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Abstract. In this article first, we give an integral identity and
prove some Hermite-Hadamard type inequalities for the function
f such that |f ′′|q is convex or concave for q ≥ 1. Second, by
using these results, we present applications to f -divergence mea-
sures. At the end, we obtain some bounds for special means of
real numbers and new error estimates for the trapezoidal formula.
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1. Introduction

The following class of functions is well known in the literature and is
usually defined in the following way: a function f : I → R, defined on the
interval I in R, is said to be convex on I if the inequality

(1) f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

holds for all x, y ∈ I and λ ∈ [0, 1]. Also, we say that f is concave, if the
inequality in (1) is reversed. Geometrically, the convexity of the function f
implies that if there are any three distinct points R, S and T located on the
graph of the convex function f with S lies between R and T, then we have
the point S lies on or below the chord joining the points R and T.

Many important inequalities have been obtained for the class of convex
functions, when the idea of convexity was introduced more than a hundred
years ago. But among those one of the most prominent is the so called
Hermite-Hadamard’s inequality (or Hadamard’s inequality). This double
inequality is stated as follows (see for example [16]):

Let I be an interval in R and f : I ⊆ R → R be a convex function
defined on I such that a, b ∈ I with a < b. Then the inequalities

(2) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
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hold. If the function f is concave on I, then both the inequalities in (2)
hold in the reverse direction. It gives an estimate from both sides of the
mean, i.e. from above and below of the mean value of a convex function.
It is also a matter of great interest and one has to note that some of the
classical inequalities for means can be obtained from Hadamard’s inequality
under the utility of peculiar convex functions f. These inequalities for convex
functions play a crucial role in analysis as well as in other areas of pure and
applied mathematics.

For recent results, generalizations and refinements related to Hermite-
Hadamard inequality see [1, 2, 3, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 25,
26, 19, 20, 21, 22, 27, 28, 30] and the references given therein. In 1998,
Dragomir and Agarwal proved the following lemma and established some
significant results for the class of differentiable convex mappings which are
closely annexed with Hadamard’s inequality. This important result is stated
as follows:

Lemma 1 ([14]). Let f : I◦ ⊂ R→ R be a differentiable mapping on I◦,
a, b ∈ I◦ with a < b. If f ′ ∈ L[a, b], then the following identity holds:

(3)
f(a) + f(b)

2
− 1

b− a

∫ b

a
f(x)dx =

b− a
2

∫ 1

0
(1− 2t)f ′(ta+ (1− t)b)dt.

Here I◦ denotes the interior of I.

The following two results are the ultimate consequences of Lemma 1,
which have been presented in [14].

Theorem 1. Under the assumptions of Lemma 1 and the convexity of
function |f ′| on [a, b], we have the following inequality:

(4)

∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣ ≤ (b− a)(|f ′(a)|+ |f ′(b)|)
8

.

Theorem 2. Suppose that all the assumptions of Lemma 1 are satisfied.

Furthermore, if the mapping |f ′|
p

p−1 (p > 1) is convex on [a, b], then the
following inequality holds:∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣(5)

≤ b− a

2(p+ 1)
1
p

[
|f ′(a)|

p
p−1 + |f ′(b)|

p
p−1

2

] p−1
p

.

In 2000, Pearce and Pečarić [27] employed Lemma 1, and proved the
following theorem.
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Theorem 3. Suppose that all the assumptions of Lemma 1 hold. Fur-
thermore, if the mapping |f ′|q (q ≥ 1) is concave on [a, b], then the following
inequality is valid:

(6)

∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣ ≤ b− a
4

∣∣∣∣f ′(a+ b

2

)∣∣∣∣ .
The main purpose of this paper is to give integral identity and to present

some Hermite-Hadamard type inequalities for convex as well as concave func-
tions (Theorems 4-8). Then we discuss the importance of our results (Corol-
laries 1-5). Also, in the next section we present applications to f -divergence
measures. At the last section, applications to some special means of real
numbers and estimates for the error term of trapezoidal formula are given.

2. Main results

We begin this section with the proof of our first main result in the fol-
lowing theorem.

Theorem 4. Let f : I ⊂ R→ R be a twice differentiable function on I◦

such that f ′′ ∈ L[a, b] where a, b ∈ I◦ with a < b. If |f ′′| is convex function
on [a, b], then we have the following inequality:∣∣∣∣∣f ′(x)

(
(x− a)2 − (b− x)2

)
+ 2f(b)(b− x) + 2f(a)(x− a)

2(b− a)
(7)

− 1

b− a

∫ b

a
f(u)du

∣∣∣∣
≤ (x− a)3

b− a

[
3|f ′′(a)|+ 5|f ′′(x)|

24

]
+

(b− x)3

b− a

[
3|f ′′(b)|+ 5|f ′′(x)|

24

]
for all x ∈ [a, b].

