

1 + d(xmk
, xnk

)
),

= ψ1(d(xmk
, xnk

), d(xmk
, xmk+1), d(xnk

, xnk+1),

d(xmk+1, xnk
) + d(xmk

, xnk+1)

2
,
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d(xnk
, xnk+1)[1 + d(xmk

, xmk+1)]

1 + d(xnk
, xmk

)
,

d(xmk+1, xnk
)[1 + d(xmk

, xnk+1)]

1 + d(xmk
, xnk

)
).

On taking limits as k →∞ in (13) and using (i)-(iv) of Lemma 2, we have

(14) lim
k→∞

Mψ1(xmk
, xnk

) = ψ1(ε, 0, 0, ε, 0, ε) 6 ε.

Now, using the continuity and non-decreasing property of ψ, from (12) and
(14) we have

ψ(ε) = lim
k→∞

ψ(d(xmk+1, xnk+1)) 6 lim
k→∞

ψ(d(Mψ1(mk, xnk
))

− lim
k→∞

φ(Mψ1(xmk
, xnk

)),

6 ψ(ε)− lim
k→∞

φ(Mψ1(xmk
, xnk

)),

and hence limk→∞ φ(Mψ1(xmk
, xnk

)) = 0, which implies that

lim
k→∞

Mψ1(xmk
, xnk

) = ψ1(ε, 0, 0, ε, 0, ε) = 0.

Hence from property (ii) of ψ1, we have ε = 0, a contradiction. So we
conclude that {xn} is a Cauchy sequence in X.

Since α(xn, xn+1) > 1 for all n and (X, d) is α-complete, it follows that
there exists z ∈ X such that limn→∞ xn = z.

Since T is continuous, we have limn→∞ Txn = Tz, so that

Tz = T lim
n→∞

xn = lim
n→∞

Txn = lim
n→∞

xn+1 = z.

�

Theorem 6. Let (X, d) be a metric space and T : X → X be a generalized
(α,ψ, φ)-rational contractive mapping. Suppose that the following conditions
hold:

(i) (X, d) is α-complete metric space,
(ii) T is a triangular α-admissible mapping,
(iii) there exists x0 ∈ X such that α(x0, Tx0) > 1 and
(iv) if {xn} is a sequence in X such that xn → z and α(xn, xn+1) > 1

for all n ∈ N ∪ {0}, then α(xn, z) > 1 for all n ∈ N ∪ {0}.
Then T has a fixed point in X.

Proof. From the similar arguments as in the proof of Theorem 5, we
obtain that the sequence {xn} is Cauchy and α(xn, xn+1) > 1 for all n ∈
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N∪{0}. Since (X, d) is an α-complete metric space, there exists z ∈ X such
that limn→∞ xn = z. From (iv) we have α(xn, z) > 1 for all n ∈ N ∪ {0}.

Now, we show that z is a fixed point of T . We claim that

1

2
d(xn, Txn) 6 d(xn, z) or(15)

1

2
d(xn+1, Txn+1) 6 d(Txn, z), ∀n ∈ N ∪ {0}.

Suppose not, i.e., there exists m ∈ N ∪ {0} such that 1
2d(xm, Txm) >

d(xm, z) and 1
2d(xm+1, Txm+1) > d(Txm, z). We now consider

d(xm, Txm) 6 d(xm, z) + d(z, Txm)

<
1

2
d(xm, Txm) +

1

2
d(xm+1, Txm+1)

6
1

2
d(xm, Txm) +

1

2
d(xm, Txm) = d(xm, Txm),

a contradiction. Hence (15) holds. Suppose 1
2d(xn, Txn) 6 d(xn, z), then by

(4), we have

(16) ψ(d(Txn, T z)) 6 ψ(Mψ1(xn, z))− φ(Mψ1(xn, z)),

where

Mψ1(xn, z) = ψ1(d(xn, z), d(xn, Txn), d(z, Tz),(17)

d(xn, T z) + d(z, Txn)

2
,

d(z, Tz)[1 + d(xn, Txn)]

1 + d(xn, z)
,
d(z, Txn)[1 + d(xn, T z)]

1 + d(xn, z)
).

