Bruno de Malafosse

EXTENSION OF SOME RESULTS ON THE (SSIE) AND THE (SSE) OF THE FORM $F \subset \mathcal{E}+F_{x}^{\prime}$ and $\mathcal{E}+F_{x}=F$

Abstract

Given any sequence $a=\left(a_{n}\right)_{n \geq 1}$ of positive real numbers and any set E of complex sequences, we write E_{a} for the set of all sequences $y=\left(y_{n}\right)_{n \geq 1}$ such that $y / a=\left(y_{n} / a_{n}\right)_{n \geq 1} \in E$. In this paper we deal with the solvability of the (SSIE) of the form $\ell_{\infty} \subset \mathcal{E}+F_{x}^{\prime}$ where \mathcal{E} is a linear space of sequences and F^{\prime} is either c_{0}, or ℓ_{∞} and we solve the (SSIE) $c_{0} \subset \mathcal{E}+s_{x}$ for $\mathcal{E} \subset\left(s_{\alpha}\right)_{\Delta}$ and $\alpha \in c_{0}$. Then we study the (SSIE) $c \subset \mathcal{E}+s_{x}^{(c)}$ and the (SSE) $\mathcal{E}+s_{x}^{(c)}=c$. Then we apply the previous results to the solvability of the (SSE) of the form $\left(\ell_{r}^{p}\right)_{\Delta}+F_{x}=F$ for $p \geq 1$ and F is any of the sets c_{0}, c, or ℓ_{∞}. These results extend some of those given in [8] and [9].

KEY words: BK space, matrix transformations, multiplier of sequence spaces, sequence spaces inclusion equations, sequence spaces inclusion equations with operator.
AMS Mathematics Subject Classification: 40C05, 46A45.

1. Introduction

We write ω for the set of all complex sequences $y=\left(y_{n}\right)_{n \geq 1}, \ell_{\infty}, c$ and c_{0} for the sets of all bounded, convergent and null sequences, respectively. We write $c s$ for the set of all convergent series and $\ell^{p}=\left\{y \in \omega: \sum_{n=1}^{\infty}\left|y_{n}\right|^{p}<\infty\right\}$ for $1 \leq p<\infty$. If $y, z \in \omega$, then we write $y z=\left(y_{n} z_{n}\right)_{n>1}$. Let $U=$ $\left\{y \in \omega: y_{n} \neq 0\right\}$ and $U^{+}=\left\{y \in \omega: y_{n}>0\right\}$. We write $z / u=\left(z_{n} / u_{n}\right)_{n \geq 1}$ for all $z \in \omega$ and all $u \in U$, in particular $1 / u=e / u$, where e is the sequence with $e_{n}=1$ for all n. Finally, if $a \in U^{+}$and E is any subset of ω, then we put $E_{a}=(1 / a)^{-1} * E=\{y \in \omega: y / a \in E\}$. Let E and F be subsets of ω. In [1], the sets s_{a}, s_{a}^{0} and $s_{a}^{(c)}$ were defined for positive sequences a by $(1 / a)^{-1} * E$ and $E=\ell_{\infty}, c_{0}, c$, respectively. In [2] the sum $E_{a}+F_{b}$ and the product $E_{a} * F_{b}$ were defined where E, F are any of the symbols s, s^{0}, or $s^{(c)}$. Then in [5] the solvability was determined of sequences spaces inclusion equations
$G_{b} \subset E_{a}+F_{x}$ where $E, F, G \in\left\{s^{0}, s^{(c)}, s\right\}$ and some applications were given to sequence spaces inclusions with operators. Recall that the spaces w_{∞} and w_{0} of strongly bounded and summable sequences are the sets of all y such that $\left(n^{-1} \sum_{k=1}^{n}\left|y_{k}\right|\right)_{n}$ is bounded and tends to zero, respectively. These spaces were studied by Maddox [19] and Malkowsky, Rakočević [18]. In [11] we gave some properties of well-known operators defined on the sets $W_{a}=(1 / a)^{-1} * w_{\infty}$ and $W_{a}^{0}=(1 / a)^{-1} * w_{0}$. In this paper we deal with special sequence spaces inclusion equations (SSIE), (resp. sequence spaces equations ($S S E$)), which are determined by an inclusion, (resp. identity), for which each term is a sum or a sum of products of sets of the form $\left(E_{a}\right)_{T}$ and $\left(E_{f(x)}\right)_{T}$ where f maps U^{+}to itself, E is any linear space of sequences and T is a triangle. Some results on (SSE) and (SSIE) were stated in [3], [7], [16], [5], [15], [6], [12], [13].

In this paper for given linear spaces of sequences \mathcal{E}, F and F^{\prime} we consider the (SSIE) $F \subset \mathcal{E}+F_{x}^{\prime}$ as a perturbed inclusion equation of the elementary inclusion equation $F \subset F_{x}^{\prime}$. In this way it is interesting to determine what are the linear spaces of sequences \mathcal{E} such that $F \nsubseteq \mathcal{E}$ for which the elementary and the perturbed inclusions equations have the same solutions. In a similar way the (SSE) $\mathcal{E}+F_{x}=F$ can be considered as the perturbed equation of the equation $F_{x}=F$. Our aim is to extend some of the known results on the solvability of the (SSIE) of the form $F \subset \mathcal{E}+F_{x}^{\prime}$ stated in [15], [6], [5], [13], [7], [8], [9]. In [8] writing D_{r} for the diagonal matrix with $\left(D_{r}\right)_{n n}=r^{n}$, we dealt with the solvability of the (SSIE) using the operator of the first difference Δ, defined by $c \subset D_{r} * E_{\Delta}+c_{x}$ with $E=c_{0}$, or s_{1}. Then we dealt with the (SSIE) $c \subset D_{r} * E_{C_{1}}+s_{x}^{(c)}$ with $E=c_{0}, c$ or s_{1}, and $s_{1} \subset D_{r} * E_{C_{1}}+s_{x}$ with $E=c$ or s_{1}, where C_{1} is the Cesàro operator defined by $\left(C_{1}\right)_{n} y=\left(\sum_{k=1}^{n} y_{k}\right) / n$. In [10] we solved the (SSE) with operator and $\left(E_{r}\right)_{\Delta}+F_{x}=F_{u}$ for $r, u>0$ where E, F are any of the sets c_{0}, c, ℓ_{∞} and the $(\mathrm{SSE})\left(W_{r}^{0}\right)_{\Delta}+s_{x}^{(c)}=s_{u}^{(c)}$. In [9] we dealt with the class of (SSIE) of the form $F \subset E_{a}+F_{x}^{\prime}$ where $F \in\left\{c_{0}, \ell^{p}, w_{0}, w_{\infty}\right\}$ and $E, F^{\prime} \in\left\{c_{0}, c, \ell_{\infty}, \ell^{p}, w_{0}, w_{\infty}\right\},(p \geq 1)$. In this paper we extend the results stated in [8], [9]. In this way we deal with the (SSIE) $c_{0} \subset \mathcal{E}+s_{x}$ where $\mathcal{E} \subset\left(s_{\alpha}\right)_{\Delta}$ for $\alpha \in c_{0}$ and we solve the (SSIE) of the form $\ell_{\infty} \subset \mathcal{E}+F_{x}^{\prime}$ where F^{\prime} is either c_{0}, or ℓ_{∞}. Then we study the (SSIE) $c \subset \mathcal{E}+s_{x}^{(c)}$ and the $(\mathrm{SSE}) \mathcal{E}+s_{x}^{(c)}=c$ with $\mathcal{E} \subset\left(s_{\alpha}\right)_{\Delta}$ with $\alpha \in c s^{+}$.

This paper is organized as follows. In Section 2 we recall some well-known results on sequence spaces and matrix transformations. In Section 3 we recall some results on the multipliers and on the characterizations of matrix transformations. In Section 4 we recall some general results on the solvability of the (SSIE) of the form $F \subset E_{a}+F_{x}^{\prime}$. In Section 5 we deal with the solvability of the (SSIE) of the form $\ell_{\infty} \subset \mathcal{E}+F_{x}^{\prime}$ where F^{\prime} is either c_{0}, or
ℓ_{∞}. In Section 6 we solve the $(\mathrm{SSIE}) c_{0} \subset \mathcal{E}+s_{x}$. In Section 7 we study the (SSIE) $c \subset \mathcal{E}+s_{x}^{(c)}$ and the $(\mathrm{SSE}) \mathcal{E}+s_{x}^{(c)}=c$. In Section 8 we apply results of the previous sections to the solvability of the (SSE) of the form $\left(\ell_{r}^{p}\right)_{\Delta}+F_{x}=F$.