Proof. Integrating by parts, we have

(x− a)3

2(b− a)

∫ 1

0

(
1− t2

)
f ′′(ta+ (1− t)x)dt

+
(b− x)3

2(b− a)

∫ 1

0

(
1− t2

)
f ′′(tb+ (1− t)x)dt

=
(x− a)3

2(b− a)

∣∣∣∣∣
(
1− t2

)
f ′(ta+ (1− t)x)

a− x

∣∣∣∣∣
1

0

−
∫ 1

0

(−2t)f ′(ta+ (1− t)x)

a− x
dt


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+
(b− x)3

2(b− a)

∣∣∣∣∣
(
1− t2

)
f ′(tb+ (1− t)x)

b− x

∣∣∣∣∣
1

0

−
∫ 1

0

(−2t) f ′(tb+ (1− t)x)

b− x
dt


=

(x− a)3

2(b− a)

[
−f ′(x)

a− x
+ 2

∫ 1

0

tf ′(ta+ (1− t)x)

a− x
dt

]
+

(b− x)3

2(b− a)

[
−f ′(x)

b− x
+ 2

∫ 1

0

tf ′(tb+ (1− t)x)

b− x
dt

]
=

(x− a)3

2(b− a)

[
−f ′(x)

a− x
+ 2

[∣∣∣∣ tf(ta+ (1− t)x)

(a− x)2

∣∣∣∣1
0

−
∫ 1

0

f(ta+ (1− t)x)

(a− x)2
dt

]]

+
(b− x)3

2(b− a)

[
−f ′(x)

b− x
+ 2

[∣∣∣∣ tf(tb+ (1− t)x)

(b− x)2

∣∣∣∣1
0

−
∫ 1

0

f(tb+ (1− t)x)

(b− x)2
dt

]]
.

By applying the limits of integration and changing the variables we get

f ′(x)
(
(x− a)2 − (b− x)2

)
+ 2f(b)(b− x) + 2f(a)(x− a)

2(b− a)
(8)

− 1

b− a

∫ b

a
f(u)du

=
(x− a)3

2(b− a)

∫ 1

0

(
1− t2

)
f ′′(ta+ (1− t)x)dt

+
(b− x)3

2(b− a)

∫ 1

0

(
1− t2

)
f ′′(tb+ (1− t)x)dt

Now from (8) and the well-known triangular inequality of real numbers, we
have∣∣∣∣∣f ′(x)

(
(x− a)2 − (b− x)2

)
+ 2f(b)(b− x) + 2f(a)(x− a)

2(b− a)
− 1

b− a

∫ b

a

f(u)du

∣∣∣∣∣
≤ (x− a)3

2(b− a)

∫ 1

0

(
1− t2

)
| f ′′(ta+ (1− t)x) | dt

+
(b− x)3

2(b− a)

∫ 1

0

(
1− t2

)
| f ′′(tb+ (1− t)x) | dt

≤ (x− a)3

2(b− a)

∫ 1

0

(
1− t2

)
[t | f ′′(a) | +(1− t) | f ′′(x) |] dt (by convexity of |f ′′|)

+
(b− x)3

2(b− a)

∫ 1

0

(
1− t2

)
[t | f ′′(b) | +(1− t) | f ′′(x) |] dt

=
(x− a)3

b− a

[
3|f ′′(a)|+ 5|f ′′(x)|

24

]
+

(b− x)3

b− a

[
3|f ′′(b)|+ 5|f ′′(x)|

24

]
.

This completes the desired proof. �



Hermite-Hadamard type inequalities . . . 61

Corollary 1. Under the assumptions of Theorem 4, we have the follow-
ing inequality: ∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(u)du

∣∣∣∣(9)

≤ (b− a)2

8

[
3|f ′′(a)|+ 10|f ′′

(
a+b
2

)
|+ 3|f ′′(b)|

24

]

≤ (b− a)2

24

[
|f ′′(a)|+ |f ′′(b)|

]
.