On taking limits as n→∞ and using the continuity of ψ1 in (17), we have

lim
n→∞

Mψ1(xn, z) = ψ1(0, 0, d(z, Tz),
d(z, Tz)

2
, d(z, Tz), 0) 6 d(z, Tz),

and also on letting n→∞ and using the continuity of ψ in (16), we obtain

ψ(d(z, Tz)) 6 lim
n→∞

ψ(Mψ1(xn, z))− lim
n→∞

φ(Mψ1(xn, z))

6 ψ(d(z, Tz)− lim
n→∞

φ(Mψ1(xn, z)),

which implies that limn→∞ φ(Mψ1(xn, z)) = 0. Now by using the property of

φ, we have limn→∞Mψ1(xn, z) = ψ1

(
0, 0, d(z, Tz), d(z,Tz)2 , d(z, Tz), 0

)
= 0,

which implies that d(z, Tz) = 0. Hence Tz = z �
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Theorem 7. In addition to the hypotheses of Theorem 5 (Theorem 6) if
α(u, z) > 1 for all u, z ∈ F (T ), where F (T ) is the set of all fixed points of
T . Then T has a unique fixed point.

Proof. Let u and z be a fixed points of T . By hypothesis we have
α(u, z) > 1 and 0 = 1

2d(u, Tu) 6 d(u, z). Hence, from (4) we have

(18) ψ(d(u, z)) = ψ(Tu, Tz) 6 ψ(Mψ1(u, z))− φ(Mψ1(u, z))

where

Mψ1(u, z) = ψ1(d(u, z), d(u, Tu), d(z, Tz),
d(u, Tz) + d(z, Tu)

2
,

d(z, Tz)[1 + d(u, Tu)]

1 + d(u, z)
,
d(z, Tu)[1 + d(u, Tz)]

1 + d(u, z)
),

= ψ1(d(u, z), 0, 0, d(u, z), 0, d(u, z)) 6 d(u, z).

Now, by using the inequality (18), we have

ψ(d(u, z)) 6 ψ(Mψ1(u, z))− φ(Mψ1(u, z)) 6 ψ(d(u, z))− φ(Mψ1(u, z)),

which implies that φ(Mψ1(u, z)) = 0 and henceMψ1(u, z) = 0. i.e., ψ1(d(u, z),
0, 0, d(u, z), 0, d(u, z)) = 0. Now, from property (ii) of ψ1 we have d(u, z) =
0. Hence u = z.

Therefore T has a unique fixed point. �

The following theorems can be proved easily by the similar arguments
that are given in the proofs of Theorem 5 (Theorem 6) and Theorem 7.

Theorem 8. Let (X, d) be a metric space. Let T : X → X be a selfmap-
ping on X and α : X ×X → [0,∞) be a given mapping. Assume that there
exist ψ ∈ Ψ and φ ∈ Φ such that

for all x, y ∈ X, 1

2
d(x, Tx) 6 d(x, y) and α(x, y) > 1 implies(19)

ψ(d(Tx, Ty)) 6 ψ(ψ2(d(x, y), d(x, fx), d(y, fy),
d(x, Ty) + d(y, Tx)

2
))

− φ(ψ2(d(x, y), d(x, fx), d(y, fy),
d(x, Ty) + d(y, Tx)

2
)),

where ψ2 : [0,∞)4 → [0,∞) is continuous and non-decreasing in each coor-
dinate, ψ2(t1, t2, t3, t4) = 0 =⇒ t1 = t2 = t3 = t4 = 0 and ψ2(t, t, t, t) 6 t,
for all t > 0.