2. Premilinaries and notations

An FK space is a complete linear metric space, for which convergence implies coordinatewise convergence. A BK space is a Banach space of sequences that is an $F K$ space. A BK space E is said to have $A K$ if for every sequence $y=\left(y_{k}\right)_{k \geq 1} \in E$, then $y=\lim _{p \rightarrow \infty} \sum_{k=1}^{p} y_{k} e^{(k)}$, where $e^{(k)}=(0, \ldots, 0,1,0, \ldots), 1$ being in the $k-t h$ position.

Let \mathbb{R} be the set of all real numbers. For any given infinite matrix $A=$ $\left(\mathbf{a}_{n k}\right)_{n, k \geq 1}$ we define the operators $A_{n}=\left(\mathbf{a}_{n k}\right)_{k \geq 1}$ for any integer $n \geq 1$, by $A_{n} y=\sum_{k=1}^{\infty} \mathbf{a}_{n k} y_{k}$, where $y=\left(y_{k}\right)_{k \geq 1}$, and the series are assumed convergent for all n. So we are led to the study of the operator A defined by $A y=\left(A_{n} y\right)_{n>1}$ mapping between sequence spaces. When A maps E into F, where E and F are subsets of ω, we write $A \in(E, F)$, (cf. [19], [20]). It is well known that if E has AK, then the set $\mathcal{B}(E)$ of all bounded linear operators L mapping in E, with norm $\|L\|=\sup _{y \neq 0}\left(\|L(y)\|_{E} /\|y\|_{E}\right)$ satisfies the identity $\mathcal{B}(E)=(E, E)$. For any subset F of ω, we write $F_{A}=\{y \in \omega: A y \in F\}$ for the matrix domain of A in F. Then for any given sequence $u=\left(u_{n}\right)_{n \geq 1} \in \omega$ we define the diagonal matrix D_{u} by $\left[D_{u}\right]_{n n}=u_{n}$ for all n. It is interesting to rewrite the set E_{u} using a diagonal matrix. Let E be any subset of ω and $u \in U^{+}$we have $E_{u}=D_{u} * E=$ $\left\{y=\left(y_{n}\right)_{n} \in \omega: y / u \in E\right\}$. We use the sets $s_{a}^{0}, s_{a}^{(c)}, s_{a}$ and $\left(\ell^{p}\right)_{a}$ defined as follows (cf. [1]). For given $a \in U^{+}$and $p \geq 1$ we put $D_{a} * c_{0}=s_{a}^{0}$, $D_{a} * c=s_{a}^{(c)}, D_{a} * \ell_{\infty}=s_{a}$, and $D_{a} * \ell^{p}=\left(\ell^{p}\right)_{a}$. Each of the spaces $D_{a} * E$, where $E \in\left\{c_{0}, c, \ell_{\infty}\right\}$ is a BK space normed by $\|y\|_{s_{a}}=\sup _{n}\left(\left|y_{n}\right| / a_{n}\right)$ and s_{a}^{0} has $A K$. The set $\ell^{p},(p \geq 1)$ normed by $\|y\|_{\ell^{p}}=\left(\sum_{k=1}^{\infty}\left|y_{k}\right|^{p}\right)^{1 / p}$ is a BK space with AK. If $a=\left(R^{n}\right)_{n \geq 1}$ with $R>0$, we write $s_{R}, s_{R}^{0}, s_{R}^{(c)}$, (or $\left.c_{R}\right)$ and $\left(\ell^{p}\right)_{R}$ for the sets $s_{a}, s_{a}^{0}, s_{a}^{(c)}$ and $\left(\ell^{p}\right)_{a}$, respectively. We also write D_{R} for $D_{\left(R^{n}\right)_{n \geq 1}}$. When $R=1$, we obtain $s_{1}=\ell_{\infty}, s_{1}^{0}=c_{0}$ and $s_{1}^{(c)}=c$. Notice that the set $S_{1}=\left(s_{1}, s_{1}\right)$ is a Banach algebra with $\|A\|_{S_{1}}=\sup _{n}\left(\sum_{k=1}^{\infty}\left|\mathbf{a}_{n k}\right|\right)$ and we have $\left(c_{0}, s_{1}\right)=\left(c, s_{1}\right)=\left(s_{1}, s_{1}\right)=S_{1}$. In the following we use the Schur's theorem (cf. [20], Theorem 1.17 (iii)) stated as follows. We have $A \in\left(s_{1}, c\right)$ if and only if $\lim _{n \rightarrow \infty} \mathbf{a}_{n k}=l_{k}$ for all k and for some scalar l_{k} and $\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty}\left|\mathbf{a}_{n k}\right|=\sum_{k=1}^{\infty}\left|l_{k}\right|$. We also use the well known properties, stated as follows.

Lemma 1. Let $a, b \in U^{+}$and let $E, F \subset \omega$ be any linear spaces. We have $A \in\left(E_{a}, F_{b}\right)$ if and only if $D_{1 / b} A D_{a} \in(E, F)$.

Recall that the infinite matrix $T=\left(t_{n k}\right)_{n, k \geq 1}$ is a triangle if $t_{n k}=0$ for $k>n$ and $t_{n n} \neq 0$ for all n. Then we obtain the next lemma.

Lemma 2 ([4], Lemma 9, p. 45). Let T^{\prime} and $T^{\prime \prime}$ be any given triangles and let $E, F \subset \omega$. Then for any given operator T represented by a triangle we have $T \in\left(E_{T^{\prime}}, F_{T^{\prime \prime}}\right)$ if and only if $T^{\prime \prime} T T^{\prime-1} \in(E, F)$.

3. Some results on matrix transformations and on the multipliers of special sets

3.1. On the triangles $C(\lambda)$ and $\Delta(\lambda)$ and the sets W_{a} and W_{a}^{0}

For $\lambda \in U$ the infinite matrices $C(\lambda)$ and $\Delta(\lambda)$ are triangles. We have $[C(\lambda)]_{n k}=1 / \lambda_{n}$ for $k \leq n$, and the nonzero entries of $\Delta(\lambda)$ are determined by $[\Delta(\lambda)]_{n n}=\lambda_{n}$ for all n, and $[\Delta(\lambda)]_{n, n-1}=-\lambda_{n-1}$ for all $n \geq 2$. It can be shown that the matrix $\Delta(\lambda)$ is the inverse of $C(\lambda)$, that is, $C(\lambda)(\Delta(\lambda) y)=$ $\Delta(\lambda)(C(\lambda) y)=y$ for all $y \in \omega$. If $\lambda=e$ we obtain the well known operator of the first difference represented by $\Delta(e)=\Delta$. We then have $\Delta_{n} y=y_{n}-y_{n-1}$ for all $n \geq 1$, with the convention $y_{0}=0$. It is usually written $\Sigma=C(e)$ and then we may write $C(\lambda)=D_{1 / \lambda} \Sigma$. Notice that $\Delta=\Sigma^{-1}$. We also have $c s=c_{\Sigma}$ for the set of all convergent series. The Cesàro operator is defined By $C_{1}=C\left((n)_{n \geq 1}\right)$. We use the sets of sequences that are a-strongly bounded and $a-$ strongly convergent to zero defined for $a \in U^{+}$by $W_{a}=\left\{y \in \omega:\|y\|_{W_{a}}=\sup _{n}\left(n^{-1} \sum_{k=1}^{n}\left|y_{k}\right| / a_{k}\right)<\infty\right\}$ and

$$
W_{a}^{0}=\left\{y \in \omega: \lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{k=1}^{n}\left|y_{k}\right| / a_{k}\right)=0\right\}
$$

(cf. [14], [11]). It can easily be seen that $W_{a}=\left\{y \in \omega: C_{1} D_{1 / a}|y| \in s_{1}\right\}$. If $a=\left(r^{n}\right)_{n \geq 1}$ the sets W_{a} and W_{a}^{0} are denoted by W_{r} and W_{r}^{0}. For $r=1$ we obtain the well-known sets $w_{\infty}=\left\{y \in \omega:\|y\|_{w_{\infty}}=\sup _{n}\left(n^{-1} \sum_{k=1}^{n}\left|y_{k}\right|\right)\right.$ $<\infty\}$ and $w_{0}=\left\{y \in \omega: \lim _{n \rightarrow \infty}\left(n^{-1} \sum_{k=1}^{n}\left|y_{k}\right|\right)=0\right\}$ called the spaces of sequences that are strongly bounded and strongly summable to zero by the Cesàro method (cf. [17]).