Proof. By choosing x = a+b
2 in inequality (7), we get the first inequality

in (9) and then using the convexity of |f ′′|, we obtain the second inequality. �

Theorem 5. Let f : I ⊂ R → R be a twice differentiable function on
I◦ and a, b ∈ I◦ with a < b. If f ′′ ∈ L[a, b] and |f ′′|q is convex function on
[a, b], for some fixed q > 1 such that p−1 + q−1 = 1, then we have∣∣∣∣∣f ′(x)

(
(x− a)2 − (b− x)2

)
+ 2f(b)(b− x) + 2f(a)(x− a)

2(b− a)
(10)

− 1

b− a

∫ b

a
f(u)du

∣∣∣∣ ≤
(

Γ(12)Γ(p+ 1)

Γ(p+ 3
2)

) 1
p

× (x− a)3 [|f ′′(a)|q + |f ′′(x)|q]
1
q + (b− x)3 [|f ′′(b)|q + |f ′′(x)|q]

1
q

4(b− a)

for each x ∈ [a, b].

Proof. Considering (8) and using the famous Hölder inequality, it follows
that∣∣∣∣∣f ′(x)

(
(x− a)2 − (b− x)2

)
+ 2f(b)(b− x) + 2f(a)(x− a)

2(b− a)
− 1

b− a

∫ b

a

f(u)du

∣∣∣∣∣
≤ (x− a)3

2(b− a)

(∫ 1

0

(
1− t2

)p
dt

) 1
p
(∫ 1

0

| f ′′(ta+ (1− t)x) |q dt
) 1

q

+
(b− x)3

2(b− a)

(∫ 1

0

(
1− t2

)p
dt

) 1
p
(∫ 1

0

| f ′′(tb+ (1− t)x) |q dt
) 1

q

.

Using the convexity of |f ′′|q, we get∫ 1

0
| f ′′(ta+ (1− t)x) |q dt ≤

∫ 1

0

(
t | f ′′(a) |q +(1− t) | f ′′(x) |q

)
dt

=
|f ′′(a)|q + |f ′′(x)|q

2
,
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similarly∫ 1

0
| f ′′(tb+ (1− t)x) |q dt ≤

∫ 1

0

(
t | f ′′(b) |q +(1− t) | f ′′(x) |q

)
dt

=
|f ′′(b)|q + |f ′′(x)|q

2

and using the beta function, we have

(∫ 1

0

(
1− t2

)p
dt

) 1
p

=

(
1

2

∫ 1

0
(1− x)px−

1
2dx

) 1
p

=

(
1

2

Γ(12)Γ(p+ 1)

Γ(p+ 3
2)

) 1
p

.

The combination of all the above inequalities and facts lead us to the re-
quired conclusion. �

Corollary 2. Under the assumptions of Theorem 5, the following in-
equality holds:∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(u)du

∣∣∣∣(11)

≤ (b− a)2

32

(
Γ(12)Γ(p+ 1)

Γ(p+ 3
2)

) 1
p
[(
|f ′′(a)|q + |f ′′

(
a+ b

2

)
|q
) 1

q

+

(
|f ′′(b)|q + |f ′′

(
a+ b

2

)
|q
) 1

q

]

≤ (b− a)2

32

(
1 +

2

2
1
q

)(
Γ(12)Γ(p+ 1)

Γ(p+ 3
2)

) 1
p (
|f ′′(a)|+ |f ′′(b)|

)
.

Proof. By putting x = a+b
2 in the above inequality (10) in Theorem 5,

we get the first inequality in (11). The second inequality is obtained by using
the convexity of |f ′′|q and the fact that:

∑n
k=1(αk + βk)

s ≤
∑n

k=1(αk)
s +∑n

k=1(βk)
s for (0 ≤ s ≤ 1), α1, α2, α3, ..., αn ≥ 0; β1, β2, β3, ..., βn ≥ 0. �

Theorem 6. Let f : I ⊂ R → R be a twice differentiable function on
I◦ and a, b ∈ I◦ with a < b. If f ′′ ∈ L[a, b] and |f ′′|q is concave function on
[a, b], for some fixed q > 1 and p = q

q−1 , then the following inequality holds:∣∣∣∣∣f ′(x)
(
(x− a)2 − (b− x)2

)
+ 2f(b)(b− x) + 2f(a)(x− a)

2(b− a)
(12)

− 1

b− a

∫ b

a
f(u)du

∣∣∣∣
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≤

[
Γ(12)Γ(p+ 1)

2Γ(p+ 3
2)

] 1
p
[

(x− a)3
∣∣f ′′ (x+a2 )∣∣+ (b− x)3

∣∣f ′′ (x+b2 )∣∣
2(b− a)

]

for each x ∈ [a, b].