Further, suppose that the following conditions hold:
(i) (X, d) is α-complete metric space,
(ii) T is a triangular α-admissible mapping,
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(iii) there exists x0 ∈ X such that α(x0, Tx0) > 1.
Assume that one of the following conditions holds:
(a) T is continuous,
(b) if {xn} is a sequence in X such that xn → z and α(xn, xn+1) > 1

for all n ∈ N ∪ {0}, then α(xn, z) > 1 for all n ∈ N ∪ {0}.
Then T has a fixed point in X.

Theorem 9. In addition to the hypotheses of Theorem 8, if α(u, z) > 1
for all u, z ∈ F (T ), where F (T ) is the set of all fixed points of T . Then T
has a unique fixed point.

3. Corollaries and examples

Corollary 1. Let (X, d) be a complete metric space and T : X → X be
a selfmapping of X. If there exist ψ ∈ Ψ, φ ∈ Φ and ψ1 ∈ Ψ1 such that

for all x, y ∈ X with
1

2
d(x, Tx) 6 d(x, y) implies(20)

ψ(d(Tx, Ty)) 6 ψ(Mψ1(x, y))− φ(Mψ1(x, y)),

where Mψ1 is defined as in (5), then T has a unique fixed point in X.

Proof. By choosing α(x, y) = 1 for all x, y ∈ X, clearly the inequality
(20) implies the inequality (4) and hence by Theorem 7, the conclusion of
the corollary follows. �

Corollary 2. Let (X, d) be a complete metric space and T : X → X be
a selfmapping of X. If there exist ψ ∈ Ψ, τ > 0 and ψ1 ∈ Ψ1 such that

for all x, y ∈ X with
1

2
d(x, Tx) 6 d(x, y) implies(21)

τ + ψ(d(Tx, Ty)) 6 ψ(Mψ1(x, y)),

where Mψ1 is defined as in (5), then T has a unique fixed point in X.

Proof. The result follows by choosing α(x, y) = 1 for all x, y ∈ X and
φ(t) = τ > 0, clearly the inequality (21) implies the inequality (4) and hence
by Theorem 7, the conclusion of the corollary follows. �

Remark 2. If we choose ψ1 : [0,∞)6 → [0,∞), ψ1(t1, t2, t3, t4, t5, t6) =
max{t1, t2, t3, t4, t5, t6}, by nondecreasing property of ψ, we have τ+ψ(d(Tx,
Ty)) 6 ψ(d(x, y)) 6 ψ(Mψ1(x, y)). Hence Theorem 4 follows as a corollary
to Corollary 2.
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Corollary 3. Let (X, d) be a metric space. Let T : X → X be a self
mapping of X and α : X × X → [0,∞) be a given mapping. Assume that
there exist ψ ∈ Ψ, φ ∈ Φ and ψ1 ∈ Ψ1 such that

for all x, y ∈ X with
1

2
d(x, Tx) 6 d(x, y) implies(22)

α(x, y)ψ(d(Tx, Ty)) 6 ψ(Mψ1(x, y))− φ(Mψ1(x, y)),

where Mψ1 is defined as in (5). Further, suppose that the following condi-
tions hold:

(i) (X, d) is α-complete metric space,
(ii) T is a triangular α-admissible mapping,
(iii) there exists x0 ∈ X such that α(x0, Tx0) > 1.
Assume that one of the following conditions hold:
(a) T is continuous,
(b) if {xn} is a sequence in X such that xn → z and α(xn, xn+1) > 1

for all n ∈ N ∪ {0}, then α(xn, z) > 1 for all n ∈ N ∪ {0}.
Then T has a fixed point in X.

Proof. Let x, y ∈ X with α(x, y) > 1. Then, from (22) we have

(23) ψ(d(Tx, Ty)) 6 α(x, y)ψ(d(Tx, Ty)) 6 ψ(Mψ1(x, y))− φ(Mψ1(x, y)),

which is the inequality (4). Hence the inequality (22) implies (4). Hence by
applying Theorem 5 (Theorem 6) T has a fixed point. �

Corollary 4. Let (X, d) be a complete metric space and T : X → X be a
selfmapping of X. If there exist ψ ∈ Ψ and φ ∈ Φ such that for all x, y ∈ X

(24)
1

2
d(x, Tx) 6 d(x, y) =⇒ ψ(d(Tx, Ty)) 6 ψ(M(x, y))− φ(M(x, y)),

where M(x, y = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)2 }, then T has
a unique fixed point in X.