3.2. On the multipliers of some sets

First we need to recall some well known results. Let y and z be sequences and let E and F be two subsets of ω, we then write $M(E, F)=$ $\{y \in \omega: y z \in F$ for all $z \in E\}$, the set $M(E, F)$ is called the multiplier space of E and F. In the following we use the next well known results.

Lemma 3. Let E, \widetilde{E}, F and \widetilde{F} be arbitrary subsets of ω. Then (i) $M(E, F) \subset M(\widetilde{E}, F)$ for all $\widetilde{E} \subset E$. (ii) $M(E, F) \subset M(E, \widetilde{F})$ for all $F \subset \widetilde{F}$.

Recall that for $a, b \in U^{+}$and E and $F \subset \omega$ we have $D_{a} * E \subset D_{b} * F$ if and only if $a / b \in M(E, F)$. In the following we use the results stated below.

Lemma 4 ([9], Lemma 6, pp. 214-215). Let $p \geq 1$. We have:
i) a) $M\left(c, c_{0}\right)=M\left(\ell_{\infty}, c\right)=M\left(\ell_{\infty}, c_{0}\right)=c_{0}$ and $M(c, c)=c$. b) $M\left(E, \ell_{\infty}\right)=M\left(c_{0}, F\right)=\ell_{\infty}$ for $E, F=c_{0}, c$, or ℓ_{∞}. c) $M\left(c_{0}, \ell^{p}\right)=$ $M\left(c, \ell^{p}\right)=M\left(\ell_{\infty}, \ell^{p}\right)=\ell^{p}$.d) $M\left(\ell^{p}, F\right)=\ell_{\infty}$ for $F \in\left\{c_{0}, c, s_{1}, \ell^{p}\right\}$.
ii) a) $M\left(w_{0}, F\right)=M\left(w_{\infty}, \ell_{\infty}\right)=s_{(1 / n)_{n \geq 1}}$ for $F=c_{0}$, c, or ℓ_{∞}. b) $M\left(w_{\infty}, c_{0}\right)=M\left(w_{\infty}, c\right)=s_{(1 / n)_{n \geq 1}}^{0}$. c) $M\left(\ell_{1}, w_{\infty}\right)=s_{(n)_{n \geq 1}}$ and $M\left(\ell_{1}, w_{0}\right)=s_{(n)_{n \geq 1}}^{0}$. d) $M\left(E, w_{0}\right)=w_{0}$ for $E=s_{1}$, or c. e) $M\left(E, w_{\infty}\right)=$ w_{∞} for $E=c_{0}, s_{1}$, or c.

3.3. The equivalence relation $R_{\mathcal{E}}$

We need to recall some results on the equivalence relation $R_{\mathcal{E}}$ which is defined using the multiplier of sequence spaces. For $b \in U^{+}$and for any subset \mathcal{E} of ω, we denote by $c l^{\mathcal{E}}(b)$ the equivalence class for the equivalence relation $R_{\mathcal{E}}$ defined by $x R_{\mathcal{E}} b$ if $\mathcal{E}_{x}=\mathcal{E}_{b}$ for $x \in U^{+}$. It can easily be seen that $c l^{\mathcal{E}}(b)$ is the set of all $x \in U^{+}$such that $x / b \in M(\mathcal{E}, \mathcal{E})$ and $b / x \in M(\mathcal{E}, \mathcal{E})$, (cf. [15]). We then have $c l^{\mathcal{E}}(b)=c l^{M(\mathcal{E}, \mathcal{E})}(b)$. For instance $c l^{c}(b)$ is the set of all $x \in U^{+}$such that $s_{x}^{(c)}=s_{b}^{(c)}$. This is the set of all sequences $x \in U^{+}$such that $x_{n} \sim C b_{n}(n \rightarrow \infty)$ for some $C>0$. We denote by $c l^{\infty}(b)$ the class $c l^{\ell \infty}(b)$. Recall that $c l^{\infty}(b)$ is the set of all $x \in U^{+}$, such that $K_{1} \leq x_{n} / b_{n} \leq K_{2}$ for all n and for some $K_{1}, K_{2}>0$.

4. Some general results on the (SSIE) $F \subset \mathcal{E}+F_{x}^{\prime}$

Here we are interested in the study of the set of all positive sequences x that satisfy the inclusion $F \subset \mathcal{E}+F_{x}^{\prime}$ where \mathcal{E}, F and F^{\prime} are linear spaces of sequences. We may consider this problem as a perturbation problem.

4.1. The perturbed problem

If we know the set $M\left(F, F^{\prime}\right)$, then the solutions of the elementary inclusion $F_{x}^{\prime} \supset F$ are determined by $1 / x \in M\left(F, F^{\prime}\right)$. Now the question is: let \mathcal{E} be a linear space of sequences. What are the solutions of the perturbed inclusion $F_{x}^{\prime}+\mathcal{E} \supset F$? An additional question may be the following one: what are the conditions on \mathcal{E} under which the solutions of the elementary and the perturbed inclusions are the same? In the following we write $\mathcal{I}\left(\mathcal{E}, F, F^{\prime}\right)=\left\{x \in U^{+}: F \subset \mathcal{E}+F_{x}^{\prime}\right\}$, where E, F and F^{\prime} are linear spaces of sequences. If $F=F^{\prime}$ we write $\mathcal{I}(\mathcal{E}, F)=\mathcal{I}\left(\mathcal{E}, F, F^{\prime}\right)$.

4.2. Some known results on the solvability of (SSIE)

For any set χ of sequences we let $\bar{\chi}=\left\{x \in U^{+}: 1 / x \in \chi\right\}$ and we write $\Phi=\left\{c_{0}, c, s_{1}, \ell^{p}, w_{0}, w_{\infty}\right\}$ with $p \geq 1$. By $c(1)$ we define the set of all sequences $\alpha \in U^{+}$that satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=1$. Then we consider the condition

$$
\begin{equation*}
G \subset G_{1 / \alpha} \text { for all } \alpha \in c(1), \tag{1}
\end{equation*}
$$

for any given linear space G of sequences. Notice that condition (1) is satisfied for all $G \in \Phi$. In this part we denote by U_{1}^{+}the set of all sequences α with $0<\alpha_{n} \leq 1$ for all n. We consider the condition

$$
\begin{equation*}
G \subset G_{1 / \alpha} \text { for all } \alpha \in U_{1}^{+} . \tag{2}
\end{equation*}
$$

for any given linear space G of sequences. Then we introduce a linear space of sequences H which contains the spaces E and F^{\prime}. The proof of the next theorem is based on the fact that if H satisfies the condition in (2) we then have $H_{\alpha}+H_{\beta}=H_{\alpha+\beta}$ for all $\alpha, \beta \in U^{+}$(cf. [13], Proposition 5.1, pp. 599-600). Notice that c does not satisfy this condition, but each of the sets $c_{0}, \ell_{\infty}, \ell^{p},(p \geq 1), w_{0}$ and w_{∞} satisfies the condition in (2). So we have for instance $s_{\alpha}^{0}+s_{\beta}^{0}=s_{\alpha+\beta}^{0}$. In the following we write $M\left(F, F^{\prime}\right)=\chi$. The next result is used to determine some classes of (SSIE), where we write $\mathcal{I}_{a}\left(E, F, F^{\prime}\right)=\mathcal{I}\left(E_{a}, F, F^{\prime}\right)$ for $a \in U^{+}$.

Theorem 1 ([9], Theorem 9, p. 216). Let $a \in U^{+}$and let E, F and F^{\prime} be linear subspaces of ω. Assume
a) χ satisfies condition (1).
b) There is a linear space of sequences H that satisfies the condition in (2) and conditions α) and β), where α) $\left.E, F^{\prime} \subset H, \beta\right) M(F, H)=\chi$.