Proof. As in Theorem 5, taking (8) and then apply the famous Hölder
inequality for q > 1 and p = q

q−1 , we have∣∣∣∣∣f ′(x)
(
(x− a)2 − (b− x)2

)
+ 2f(b)(b− x) + 2f(a)(x− a)

2(b− a)

− 1

b− a

∫ b

a
f(u)du

∣∣∣∣
≤ (x− a)3

2(b− a)

(∫ 1

0

(
1− t2

)p
dt

) 1
p
(∫ 1

0
| f ′′(ta+ (1− t)x) |q dt

) 1
q

+
(b− x)3

2(b− a)

(∫ 1

0

(
1− t2

)p
dt

) 1
p
(∫ 1

0
| f ′′(tb+ (1− t)x) |q dt

) 1
q

.

Since, |f ′′|q is concave on [a, b], therefore by applying Jensen’s integral in-
equality for the concave function |f ′′|q we get:∫ 1

0
| f ′′(ta+ (1− t)x) |q dt ≤

∣∣∣∣f ′′(∫ 1

0
(ta+ (1− t)x)dt

)∣∣∣∣q
=

∣∣∣∣f ′′(x+ a

2

)∣∣∣∣q .
Similarly, ∫ 1

0
| f ′′(tb+ (1− t)x) |q dt ≤

∣∣∣∣f ′′(x+ b

2

)∣∣∣∣q
and also from above, we have

(∫ 1

0

(
1− t2

)p
dt

) 1
p

=

(
1

2

∫ 1

0
(1− x)px−

1
2dx

) 1
p

=

(
1

2
.
Γ(12)Γ(p+ 1)

Γ(p+ 3
2)

) 1
p

.

Combining all the above inequalities and facts, we get the desired inequality
in (12). �

Corollary 3. Under the assumptions of Theorem 6, we have the follow-
ing: ∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(u)du

∣∣∣∣(13)
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≤

[
Γ(12)Γ(p+ 1)

2Γ(p+ 3
2)

] 1
p (b− a)2

16

[ ∣∣∣∣f ′′(3a+ b

4

)∣∣∣∣+

∣∣∣∣f ′′(a+ 3b

4

)∣∣∣∣
]

≤

[
Γ(12)Γ(p+ 1)

2Γ(p+ 3
2)

] 1
p (b− a)2

8

∣∣∣f ′′(a+ b

2

) ∣∣∣.
Proof. By setting x = a+b

2 in the inequality (12), we get the first in-
equality in (13). The second inequality in (13) is obtained by using the
concavity of |f ′′|. �

Theorem 7. Let f : I ⊂ R → R be a twice differentiable function on
I◦ and a, b ∈ I◦ with a < b. If f ′′ ∈ L[a, b] and |f ′′|q is convex function on
[a, b], for some fixed q > 1, then the following inequality holds:∣∣∣∣∣f ′(x)

(
(x− a)2 − (b− x)2

)
+ 2f(b)(b− x) + 2f(a)(x− a)

2(b− a)
(14)

− 1

b− a

∫ b

a
f(u)du

∣∣∣∣
≤
(

1

8

) 1
q

(
(x− a)3[3|f ′′(a)|q + 5|f ′′(x)|q]

1
q

3(b− a)

+
(b− x)3[3|f ′′(b)|q + 5|f ′′(x)|q]

1
q

3(b− a)

)

for each x ∈ [a, b].

Proof. Likewise Theorem 5, again consider (8) and then apply the fa-
mous power-mean inequality for q > 1, we have∣∣∣∣∣f ′(x)

(
(x− a)2 − (b− x)2

)
+ 2f(b)(b− x) + 2f(a)(x− a)

2(b− a)
− 1

b− a

∫ b

a

f(u)du

∣∣∣∣∣
≤ (x− a)3

2(b− a)

∫ 1

0

(
1− t2

)
| f ′′(ta+ (1− t)x) | dt

+
(b− x)3

2(b− a)

∫ 1

0

(
1− t2

)
| f ′′(tb+ (1− t)x) | dt

≤ (x− a)3

2(b− a)

(∫ 1

0

(1− t2)dt

)1− 1
q
(∫ 1

0

(1− t2) | f ′′(ta+ (1− t)x) |q dt
) 1

q

+
(b− x)3

2(b− a)

(∫ 1

0

(1− t2)dt

)1− 1
q
(∫ 1

0

(1− t2) | f ′′(tb+ (1− t)x) |q dt
) 1

q

.
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Since, |f ′′|q is convex on [a, b], therefore we have∫ 1

0

(1− t2) | f ′′(ta+ (1− t)x) |q dt ≤
∫ 1

0

(1− t2)[t|f ′′(a)|q + (1− t)|f(x)|q]dt

=
3|f ′′(a)|q + 5|f ′′(x)|q

12
.