Proof. By choosing α(x, y) = 1 for all x, y ∈ X and defining ψ2 :
[0,∞)4 → [0,∞) by ψ2(t1, t2, t3, t4) = max{t1, t2, t3, t4}, we have ψ2(d(x, y),

d(x, fx), d(y, fy), d(x,Ty)+d(y,Tx)2 ) = max{d(x, y), d(x, fx), d(y, fy), d(x,Ty)2 +
d(y,Tx)

2 } so that the inequality (24) implies the inequality (19) and T satisfies
all the hypotheses of Theorem 9 and hence by Theorem 9, the conclusion of
the corollary follows. �

Remark 3. Since {ϕ : [0,∞) → [0,∞)| ϕ is lower semi-continuous
function with ϕ(t) = 0 if and only if t = 0} ⊂ Φ, we have Theorem 3 follows
as a corollary to Corollary 4.
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The following is an example in support of Theorem 5.

Example 2. Let X = [0,∞) with the usual metric d. We define T :
X → X by

Tx =

{
x
8 if x ∈ [0, 2]

2x− 31
8 if x ∈ [2,∞)

and α : X ×X → [0,∞) by

α(x, y) =

{
2 if x ∈ [0, 1]

0 otherwise.

Since for any x, y ∈ X with α(x, y) > 1 ⇐⇒ x, y ∈ [0, 1] where x
8 =

Tx, Ty = y
8 ∈ [0, 1], and hence α(Tx, Ty) > 1. Let α(x, y) > 1 and

α(y, z) > 1 for x, y, z ∈ X this implies that x, y, z ∈ [0, 1], so that α(x, z) > 1.
Therefore T is a triangular α-admissible mapping. Clearly for any x0 ∈ [0, 1],
α(x0, Tx0) > 1.

We now show that T is a generalized (α,ψ, φ)-rational contractive map-
ping. For this purpose, we choose

ψ, φ : [0,∞)→ [0,∞) by ψ(t) = 2t and φ(t) =

{
1 if t = 0
t
2 if t 6= 0,

and ψ1 : [0,∞)6 → [0,∞) by ψ1(t1, t2, t3, t4, t5, t6) = max{t1, t2, t3, t4, t5.t6}.
Since α(x, y) > 1 if and only if x, y ∈ [0, 1], we verify the inequality (4) for

x, y ∈ [0, 1] with 1
2d(x, Tx) 6 d(x, y). Let x, y ∈ [0, 1]. We assume without

loss of generality that x 6 y. Let 1
2d(x, Tx) 6 d(x, y) i.e., 23

16x 6 y. Now,

ψ(d(Tx, Ty)) = ψ(d(
y

8
,
x

8
)) = ψ(|y

8
− x

8
|) = 2|y

8
− x

8
| 6 5

2
|y − x|

=
5

2
d(x, y) 6

5

2
Mψ1(x, y) = 2Mψ1 −

1

2
Mψ1(x, y),

= ψ(Mψ1(x, y))− φ(Mψ1(x, y)),

so that the inequality (4) holds. Hence T satisfies all the hypotheses of
Theorem 5, and x = 0 and x = 31

8 are two fixed points of T .

The following example is in support of Theorem 7.

Example 3. Let X = [0,∞) with the usual metric. We define T : X →
X by

Tx =

{
x
4 if x ∈ [0, 1]

x+ 4 if x ∈ (1,∞)
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and α : X ×X → [0,∞) by

α(x, y) =

{
1 if x ∈ [0, 1]

0 otherwise.

It is easy to see that T is triangular α-admissible and for any x0 ∈ [0, 1],
α(x0, Tx0) > 1.