Then we have: i) $a \in M\left(\chi, c_{0}\right)$ implies $\mathcal{I}_{a}\left(E, F, F^{\prime}\right)=\bar{\chi}$. ii) $a \in$ $\overline{M(F, E)}$ implies $\mathcal{I}_{a}\left(E, F, F^{\prime}\right)=U^{+}$.

As a direct consequence of the preceding we obtain the following result.
Lemma 5 ([9], Corollary 10, p. 216). Let $a \in U^{+}$, let E, F and F^{\prime} be linear subspaces of ω. Assume χ satisfies condition (1) and assume $E \subset F^{\prime}$ where F^{\prime} satisfies the condition in (2). Then we have: i) The condition $a \in M\left(\chi, c_{0}\right)$ implies $\mathcal{I}_{a}\left(E, F, F^{\prime}\right)=\bar{\chi}$, ii) the condition $a \in \overline{M(F, E)}$ implies $\mathcal{I}_{a}\left(E, F, F^{\prime}\right)=U^{+}$.

In [8] we have shown the next result on the (SSIE) $c \subset s_{a}^{(c)}+F_{x}^{\prime}$ and $s_{1} \subset s_{a}^{(c)}+F_{x}^{\prime}$ with $F^{\prime} \in \Phi$.

Proposition 1 ([8]). Let $a \in U^{+}$and let $F^{\prime} \in \Phi$. We have: $\left.i\right)$ $\underline{\mathcal{I}_{a}}\left(c, c, F^{\prime}\right)=\overline{F^{\prime}}$ if $a \in c_{0}$, and $\mathcal{I}_{a}\left(c, c, F^{\prime}\right)=U^{+}$if $\left.1 / a \in c . i i\right) \mathcal{I}_{a}\left(c, s_{1}, F^{\prime}\right)=$ $\overline{F^{\prime}}$ if $a \in c_{0}$, and $\mathcal{I}_{a}\left(c, s_{1}, F^{\prime}\right)=U^{+}$if $1 / a \in c_{0}$.

5. Solvability of the (SSIE) of the form $\ell_{\infty} \subset \mathcal{E}+F_{x}^{\prime}$ where F^{\prime} is either c_{0} or ℓ_{∞}

5.1. Solvability of the (SSIE) of the form $\ell_{\infty} \subset \mathcal{E}+s_{x}$

By Proposition $1 i i$) the $(\mathrm{SSIE}) s_{1} \subset s_{a}^{(c)}+s_{x}$ is equivalent to $x \in \overline{s_{1}}$ for all $a \in c_{0}$. In the next theorem we extend this result to the case when $a \in c$. For instance, notice that x is a positive solution of the (SSE) $s_{1} \subset c+s_{x}$ if the next statement holds. The condition $y_{n}=O(1)$ implies there are u, $v \in \omega$ such that $u_{n} \rightarrow l$ and $v_{n} / x_{n}=O(1)(n \rightarrow \infty)$ for all $y \in \omega$ and for some scalar l. Now we state a more general result.

Theorem 2. Let $\mathcal{E} \subset c$ be a linear space of sequences. Then the set $\mathcal{I}\left(\mathcal{E}, s_{1}\right)$ of all positive sequences x such that $s_{1} \subset \mathcal{E}+s_{x}$ is determined by

$$
\mathcal{I}\left(\mathcal{E}, s_{1}\right)=\overline{s_{1}}
$$

Proof. i) Since $\mathcal{E} \subset c$ we obtain $\mathcal{I}\left(\mathcal{E}, s_{1}\right) \subset \mathcal{I}\left(c, s_{1}\right)$. So we begin to show the inclusion $\mathcal{I}\left(c, s_{1}\right) \subset \overline{s_{1}}$. For this, we assume $x \in \mathcal{I}\left(c, s_{1}\right)$ and $x \notin \overline{s_{1}}$. Then we have $1 / x \notin \ell_{\infty}$ and there is a strictly increasing sequence $\left(n_{i}\right)_{i \geq 1}$ tending to infinity such that $x_{n_{i}} \rightarrow 0(i \rightarrow \infty)$. Now let $h \in \ell_{\infty}$ be the sequence defined by $h_{n_{i}}=(-1)^{i}$ and $h_{n}=0$ for all $n \notin\left\{n_{i}: i \in \mathbb{N}\right\}$. Since $\ell_{\infty} \subset c+s_{x}$ there are sequences $\varphi \in c$ and $\rho \in \ell_{\infty}$ such that $h=\varphi+x \rho$ and $(-1)^{i}=\varphi_{n_{i}}+\rho_{n_{i}} x_{n_{i}}$. This leads to a contradiction since $\rho_{n_{i}} x_{n_{i}} \rightarrow 0$ and $\varphi_{n_{i}}+\rho_{n_{i}} x_{n_{i}}$ tends to a limit as $i \rightarrow \infty$. This implies $\mathcal{I}\left(c, s_{1}\right) \subset \overline{s_{1}}$. So we have shown the inclusion $\mathcal{I}\left(\mathcal{E}, s_{1}\right) \subset \overline{s_{1}}$. Conversely, we show $\overline{s_{1}} \subset \mathcal{I}\left(c, s_{1}\right)$. For this, let $x \in \overline{s_{1}}$, that is, $1 / x \in s_{1}$. Since $s_{1}=M\left(s_{1}, s_{1}\right)$ we obtain $s_{1} \subset s_{x}$, $s_{1} \subset \mathcal{E}+s_{x}$ and $x \in \mathcal{I}\left(\mathcal{E}, s_{1}\right)$. This shows the inclusion $\overline{s_{1}} \subset \mathcal{I}\left(\mathcal{E}, s_{1}\right)$ and we conclude $\mathcal{I}\left(\mathcal{E}, s_{1}\right)=\overline{s_{1}}$.

As an immediate consequence of Theorem 2 we obtain the next useful result.

Corollary 1. i) The set $\mathcal{I}\left(c, s_{1}\right)$ of all positive sequences x such that $s_{1} \subset c+s_{x}$ is determined by $\mathcal{I}\left(c, s_{1}\right)=\overline{s_{1}}$.
ii) The set $\mathcal{S}\left(c, s_{1}\right)$ of all positive sequences x such that $c+s_{x}=s_{1}$ is determined by $\mathcal{S}\left(c, s_{1}\right)=c l^{\infty}(e)$.

Proof. The proof of i) is immediate and $i i$) follows from i) and the equivalence of $c+s_{x} \subset s_{1}$ and $x \in s_{1}$.

In all that follows we write $\lambda^{+}=\lambda \bigcap U^{+}$for any given subset λ of ω. By Theorem 2 we obtain the following corollary.

Corollary 2. Let $\alpha \in(c s)^{+}$and let \mathcal{E} be a linear space of sequences such that $\mathcal{E} \subset\left(s_{\alpha}\right)_{\Delta}$. Then the set $\mathcal{I}_{\mathcal{E}}^{\infty}$ of all positive sequences x such that $s_{1} \subset \mathcal{E}+s_{x}$ is determined by $\mathcal{I}_{\mathcal{E}}^{\infty}=\overline{s_{1}}$.

Proof. First recall that ΣD_{α} is the triangle defined by $\left(\Sigma D_{\alpha}\right)_{n k}=a_{k}$ for $k \leq n$. We have $\left(s_{\alpha}\right)_{\Delta} \subset c$ since by the Schur's theorem $\alpha \in c s$ implies $\Sigma D_{\alpha} \in\left(s_{1}, c\right)$. So we have $\mathcal{E}+s_{x} \subset c+s_{x}$ which implies $\mathcal{I}_{\mathcal{E}}^{\infty} \subset \mathcal{I}\left(c, s_{1}\right) \subset \bar{s}_{1}$. It can easily be seen that $\overline{s_{1}} \subset \mathcal{I}_{\mathcal{E}}^{\infty}$ and $\mathcal{I}_{\mathcal{E}}^{\infty}=\overline{s_{1}}$. This concludes the proof.

Corollary 3. Let $a \in(c s)^{+}$. The next (SSIE) $\ell_{\infty} \subset\left(s_{a}^{0}\right)_{\Delta}+s_{x}, \ell_{\infty} \subset$ $\left(s_{a}^{(c)}\right)_{\Delta}+s_{x}$ and $\ell_{\infty} \subset\left(s_{a}\right)_{\Delta}+s_{x}$, have the same set of solutions that are determined by $\widetilde{\mathcal{I}_{\Delta}}=\overline{s_{1}}$.