Similarly,∫ 1

0
(1− t2) | f ′′(tb+ (1− t)x) |q dt ≤ 3|f ′′(b)|q + 5|f ′′(x)|q

12

and also we have ∫ 1

0
(1− t2)dt =

2

3
.

Combining all the above inequalities and facts, we get the desired inequality
in (14). �

Corollary 4. Under the assumptions of Theorem 7, we have the follow-
ing inequality:∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(u)du

∣∣∣∣(15)

≤
(

1

8

) 1
q (b− a)2

24

[{
3|f ′′(a)|q + 5

∣∣∣∣f ′′(a+ b

2

)∣∣∣∣q} 1
q

+

{
3
∣∣f ′′(b)∣∣q + 5

∣∣∣∣f ′′(a+ b

2

)∣∣∣∣q} 1
q

]

≤ (b− a)2

24

((
3

8

) 1
q

+ 2

(
5

16

) 1
q

)[
|f ′′(a)|+ |f ′′(b)|

]
.

Proof. By putting x = a+b
2 , in inequality (14), we get the first inequality

in (15). The second inequality is obtained by using the convexity of |f ′′|q
and the following fact:

∑n
k=1(αk + βk)

s ≤
∑n

k=1(αk)
s +

∑n
k=1(βk)

s for
(0 ≤ s ≤ 1), α1, α2, α3, ..., αn ≥ 0; β1, β2, β3, ..., βn ≥ 0. �

Theorem 8. Let f : I ⊂ R → R be a twice differentiable function on
I◦ and a, b ∈ I◦ with a < b. If f ′′ ∈ L[a, b] and |f ′′|q is concave function on
[a, b], for some fixed q > 1, then the following inequality holds:∣∣∣∣∣f ′(x)

(
(x− a)2 − (b− x)2

)
+ 2f(b)(b− x) + 2f(a)(x− a)

2(b− a)
(16)

− 1

b− a

∫ b

a
f(u)du

∣∣∣∣
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≤
(x− a)3|f ′′

(
3a+5x

8

)
|+ (b− x)3|f ′′

(
3b+5x

8

)
|

3(b− a)

for each x ∈ [a, b].

Proof. By power mean inequality, we have(
t|f ′′(a)|+ (1− t)|f ′′(b)|

)q ≤ t|f ′′(a)|q + (1− t)|f ′′(b)|q

≤ |f ′′(ta+ (1− t)b)|q,
(by concavity of |f ′′|q)

and therefore

|f ′′(ta+ (1− t)b)| ≥ t|f ′′(a)|+ (1− t)|f ′′(b)|,

this shows that |f ′′| is also concave.
Now applying triangular inequality on (8) and then using Jensen’s inte-

gral inequality, we have∣∣∣∣∣f ′(x)
(
(x− a)2 − (b− x)2

)
+ 2f(b)(b− x) + 2f(a)(x− a)

2(b− a)
− 1

b− a

∫ b

a

f(u)du

∣∣∣∣∣
≤ (x− a)3

2(b− a)

∫ 1

0

(
1− t2

)
| f ′′(ta+ (1− t)x) | dt

+
(b− x)3

2(b− a)

∫ 1

0

(
1− t2

)
| f ′′(tb+ (1− t)x) | dt

≤ (x− a)3

2(b− a)

(∫ 1

0

(1− t2)dt

) ∣∣∣∣∣f ′′
(∫ 1

0
(1− t2)(ta+ (1− t)x)dt∫ 1

0
(1− t2)dt

)∣∣∣∣∣
+

(b− x)3

2(b− a)

(∫ 1

0

(1− t2)dt

) ∣∣∣∣∣f ′′
(∫ 1

0
(1− t2)(tb+ (1− t)x)dt∫ 1

0
(1− t2)dt

)∣∣∣∣∣
=

(x− a)3|f ′′
(
3a+5x

8

)
|+ (b− x)3|f ′′

(
3b+5x

8

)
|

3(b− a)
.