Let {xn} be a sequence in X with α(xn, xn+1) > 1 for all n ∈ N ∪ {0}
and xn → x as n → ∞, by the definition of α, we have {xn} ⊂ [0, 1].
Thereforex ∈ [0, 1]. Hence α(xn, x) > 1 for all n ∈ N ∪ {0}.

We now show that T is a generalized (α,ψ, φ)-rational contractive map-
ping. For this purpose, we choose

ψ, φ : [0,∞)→ [0,∞) by ψ(t) =
4

3
t and φ(t) =

{
2 if t = 0
t
3 if t 6= 0

and ψ1 : [0,∞)6 → [0,∞) by ψ1(t1, t2, t3, t4, t5, t6) = max{t1, t2, t3, t4, t5.t6}.
Since α(x, y) > 1 if and only if x, y ∈ [0, 1], we verify the inequality (4) for

x, y ∈ [0, 1] with 1
2d(x, Tx) 6 d(x, y). Let x, y ∈ [0, 1]. We assume without

loss of generality that x 6 y. Let 1
2d(x, Tx) 6 d(x, y) i.e., 11

8 x 6 y. Now,

ψ(d(Tx, Ty)) = ψ(d(
y

4
,
x

4
)) = ψ(|y

4
− x

4
|) =

4

3
|y
4
− x

4
|

=
1

3
|y − x| 6 |y − x| = d(x, y)

6 Mψ1(x, y) =
4

3
Mψ1(x, y)− 1

3
Mψ1(x, y),

= ψ(Mψ1(x, y))− φ(Mψ1(x, y)).

Hence T satisfies all the hypotheses of Theorem 7 and x = 0 is the unique
fixed point of T .

Here we observe that for x = 0 and y = 2, we have 1
2d(0, T0) = 0 6 2 =

|2−0| = d(0, 2) andM(0, 2) = max{d(0, 2), d(0, T0), d(2, T2), d(0,T2)+d(2,T0)2 }
= 4, hence ψ(d(T0, T2)) = ψ(d(0, 6)) = ψ(6) � ψ(4) � ψ(4)− φ(4), for any
continuous and nondecreasing ψ, and lower semi-continuous φ with φ(t) = 0
if and only if t = 0. Hence Theorem 3 is not applicable.

Hence Example 3 and Remark 3 suggest that Corollary 4 is a generaliza-
tion of Theorem 3 which in turn Theorem 9 is a generalization of Theorem 3.

Similarly F (d(T0, T2)) = F (6) � F (2) � F (2) − τ for any continuous
and strictly increasing map F and τ > 0. Hence Theorem 4 is also not
applicable.

Hence Example 3 and Remark 2 suggest that Corollary 2 is a generaliza-
tion of Theorem 4 which in turn Theorem 7 is a generalization of Theorem 4.



Fixed points of generalized (α,ψ, φ)-rational . . . 27

Acknowledgements. The authors sincerely thank the referees for their
valuable suggestions and comments which improved the presentation of the
paper.

References

[1] Ahmad J., Al-Rawashdeh A., Azam A., New fixed point theorems for gen-
eralized F -contractions in complete metric spaces, Fixed Point Theory Appl.,
80(2015).

[2] Alber Ya.I., Guerre-Delabriere S., Principle of weakly contractive maps
in Hilbert spaces, New Results in Operator Theory and Its Applications, Oper.
Theory Adv. Appl. 98, Birkhauser, Basel, (1997), 7-22.

[3] Ansari A.H., Note on ϕ-ψ-contractive type mappings and related fixed
point, Proceedings of the 2nd Regional Conference on Math. and Appl., (2014),
377-380.

[4] Babu G.V.R., Sailaja P.D., A fixed point theorem of generalized weakly
contractive maps in orbitally complete metric spaces, Thai J. of Math., 9(1)
2011, 1-10.

[5] Chandok S., Tas K., Ansari A.H., Some Fixed Point Results for TAC-
type contractive mappings, J. Funct. Spaces, Volume 2016, Article ID 1907676,
6 pages.