Corollary 4. Let $p>1$ and let $a^{p /(p-1)} \in(c s)^{+}$. Then the solutions of the $(S S I E) \ell_{\infty} \subset\left(\ell_{a}^{p}\right)_{\Delta}+s_{x}$ are determined by $\mathcal{I}_{\left(\ell_{a}^{p}\right)_{\Delta}}^{\infty}=\overline{s_{1}}$.

We obtain a direct extension of Proposition 1 in the case $E \in\left\{c_{0}, c, \ell_{\infty}\right\}$ and $F=F^{\prime}=\ell_{\infty}$.

Corollary 5. Let $a \in U^{+}$. Then we have: i) If $a \in s_{1}$ then the solutions of the $(S S I E) \ell_{\infty} \subset s_{a}^{0}+s_{x}$ are determined by $\mathcal{I}_{a}\left(c_{0}, s_{1}, s_{1}\right)=\overline{s_{1}}$. ii) If $a \in c$ then the solutions of the $(S S I E) \ell_{\infty} \subset s_{a}^{(c)}+s_{x}$ are determined by $\mathcal{I}_{a}\left(c, s_{1}, s_{1}\right)=\overline{s_{1}}$. iii) If $a \in c_{0}$ then the solutions of the (SSIE) $\ell_{\infty} \subset s_{a}+s_{x}$ are determined by $\mathcal{I}_{a}\left(s_{1}, s_{1}, s_{1}\right)=\overline{s_{1}}$.

Corollary 6. Let $a \in\left(D_{(1 / n)_{n>1}} * c s\right)^{+}$. The solutions of each of the (SSIE) a) $\left.\ell_{\infty} \subset\left(W_{a}^{0}\right)_{\Delta}+s_{x}, b\right) \ell_{\infty} \subset\left(W_{a}\right)_{\Delta}+s_{x}$, are determined by $\mathcal{I}_{\left(W_{a}^{0}\right)_{\Delta}}^{\infty}=\mathcal{I}_{\left(W_{a}\right)_{\Delta}}^{\infty}=\overline{s_{1}}$.

Proof. We have $\left(W_{a}^{0}\right)_{\Delta} \subset c$ if $\Sigma D_{a} \in\left(w_{0}, c\right)$. Since $w_{0} \subset s_{(n)_{n \geq 1}}^{0}$ we have $\left(W_{a}^{0}\right)_{\Delta} \subset c$ if $\Sigma D_{a} \in\left(s_{(n)_{n \geq 1}^{0}}^{0}, c\right)$ which is equivalent to $\Sigma D_{\left(n a_{n}\right)_{n \geq 1}} \in\left(c_{0}, c\right)$. By the characterization of $\left(c_{0}, c\right)$ we deduce $\left(W_{a}^{0}\right)_{\Delta} \subset c$ if $a \in D_{(1 / n)_{n \geq 1}} * c s$ and we apply Theorem 2. This shows $\mathcal{I}_{\left(W_{a}^{0}\right)_{\Delta}}^{\infty}=\overline{s_{1}}$. The case of b) can be obtained in a similar way. This concludes the proof.

Corollary 7. Let $r>0$. Then we have: i) The set $\mathcal{I}_{r, w}^{\infty}$ of all positive sequences x that satisfy $\ell_{\infty} \subset\left(W_{r}\right)_{\Delta}+s_{x}$ is determined by $\mathcal{I}_{r, w}^{\infty}=$ $\left\{\begin{array}{ll}\overline{s_{1}} & \text { if } r<1, \\ U^{+} & \text {if } r \geq 1 .\end{array}\right.$ ii) The set $\mathcal{I}_{r, w}^{0}$ of all positive sequences x that satisfy $\ell_{\infty} \subset\left(W_{r}^{0}\right)_{\Delta}+s_{x}$ is determined by $\mathcal{I}_{w}^{0}=\mathcal{I}_{w}^{\infty}$ for all $r \neq 1$.

Proof. i) The case $r<1$ follows from Corollary 6 since we have $\sum_{k=1}^{\infty} k r^{k}<\infty$. Then the nonzero entries of the triangle $D_{1 / r} \Delta$ are defined by $\left(D_{1 / r} \Delta\right)_{n n}=-\left(D_{1 / r} \Delta\right)_{n, n-1}=r^{-n}$. So the condition $r \geq 1$ implies $D_{1 / r} \Delta \in\left(\ell_{\infty}, \ell_{\infty}\right)$ and the inclusion $\left(\ell_{\infty}, \ell_{\infty}\right) \subset\left(\ell_{\infty}, w_{\infty}\right)$ successively implies $D_{1 / r} \Delta \in\left(\ell_{\infty}, w_{\infty}\right), \ell_{\infty} \subset\left(W_{r}\right)_{\Delta}$ and $\mathcal{I}_{r, w}^{\infty}=U^{+}$. ii) can be shown similarly. This completes the proof.

5.2. Solvability of the (SSIE) of the form $\ell_{\infty} \subset \mathcal{E}+s_{x}^{0}$

By Proposition $1 i i$) the (SSIE) $\ell_{\infty} \subset s_{a}^{(c)}+F_{x}^{\prime}$ where $F^{\prime} \in \Phi$ is equivalent to $x \in \overline{F^{\prime}}$ for all $a \in c_{0}$. Especially we have $\ell_{\infty} \subset s_{a}^{(c)}+s_{x}^{0}$ with $a \in c_{0}$ if and only if $\lim _{n \rightarrow \infty} x_{n}=\infty$. In the next theorem we extend this result to the case when $a \in c$.

Theorem 3. Let $\mathcal{E} \subset c$ be a linear space of sequences. Then the set $\mathbb{I}_{\mathcal{E}}^{\infty}=$ $\mathcal{I}\left(\mathcal{E}, s_{1}, c_{0}\right)$ of all positive sequences x such that $\ell_{\infty} \subset \mathcal{E}+s_{x}^{0}$ is determined by $\mathbb{I}_{\mathcal{E}}^{\infty}=\overline{c_{0}}$.

Proof. As we have seen above we have $\mathbb{I}_{\mathcal{E}}^{\infty} \subset \mathbb{I}_{c}^{\infty}$. So we first show $\mathbb{I}_{c}^{\infty} \subset \overline{c_{0}}$. Assume there is $x \in \mathbb{I}_{c}^{\infty}$ and $x \notin \overline{c_{0}}$. Then we have $1 / x \notin c_{0}$ and there is a strictly increasing sequence $\left(n_{i}\right)_{i \geq 1}$ tending to infinity such that $\left(x_{n_{i}}\right)_{i \geq 1} \in \ell_{\infty}$. Now let $h \in \ell_{\infty}$ be the sequence defined by $h_{n_{i}}=(-1)^{i}$ and $h_{n}=0$ for all $n \notin\left\{n_{i}: i \in \mathbb{N}\right\}$. Since $\ell_{\infty} \subset c+s_{x}^{0}$ there are sequences $\varphi \in c$ and $\varepsilon \in c_{0}$ such that $h=\varphi+x \varepsilon$ and $(-1)^{i}=\varphi_{n_{i}}+\varepsilon_{n_{i}} x_{n_{i}}$ for all i. This leads to a contradiction since $\varepsilon_{n_{i}} x_{n_{i}} \rightarrow 0$ and $\varphi_{n_{i}}+\varepsilon_{n_{i}} x_{n_{i}}$ tends to a limit as $i \rightarrow \infty$. This implies $\mathbb{I}_{c}^{\infty} \subset \overline{c_{0}}$ and $\mathbb{I}_{\mathcal{E}}^{\infty} \subset \overline{c_{0}}$. Conversely, we have $x \in \overline{c_{0}}$ implies $1 / x \in c_{0}$ and since $c_{0}=M\left(s_{1}, c_{0}\right)$ we successively obtain $\ell_{\infty} \subset s_{x}^{0}$, $\ell_{\infty} \subset \mathcal{E}+s_{x}^{0}$ and $x \in \mathbb{I}_{\mathcal{E}}^{\infty}$. This shows the inclusion $\overline{c_{0}} \subset \mathbb{I}_{\mathcal{E}}^{\infty}$ and we conclude $\mathbb{I}_{\mathcal{E}}^{\infty}=\overline{c_{0}}$.