�

Corollary 5. Under the assumptions of Theorem 8, we have the follow-
ing inequality:∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(u)du

∣∣∣∣(17)

≤ (b− a)2

24

[ ∣∣∣∣f ′′(5a+ 11b

16

)∣∣∣∣+

∣∣∣∣f ′′(11a+ 5b

16

)∣∣∣∣
]

≤ (b− a)2

12

∣∣∣f ′′(a+ b

2

) ∣∣∣.
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Proof. By taking x = a+b
2 in the inequality (16), we get the first inequal-

ity in (17). The second inequality is obtained by the concavity of |f ′′|. �

3. Applications to f-divergence measures

One of the basic problems in various applications of Probability Theory
is finding an appropriate measure of distance between any two probability
distributions. For this purpose, a lot of divergence measures have been
proposed and extensively studied by Kullback and Leibler [23], Renyi [29],
Havrda and Charvat [17], Burbea and Rao [6], Lin [24], Csisźar[7], Ali and
Silvey [4], Shioya and Da-te [31] and others (see for example [18] and the
references therein). But here, we will consider only two of them, and in this
connection we define the following terms.

Let the set χ and the σ-finite measure µ be given and consider the set of
all probability densities on µ to be defined on Ω := {p| p : χ → R, p(x) >
0,
∫
χ p(x)dµ(x) = 1}.

Let f : (0,∞)→ R be given function and consider Df (p, q) be defined by

(18) Df (p, q) :=

∫
χ
p(x)f

[
q(x)

p(x)

]
dµ(x), p, q ∈ Ω.

If f is convex function, then (18) is known as the Csisźar f -divergence [7].
In [31], Shioya and Da-te introduced the Hermite-Hadamard (HH) di-

vergence

(19) D
f
HH(p, q) :=

∫
χ
p(x)

∫ q(x)
p(x)

1 f(t)dt
q(x)
p(x) − 1

dµ(x), p, q ∈ Ω,

where f is convex function on (0,∞) with f(1) = 0. In [31], the authors

gave the property of HH divergence that D
f
HH(p, q) ≥ 0 with the equality

holds if and only if p = q.

Proposition 1. Let all the assumptions of Theorem 4 hold with I =
(0,∞) and f(1) = 0. If p, q ∈ Ω, then the following inequality holds:∣∣∣∣12Df (p, q)− D

f
HH(p, q)

∣∣∣∣ ≤ 1

24

[∣∣f ′′(1)
∣∣ ∫

χ

(q(x)− p(x))2

p(x)
dµ(x)(20)

+

∫
χ

(q(x)− p(x))2

p(x)

∣∣∣∣f ′′(q(x)

p(x)

)∣∣∣∣ dµ(x)

]
.

Proof. Let X1 = {x ∈ χ : q(x) > p(x)}, X2 = {x ∈ χ : q(x) < p(x)} and
X3 = {x ∈ χ : q(x) = p(x)}.
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If x ∈ X3, then obviously equality holds in (20). Now if x ∈ X1, then

by using Corollary 1 for a = 1, b = q(x)
p(x) , multiplying both hand sides of the

obtained results by p(x) and then integrating over X1, we get∣∣∣∣∣∣12
∫
X1

p(x)f

[
q(x)

p(x)

]
dµ(x)−

∫
X1

p(x)

∫ q(x)
p(x)

1 f(t)dt
q(x)
p(x) − 1

dµ(x)

∣∣∣∣∣∣(21)

≤ 1

24

[∣∣f ′′(1)
∣∣ ∫

X1

(q(x)− p(x))2

p(x)
dµ(x)

+

∫
X1

(q(x)− p(x))2

p(x)

∣∣∣∣f ′′(q(x)

p(x)

)∣∣∣∣ dµ(x)

]
.

Similarly if x ∈ X2, then by using Corollary 1 for a = q(x)
p(x) , b = 1, multiplying

both sides by p(x) and then integrating over X2, we get∣∣∣∣∣∣12
∫
X2

p(x)f

[
q(x)

p(x)

]
dµ(x)−

∫
X2

p(x)

∫ q(x)
p(x)

1 f(t)dt
q(x)
p(x) − 1

dµ(x)

∣∣∣∣∣∣(22)

≤ 1

24

[∣∣f ′′(1)
∣∣ ∫

X2

(q(x)− p(x))2

p(x)
dµ(x)

+

∫
X2

(q(x)− p(x))2

p(x)

∣∣∣∣f ′′(q(x)

p(x)

)∣∣∣∣ dµ(x)

]
.