[6] Czerwik S., Contraction mappings in b-metric spaces, Acta Math. Inform.
Univ. Ostraviensis, 1(1993), 5-11.

[7] Doric D., Common fixed point for generalized (ψ,ϕ)-weak contractions,
Appl. Math. Lett., 22(2009), 1896-1900.

[8] Dutta P.N., Choudhury B.S., A generalization of contraction principle in
metric spaces, Fixed Point Theory Appl., (2008), Article ID 406368, 8 pages.

[9] Hieu N.T., Dung N.V., Some fixed point results for generalized rational
type contraction mappings in partially ordered b−metric spaces, Facta Univ.
Ser. Math. Inform., 30(1)(2015), 49-66.

[10] Huang H., Ansari A.H., Dolicanin-Dekic D., Radenovic S., Some
fixed point results for rational type and subrational type contractive mappings,
Acta Univ. Sapientiae Math., 9(1)(2017), 185-201.

[11] Huang H., Deng G., Chen Z., Radenovic S., On some recent fixed
point results for α−admissible mappings in b−metric spaces, J. Comput. Anal.
Appl., 25(2)(2018), 255-268.

[12] Hussain N., Kutbi M.A., Salimi P., Fixed point theory in α-complete
metric spaces with applications, Abstr. Appl. Anal., (2014), Article ID 280817.

[13] Jaggi D.S., Some unique fixed point theorems, Indian J. of Pure and Appl.
Math., 8(1977), 223-230.

[14] Karapinar E., Kumam P., Salimi P., On α − ψ Meir-Keeler contractive
mappings, Fixed Point Theory Appl., 94(2013), 12 pages.

[15] Khan M.S., Swaleh M.S., Sessa S., Fixed point theorems by altering
distances between the points, Bull. Aust. Math. Soc., 30(1984), 1-9.

[16] Kirk W.A., Srinivasan P.S., Veeramani P., Fixed points for mappings
satisfying cyclical contractive conditions, Fixed Point Theory, 4(2003), 79-89.



28 G.V. Ravindranadh Babu and M. Dula Tolera

[17] Pansuwon A., Sintunavarat W., Parvaneh V., Cho Y.J., Some fixed
point theorems for (α, θ, k)-contractive multi-valued mappings with some ap-
plications, Fixed Point Theory Appl., 132(2015).

[18] Piri H., Kumam P., Some fixed point theorems concerning F -contraction
in complete metric spaces, Fixed Point Theory Appl., 2014, Article ID 210
(2014).

[19] Piri H., Rahrovi S., Generalized multivalued F -weak contraction on com-
plete metric spaces, Sahand Commun. Math. Anal. (SCMA), 2(2)(2015), 1-11.

[20] Rhoades B.E., Some theorems on weakly contractive maps, Nonlinear Anal.,
47(2001), 2683-2693.

[21] Samet B. Vetro C., Vetro P., Fixed point theorems for α−ψ-contractive
type mappings, Nonlinear Anal., 75(2012), 2154-2165.

[22] Singh S.L., Kamal R., De la Sen M., Chugh R., A fixed point theorem
for generalized weak contractions, Filomat, 29(7)(2015), 1481-1490.

[23] Wardowski D., Fixed point theory of a new type of contractive mappings in
complete metric spaces, Fixed Point Theory Appl., 2012, Article ID 94 (2012).

[24] Wardowski D., Van Dung N., Fixed points of F -weakly contractions on
complete metric spaces, Demonstr. Math., Vol. XLVII, (1)(2014).

G. V. Ravindranadh Babu
Department of Mathematics

Andhra University
Visakhapatnam-530 003, India

e-mail: gvr babu@hotmail.com

M. Dula Tolera
Department of Mathematics

Andhra University
Visakhapatnam-530 003, India,

or
Department of Mathematics

Wollega University
Nekemte-395, Ethiopia

e-mail: dulamosissa@gmail.com

Received on 24.10.2016 and, in revised form, on 16.11.2017.