As an immediate consequence of Theorem 3 we obtain the next corollary.
Corollary 8. Let $a \in(c s)^{+}$and let \mathcal{E} be a linear space of sequences such that $\mathcal{E} \subset\left(s_{a}\right)_{\Delta}$. Then the set $\mathbb{I}_{\mathcal{E}}^{\infty}$ of all positive sequences x such that $\ell_{\infty} \subset \mathcal{E}+s_{x}^{0}$ is determined by $\mathbb{I}_{\mathcal{E}}^{\infty}=\overline{c_{0}}$.

Proof. We have $\left(s_{a}\right)_{\Delta} \subset c$ since $a \in c s$ implies $\Sigma D_{a} \in\left(s_{1}, c\right)$. So we have $\mathcal{E}+s_{x}^{0} \subset c+s_{x}^{0}$ which implies $\mathbb{I}_{\mathcal{E}}^{\infty} \subset \mathbb{I}_{c}^{\infty} \subset \overline{c_{0}}$. Conversely, as we have just seen we have $x \in \overline{c_{0}}$ successively implies $\ell_{\infty} \subset s_{x}^{0}, \ell_{\infty} \subset \mathcal{E}+s_{x}^{0}$ and $\overline{c_{0}} \subset$ $\mathbb{I}_{\mathcal{E}}^{\infty}$. We conclude $\mathbb{I}_{\mathcal{E}}^{\infty}=\overline{c_{0}}$. This completes the proof.

Corollary 9. Let $a \in(c s)^{+}$. Then the next $(S S I E) \ell_{\infty} \subset\left(s_{a}^{0}\right)_{\Delta}+s_{x}^{0}$, $\ell_{\infty} \subset\left(s_{a}^{(c)}\right)_{\Delta}+s_{x}^{0}$ and $\ell_{\infty} \subset\left(s_{a}\right)_{\Delta}+s_{x}^{0}$ have the same set of solutions that are determined by $\widetilde{\mathcal{I}_{\Delta}^{0}}=\overline{c_{0}}$.

Corollary 10. Let $p>1$ and $q=p /(p-1)$ and assume $a^{q} \in(c s)^{+}$. Then the solutions of the $(S S I E) \ell_{\infty} \subset\left(\ell_{a}^{p}\right)_{\Delta}+s_{x}^{0}$ are determined by $\mathcal{I}_{\left(\ell_{a}^{p}\right)_{\Delta}}^{0}=\overline{c_{0}}$.

We obtain a direct extension of Proposition 1 in the case $E \in\left\{c_{0}, c, \ell_{\infty}\right\}$, $F=\ell_{\infty}$ and $F^{\prime}=c_{0}$.

Corollary 11. Let $a \in U^{+}$. Then we have: i) If $a \in s_{1}$ then the solutions of the (SSIE) $\ell_{\infty} \subset s_{a}^{0}+s_{x}^{0}$ are determined by $\mathcal{I}_{a}\left(c_{0}, s_{1}, c_{0}\right)=\overline{c_{0}}$. ii) If $a \in c$ then the solutions of the $(S S I E) \ell_{\infty} \subset s_{a}^{(c)}+s_{x}^{0}$ are determined by $\mathcal{I}_{a}\left(c, s_{1}, c_{0}\right)=\overline{c_{0}}$. iii) If $a \in c_{0}$ then the solutions of the $(S S I E) \ell_{\infty} \subset s_{a}+s_{x}^{0}$ are determined by $\mathcal{I}_{a}\left(s_{1}, s_{1}, c_{0}\right)=\overline{c_{0}}$.

By similar arguments as those used in Corollary 6 we obtain the next result.

Corollary 12. Let $a \in D_{(1 / n)_{n \geq 1}} * c s$. The solutions of each of the (SSIE) $\ell_{\infty} \subset\left(W_{a}^{0}\right)_{\Delta}+s_{x}^{0}$ and $\ell_{\infty} \subset\left(W_{a}\right)_{\Delta}+s_{x}^{0}$, are determined by $\mathcal{I}_{\left(W_{a}^{0}\right)_{\Delta}}^{0}=\mathcal{I}_{\left(W_{a}\right)_{\Delta}}^{0}=$ $\overline{c_{0}}$.

6. On the $(\mathrm{SSIE}) c_{0} \subset \mathcal{E}+s_{x}$

In this part we deal with the $(\mathrm{SSIE}) c_{0} \subset \mathcal{E}+s_{x}$ with $\mathcal{E} \subset\left(s_{a}\right)_{\Delta}$ and $a \in c_{0}^{+}$. The inclusion $c_{0} \subset\left(s_{a}\right)_{\Delta}+s_{x}$ is associated with the next statement. For every $y \in \omega$ there are $u, v \in \omega$ with $y=u+v$ such that $\left(u_{n}-u_{n-1}\right) / a_{n}=$ $O(1)$ and $v_{n} / x_{n}=O(1)(n \rightarrow \infty)$. Notice that if $\sum_{k} a_{k}<\infty$ then we have $\left(s_{a}\right)_{\Delta} \subset c$ since by the Schur's theorem we have $\Sigma D_{a} \in\left(\ell_{\infty}, c\right)$. Then we have $c \nsubseteq\left(s_{a}\right)_{\Delta}$ since the inclusion $c \subset\left(s_{a}\right)_{\Delta}$ is equivalent to $D_{1 / a} \Delta \in\left(c, s_{1}\right)$ and to $a \in \overline{s_{1}}$.

6.1. On the identity $\left(\chi_{a}\right)_{\Delta}+\left(\chi_{b}\right)_{\Delta}=\left(\chi_{a+b}\right)_{\Delta}$

Lemma 6. Let $a, b \in U^{+}$. Then we have $\left(\chi_{a}\right)_{\Delta}+\left(\chi_{b}\right)_{\Delta}=\left(\chi_{a+b}\right)_{\Delta}$ for $\chi=s_{1}$, or c_{0}.

Proof. Since the inclusion $\left(\chi_{a+b}\right)_{\Delta} \subset\left(\chi_{a}\right)_{\Delta}+\left(\chi_{b}\right)_{\Delta}$ is trivial, it is enough to show $\left(\chi_{a}\right)_{\Delta}+\left(\chi_{b}\right)_{\Delta} \subset\left(\chi_{a+b}\right)_{\Delta}$. For this, let $y \in\left(\chi_{a}\right)_{\Delta}+\left(s_{b}\right)_{\Delta}$. Since $\left(\chi_{\alpha}\right)_{\Delta}=\left(\Sigma D_{\alpha}\right) \chi$ with $\alpha \in U^{+}$there are $u, v \in \chi$ such that

$$
y_{n}=\sum_{k=1}^{n} a_{k} u_{k}+\sum_{k=1}^{n} b_{k} v_{k}=\sum_{k=1}^{n}\left(a_{k}+b_{k}\right) z_{k}=\left(\Sigma D_{a}+\Sigma D_{b}\right)_{n} z
$$

where $z_{k}=\left(a_{k} u_{k}+b_{k} v_{k}\right) /\left(a_{k}+b_{k}\right)$ for all k. Since $0<a_{k} /\left(a_{k}+b_{k}\right)<$ 1 and $0<b_{k} /\left(a_{k}+b_{k}\right)<1$ we have $\left|z_{k}\right| \leq\left|u_{k}\right|+\left|v_{k}\right|$ for all k, and $\left(\left|u_{k}\right|+\left|v_{k}\right|\right)_{\geq 1} \in \ell_{\infty}$ for $\chi=s_{1}$ and $\left(\left|u_{k}\right|+\left|v_{k}\right|\right)_{\geq 1} \in c_{0}$ for $\chi=c_{0}$. This shows $y \in\left(\bar{\Sigma} D_{a+b}\right) \chi=\left(\chi_{a+b}\right)_{\Delta}$ and $\left(\chi_{a}\right)_{\Delta}+\left(\chi_{b}\right)_{\Delta} \subset\left(\chi_{a+b}\right)_{\Delta}$. This completes the proof.