By adding inequalities (21) and (22) and then using triangular inequality
we get (20). �

Proposition 2. Let all the assumptions of Theorem 5 hold with I =
(0,∞) and f(1) = 0. If p, q ∈ Ω, then the following inequality holds:∣∣∣∣12Df (p, q)− D

f
HH(p, q)

∣∣∣∣(23)

≤ 1

32

(
1 +

2

2
1
q

)(
Γ(12)Γ(p+ 1)

Γ(p+ 3
2)

) 1
p
[ ∣∣f ′′(1)

∣∣ ∫
χ

(q(x)− p(x))2

p(x)
dµ(x)

+

∫
χ

(q(x)− p(x))2

p(x)

∣∣∣∣f ′′(q(x)

p(x)

)∣∣∣∣ dµ(x)

]
.

Proof. The proof is similar as to that of Proposition 1 but use Corollary 2
instead of Corollary 1. �
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Proposition 3. Let all the assumptions of Theorem 6 hold with I =
(0,∞) and f(1) = 0. If p, q ∈ Ω, then the following inequality holds:

∣∣∣∣12Df (p, q)− D
f
HH(p, q)

∣∣∣∣ ≤
[

Γ(12)Γ(p+ 1)

2Γ(p+ 3
2)

] 1
p

×
(

1

8

)[∫
χ

(q(x)− p(x))2

p(x)

∣∣∣∣f ′′(p(x) + q(x)

2p(x)

)∣∣∣∣ dµ(x)

]
.

Proof. The proof is similar as to that of Proposition 1 but use Corollary 3
instead of Corollary 1. �

Proposition 4. Let all the assumptions of Theorem 7 hold with I =
(0,∞) and f(1) = 0. If p, q ∈ Ω, then we have the inequality:∣∣∣∣12Df (p, q)− D

f
HH(p, q)

∣∣∣∣(24)

≤ 1

24

((
3

8

) 1
q

+ 2

(
5

16

) 1
q

)[ ∣∣f ′′(1)
∣∣ ∫

χ

(q(x)− p(x))2

p(x)
dµ(x)

+

∫
χ

(q(x)− p(x))2

p(x)

∣∣∣∣f ′′(q(x)

p(x)

)∣∣∣∣ dµ(x)

]
.

Proof. The proof is similar as to that of Proposition 1 but use Corollary 4
instead of Corollary 1. �

Proposition 5. Let all the assumptions of Theorem 8 hold with I =
(0,∞) and f(1) = 0. If p, q ∈ Ω, then we have the inequality:∣∣∣∣12Df (p, q)− D

f
HH(p, q)

∣∣∣∣(25)

≤ 1

12

[∫
χ

(q(x)− p(x))2

p(x)

∣∣∣∣f ′′(p(x) + q(x)

2p(x)

)∣∣∣∣ dµ(x)

]
.

Proof. The proof is similar as to that of Proposition 1 but use Corollary 5
instead of Corollary 1. �

4. Applications to some special means and
trapezoidal formula

In this section, we are concerned with the applications of our main results
to some special means of real numbers as well as new error estimates of
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trapezoidal formula. For this purpose, we consider the following means of
positive real numbers:

(i) The arithmetic mean:

A = A(a, b) =
a+ b

2
, a, b > 0.

(ii) The logarithmic mean:

L(a, b) =
b− a

ln b− ln a
, a 6= b, a, b > 0.

(iii) The generalized logarithmic mean:

Ln(a, b) =

[
bn+1 − an+1

(b− a)(n+ 1)

] 1
n

, n ∈ Z \ {−1, 0}, a, b > 0, a 6= b.

In the following propositions applications of the above results to certain
means of real numbers have been incorporated:

Proposition 6. Let 0 < a < b, n ∈ Z, |n(n − 1)| ≥ 3 and q > 1 such
that p−1 + q−1 = 1, then we have

|A(an, bn)− Lnn(a, b)|

≤ |n(n− 1)|(b− a)2

16

(
1 +

2

2
1
q

)[
Γ(12)Γ(p+ 1)

Γ(p+ 3
2)

] 1
p

A
(
an−2, bn−2

)
,

|A(an, bn)− Lnn(a, b)|

≤ |n(n− 1)|(b− a)2

12

((
3

8

) 1
q

+ 2

(
5

16

) 1
q

)
A
(
an−2, bn−2

)
.