Remark 1. As a direct consequence of the preceding lemma we have $\Sigma D_{a} \chi+\Sigma D_{b} \chi=\left(\Sigma D_{a+b}\right) \chi$ for $\chi=s_{1}$, or c_{0}.
6.2. On the $(\mathrm{SSIE}) c_{0} \subset \mathcal{E}+s_{x}$ with $\mathcal{E} \subset\left(s_{\alpha}\right)_{\Delta}$ and $\alpha \in c_{0}^{+}$

For the convenience of the reader we state the next result.
Lemma 7. Let $r>0$ and let \varkappa be any of the symbols s, s^{0}, or $s^{(c)}$. Then we have: i) $\left(\varkappa_{r}\right)_{\Delta} \nsubseteq c_{0}$ for all r. ii) $c_{0} \subset\left(\varkappa_{r}\right)_{\Delta}$ if and only if $r \geq 1$. iii) $c_{0} \nsubseteq\left(\varkappa_{r}\right)_{\Delta}$ for all $r<1$.

Proof. i) We have $\Sigma D_{r} \notin\left(c_{0}, c_{0}\right)$ since $\lim _{n \rightarrow \infty}\left(\Sigma D_{r}\right)_{n k}=r^{k} \neq 0$ for all $k \geq 1$. Then the condition $\left(\varkappa_{1}, c_{0}\right) \subset\left(c_{0}, c_{0}\right)$ implies $\Sigma D_{r} \notin\left(\varkappa_{1}, c_{0}\right)$ and $\left(\varkappa_{r}\right)_{\Delta} \nsubseteq c_{0}$. ii) The inclusion $c_{0} \subset\left(\varkappa_{r}\right)_{\Delta}$ implies $D_{1 / r} \Delta \in\left(c_{0}, \varkappa_{1}\right)$ and since $\left(c_{0}, \varkappa_{1}\right) \subset\left(c_{0}, s_{1}\right)$ we conclude $\left(1 / r^{n}\right)_{n \geq 1} \in \ell_{\infty}$ and $r \geq 1$. Conversely, let $r \geq 1$. Then we have $D_{1 / r} \Delta \in\left(c_{0}, c_{0}\right)$ and since $\left(c_{0}, c_{0}\right) \subset\left(c_{0}, \varkappa_{1}\right)$ we obtain $c_{0} \subset\left(\varkappa_{r}\right)_{\Delta}$ where \varkappa is any of the symbols s, s^{0}, or $s^{(c)}$. iii) is a direct consequence of $i i)$. This completes the proof.

Now we state a result where we must have in mind the statements in Lemma 7 and the equivalence of $\mathcal{E} \subset\left(s_{\alpha}\right)_{\Delta}$ and $D_{1 / \alpha} \Delta \in\left(\mathcal{E}, s_{1}\right)$. So we obtain an extension of Lemma 7 iii) since the condition $\alpha \in c_{0}^{+}$implies $\mathcal{E} \nsubseteq\left(s_{\alpha}\right)_{\Delta}$ for $\mathcal{E} \in\left\{c_{0}, c, \ell_{\infty}\right\}$, and we have not the trivial inclusion $c_{0} \subset \mathcal{E}$ which implies $c_{0} \subset \mathcal{E}+s_{x}$ for all positive sequences x. In the following we write $\left(x^{-}\right)_{n}=x_{n-1}$ for $n \geq 2$ and $x_{1}^{-}=1$.

Theorem 4. Let $\alpha \in c_{0}^{+}$and let $\mathcal{E} \subset\left(s_{\alpha}\right)_{\Delta}$ be a linear space of sequences. Then the set $\mathbb{I}_{\mathcal{E}}^{0}=\mathcal{I}\left(\mathcal{E}, c_{0}, s_{1}\right)$ of all positive sequences x such that $c_{0} \subset \mathcal{E}+s_{x}$ is determined by

$$
\mathbb{I}_{\mathcal{E}}^{0} \cap c=c l^{c}(e) .
$$

Proof. First we show $s_{x} \subset\left(s_{x+x^{-}}\right)_{\Delta}$. Indeed, this inclusion is equivalent to $D_{1 /\left(x+x^{-}\right)} \Delta D_{x} \in\left(s_{1}, s_{1}\right)$ where we have $\left[D_{1 /\left(x+x^{-}\right)} \Delta D_{x}\right]_{n n}=$ $x_{n} /\left(x_{n-1}+x_{n}\right)$ and $\left[D_{1 /\left(x+x^{-}\right)} \Delta D_{x}\right]_{n, n-1}=-x_{n-1} /\left(x_{n-1}+x_{n}\right)$ for all n, the other entries being naught. Now we let $x \in \mathbb{I}_{\mathcal{E}}^{0} \cap c$. Then we have $x \in c$ and $c_{0} \subset\left(s_{\alpha}\right)_{\Delta}+s_{x}$. The last inclusion implies

$$
c_{0} \subset\left(\Sigma D_{\alpha}\right) s_{1}+\left(\Sigma D_{x+x^{-}}\right) s_{1}
$$

and by Lemma 6 we obtain

$$
\left(\Sigma D_{\alpha}\right) s_{1}+\left(\Sigma D_{x+x^{-}}\right) s_{1}=\left(\Sigma D_{\alpha+x+x^{-}}\right) s_{1}=\left(s_{\alpha+x+x^{-}}\right)_{\Delta}
$$

We deduce $c_{0} \subset\left(s_{\alpha+x+x^{-}}\right)_{\Delta}$. So there is $K>0$ such that $\left(\alpha_{n}+x_{n}+x_{n-1}\right)^{-1}$ $\leq K$ and $x_{n}+x_{n-1} \geq 1 / K-\alpha_{n}$ for all n. Since $\alpha \in c_{0}$, there is $M>0$ such that $x_{n}+x_{n-1} \geq M$ for all n. Then the condition $x \in c$ implies $\lim _{n \rightarrow \infty}\left(x_{n}+x_{n-1}\right)=2 \lim _{n \rightarrow \infty} x_{n} \geq M$ and $\lim _{n \rightarrow \infty} x_{n}>0$ which implies $s_{x}^{(c)}=c$. So we have shown $\mathbb{I}_{\mathcal{E}}^{0} \cap c \subset c \cap \bar{c}=c l^{c}(e)$. Conversely, let $x \in c l^{c}(e)$.

Then we have $\lim _{n \rightarrow \infty} x_{n}=L$ with $L>0$. So we have $1 / x \in s_{1}$ which implies $c_{0} \subset s_{x}, c_{0} \subset \mathcal{E}+s_{x}$ and since $x \in c$ we conclude $x \in \mathbb{I}_{\mathcal{E}}^{0} \cap c$. This completes the proof.
6.3. Application to the (SSIE) $F \subset\left(E_{a}\right)_{\Delta}+F_{x}^{\prime}$

In this part we deal with some properties of the (SSIE)

$$
\begin{equation*}
F \subset\left(E_{a}\right)_{\Delta}+F_{x}^{\prime} \tag{3}
\end{equation*}
$$

where E, F and F^{\prime} are linear spaces of sequences
Proposition 2. Let E, F and F^{\prime} be linear spaces of sequences that satisfy $F \supset c_{0}$ and $E, F^{\prime} \subset \ell_{\infty}$. Let $\mathcal{I}\left(\left(E_{a}\right)_{\Delta}, F, F^{\prime}\right) \cap c$ be the set of all convergent and positive sequences x such that (3) holds. If $a \in c_{0}^{+}$then we have:

$$
\begin{equation*}
\mathcal{I}\left(\left(E_{a}\right)_{\Delta}, F, F^{\prime}\right) \cap c \subset c l^{c}(e) \tag{4}
\end{equation*}
$$

Moreover if we assume $c \subset M\left(F, F^{\prime}\right)$ then

$$
\begin{equation*}
\mathcal{I}\left(\left(E_{a}\right)_{\Delta}, F, F^{\prime}\right) \cap c=c l^{c}(e) \tag{5}
\end{equation*}
$$

Proof. We have $x \in \mathcal{I}\left(\left(E_{a}\right)_{\Delta}, F, F^{\prime}\right) \cap c$ implies $c_{0} \subset\left(s_{a}\right)_{\Delta}+s_{x}$ and by Theorem 4 we obtain $x \in c l^{c}(e)$. Now we assume $c \subset M\left(F, F^{\prime}\right)$. Then the condition $x \in \operatorname{cl}^{c}(e)$ implies $s_{x}^{(c)}=c$ and there is $L>0$ such that $\lim _{n \rightarrow \infty} 1 / x_{n}=L$ and $1 / x \in c$. So we obtain $1 / x \in M\left(F, F^{\prime}\right), F \subset F_{x}^{\prime}$ and $x \in \mathcal{I}\left(\left(E_{a}\right)_{\Delta}, F, F^{\prime}\right) \cap c$. This shows the identity in (5). This concludes the proof.