Proof. Consider the function f(x) = xn, x > 0, |n(n − 1)| ≥ 3, n ∈ Z.
Then clearly f satisfies the conditions of Theorem 5. Therefore using this
function in Corollaries 2 and 4, we obtain the required inequalities. �

Proposition 7. Let 0 < a < b and q > 1 such that p−1 + q−1 = 1, then
we have

|A(a−1, b−1)− L−1(a, b)|

≤ (b− a)2

8

(
1 +

2

2
1
q

)(
Γ(12)Γ(p+ 1)

Γ(p+ 3
2)

) 1
p

A
(
a−3, b−3

)
,

|A(a−1, b−1)− L−1(a, b)|

≤ (b− a)2

6

((
3

8

) 1
q

+ 2

(
5

16

) 1
q

)
A
(
a−3, b−3

)
.
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Proof. Consider the function f(x) = 1
x , x > 0. Then clearly f satisfies

the conditions of Theorem 5. Therefore using this function in Corollaries 2
and 4, we obtain the required inequalities. �

Next, we provide some new error estimates for the trapezoidal formula.
For this, we proceed as follows:

Let d be a division a = x0 < x1 < . . . < xn−1 < xn = b of the interval
[a, b] and consider the quadrature formula∫ b

a
f(x)dx = T(f, d) + E(f, d),

where

T(f, d) =
n−1∑
i=0

f(xi) + f(xi+1)

2
(xi+1 − xi)

for the trapezoidal version and E(f, d) denotes the associated approximation
error.

Proposition 8. Let f : I ⊂ R → R be twice differentiable function on
I◦ and a, b ∈ I◦ with a < b. If f ′′ ∈ L[a, b] and |f ′′|q is convex function on
[a, b] with q > 1 and p−1 + q−1 = 1, then we have:

|E(f, d)| ≤
(

1 +
2

2
1
q

)(
Γ(12)Γ(p+ 1)

Γ(p+ 3
2)

) 1
p

×
n−1∑
i=0

(xi+1 − xi)3

32

[
|f ′′(xi)|+ |f ′′(xi+1)|

]
.

Proof. Applying Corollary 2 on the subintervals [xi, xi+1] (i = 0, 1, 2, . . .,
n− 1) of the division, we have∣∣∣∣f(xi) + f(xi+1)

2
− 1

xi+1 − xi

∫ xi+1

xi

f(x)dx

∣∣∣∣
≤
(

1 +
2

2
1
q

)(
Γ(12)Γ(p+ 1)

Γ(p+ 3
2)

) 1
p (xi+1 − xi)2

32

[
|f ′′(xi)|+ |f ′′(xi+1)|

]
hence from above∣∣∣∣∫ b

a
f(x)dx− T(f, d)

∣∣∣∣
=

∣∣∣∣∣
n−1∑
i=0

{∫ xi+1

xi

f(x)dx− f(xi) + f(xi+1)

2
(xi+1 − xi)

}∣∣∣∣∣
≤

n−1∑
i=0

∣∣∣∣{∫ xi+1

xi

f(x)dx− f(xi) + f(xi+1)

2
(xi+1 − xi)

}∣∣∣∣
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≤
(

1 +
2

2
1
q

)(
Γ(12)Γ(p+ 1)

Γ(p+ 3
2)

) 1
p n−1∑
i=0

(xi+1 − xi)3

32

[
|f ′′(xi)|+ |f ′′(xi+1)|

]
.

�

Proposition 9. Let f : I ⊂ R → R be twice differentiable function on
I◦ and a, b ∈ I◦ with a < b. If f ′′ ∈ L[a, b] and |f ′′|q is concave function on
[a, b] with q > 1 and p−1 + q−1 = 1, then we have:

|E(f, d)| ≤

(
Γ(12)Γ(p+ 1)

2Γ(p+ 3
2)

) 1
p n−1∑
i=0

(xi+1 − xi)3

8

∣∣∣∣f ′′(xi + xi+1

2

)∣∣∣∣
Proof. The proof is analogous as to that of Proposition 8 but use Corol-

lary 3 instead of Corollary 2. �

Proposition 10. Let f : I ⊂ R→ R be twice differentiable function on
I◦ and a, b ∈ I◦ with a < b. If f ′′ ∈ L[a, b] and |f ′′|q is concave function on
[a, b] with q > 1 and p−1 + q−1 = 1, then we have:

|E(f, d)| ≤
n−1∑
i=0

(xi+1 − xi)3

12

∣∣∣∣f ′′(xi + xi+1

2

)∣∣∣∣ .
Proof. The proof is similar as to that of Proposition 8 but use Corollary 5

instead of Corollary 2. �
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