Remark 2. As a direct consequence of the preceding proposition we may show that if E is a linear space of sequences such that $c_{0} \subset E \subset \ell_{\infty}$ then the set $S\left(\left(E_{r}\right)_{\Delta}, c\right)$ with $0<r<1$ be the set of all positive sequences such that $\left(E_{r}\right)_{\Delta}+s_{x}^{(c)}=c$ is determined by $S\left(\left(E_{r}\right)_{\Delta}, c\right)=c l^{c}(e)$.

7. On the $(\mathrm{SSIE}) c \subset \mathcal{E}+s_{x}^{(c)}$ and the $(\mathrm{SSE}) \mathcal{E}+s_{x}^{(c)}=c$

In this part we consider the (SSIE) $c \subset \mathcal{E}+s_{x}^{(c)}$ which is associated with the next statement. For every $y \in c$ there are $u, v \in \omega$ with $y=u+v$ such that $u \in \mathcal{E}$ and $v / x \in c$. Then we solve the equation $\mathcal{E}+s_{x}^{(c)}=c$ where $\mathcal{E} \subset\left(s_{\alpha}\right)_{\Delta}$ with $\sum_{k=1}^{\infty} \alpha_{k}<\infty$.
7.1. On the $(\mathbf{S S I E}) c \subset \mathcal{E}+s_{x}^{(c)}$

We obtain the following lemma.
Lemma 8. Let \mathcal{E} be a linear space of sequences that satisfies $\mathcal{E} \subset\left(s_{\alpha}\right)_{\Delta}$ with $\alpha \in(c s)^{+}$. Then the set $\mathcal{I}^{c}(\mathcal{E}, c)$ of all positive and convergent sequences x that satisfy $c \subset \mathcal{E}+s_{x}^{(c)}$ is determined by

$$
\mathcal{I}^{c}(\mathcal{E}, c)=c l^{c}(e)
$$

Proof. Let $\mathcal{E} \subset\left(s_{\alpha}\right)_{\Delta}$ with $\alpha \in c s^{+}$. Then it can easily be seen that the condition $c \subset \mathcal{E}+s_{x}^{(c)}$ implies $c_{0} \subset \mathcal{E}+s_{x}$. So by Theorem 4 we have

$$
\begin{equation*}
\mathcal{I}^{c}(\mathcal{E}, c) \subset \mathbb{I}_{\mathcal{E}}^{0} \cap c \subset c l^{c}(e) . \tag{6}
\end{equation*}
$$

Now since $1 / x \in c$ implies $c \subset s_{x}^{(c)}$ and $c \subset \mathcal{E}+s_{x}^{(c)}$, by the identity $\bar{c} \cap c=$ $c l^{c}(e)$ we conclude

$$
\begin{equation*}
c l^{c}(e) \subset \mathcal{I}^{c}(\mathcal{E}, c) \tag{7}
\end{equation*}
$$

By (6) and (7) we obtain $\mathcal{I}^{c}(\mathcal{E}, c)=c l^{c}(e)$. This completes the proof.
7.2. On the $(\mathrm{SSE}) \mathcal{E}+s_{x}^{(c)}=c$.

In the following we deal with some (SSE) of the form $\mathcal{E}+F_{x}=F$ where \mathcal{E} and F are two linear subsets of ω. Recall that x satisfies this (SSE) if and only if $\mathcal{E} \subset F, x \in M(F, F)$ and $x \in \mathcal{I}(\mathcal{E}, F)$. The next theorem extends the results on the (SSE) of the form $E_{a}+s_{x}^{(c)}=c$ where $E=c_{0}, c$, or ℓ^{p}, $(p \geq 1)$ stated in ([6], Proposition 5.1, p. 108) and ([6], Theorem 5.2, p. 108). Indeed, here we consider the equation $\mathcal{E}+s_{x}^{(c)}=c$ with $\mathcal{E} \subset\left(s_{\alpha}\right)_{\Delta}$ and $\alpha \in c s^{+}$. For instance the identity $\left(s_{r}\right)_{\Delta}=s_{a}^{(c)}$ for $r<1$ cannot be obtained for any $a \in U^{+}$, since it should imply $1 / a \in c$ and $a_{n} / r^{n}=O(1)(n \rightarrow \infty)$ which is contradictory.

Theorem 5. Let \mathcal{E} be a linear space of sequences that satisfies $\mathcal{E} \subset\left(s_{\alpha}\right)_{\Delta}$ with $\alpha \in c s$. Then the set $\mathcal{S}(\mathcal{E}, c)$ of all positive sequences x that satisfy the $(S S E) \mathcal{E}+s_{x}^{(c)}=c$ is determined by $\mathcal{S}(\mathcal{E}, c)=c l^{c}(e)$.

Proof. Let $x \in \mathcal{S}(\mathcal{E}, c)$. Then we have $s_{x}^{(c)} \subset c$, that is, $x \in c$, and $c \subset \mathcal{E}+s_{x}^{(c)}$. So we have $x \in \mathcal{I}^{c}(\mathcal{E}, c)$ and by Lemma 8 we obtain $\mathcal{S}(\mathcal{E}, c) \subset$ $\mathcal{I}^{c}(\mathcal{E}, c)=c l^{c}(e)$. Conversely, let $x \in c l^{c}(e)$. Then we have $s_{x}^{(c)}=c$. Since $\alpha \in c s^{+}$, by the Schur's theorem we have $\Sigma D_{\alpha} \in\left(s_{1}, c\right)$. This implies $\mathcal{E} \subset\left(s_{\alpha}\right)_{\Delta} \subset c$ and $\mathcal{E}+s_{x}^{(c)}=\mathcal{E}+c=c$. So we obtain $c l^{c}(e) \subset \mathcal{S}(\mathcal{E}, c)$ and we conclude $\mathcal{S}(\mathcal{E}, c)=c l^{c}(e)$. This completes the proof.

Corollary 13. The perturbed equations $\left(s_{r}^{0}\right)_{\Delta}+s_{x}^{(c)}=c,\left(s_{r}^{(c)}\right)_{\Delta}+s_{x}^{(c)}=c$ and $\left(s_{r}\right)_{\Delta}+s_{x}^{(c)}=c$ satisfy $\mathcal{S}\left(\left(s_{r}^{0}\right)_{\Delta}, c\right)=\mathcal{S}\left(\left(s_{r}^{(c)}\right)_{\Delta}, c\right)=\mathcal{S}\left(\left(s_{r}\right)_{\Delta}, c\right)$ and $\mathcal{S}\left(\left(s_{r}\right)_{\Delta}, c\right)= \begin{cases}c l^{c}(e) & \text { if } r<1, \\ \varnothing & \text { if } r \geq 1 .\end{cases}$

Proof. We have $\mathcal{S}\left(\left(s_{r}\right)_{\Delta}, c\right)=c l^{c}(e)$ if $r<1$ by Theorem 5, where $\alpha=\left(r^{n}\right)_{n \geq 1} \in c s$. Then we have $\left(E_{r}\right)_{\Delta} \nsubseteq c$ for all $r \geq 1$ and $E \in\left\{c_{0}, c, \ell_{\infty}\right\}$. Indeed, the condition $\left(E_{r}\right)_{\Delta} \subset c$ should imply $\Sigma D_{r} \in\left(c_{0}, c\right)$ and $r<1$. This completes the proof.

Corollary 14. The perturbed (SSE) defined by $\left(W_{r}\right)_{\Delta}+s_{x}^{(c)}=c$ and $\left(W_{r}^{0}\right)_{\Delta}+s_{x}^{(c)}=c$ satisfy the identities $\mathcal{S}\left(\left(W_{r}\right)_{\Delta}, c\right)=\mathcal{S}\left(\left(W_{r}^{0}\right)_{\Delta}, c\right)=$ $\mathcal{S}\left(\left(s_{r}\right)_{\Delta}, c\right)$ where $\mathcal{S}\left(\left(s_{r}\right)_{\Delta}, c\right)$ is determined in Corollary 13.

Proof. We have $\left(W_{r}\right)_{\Delta}=\left(w_{\infty}\right)_{D_{1 / r} \Delta}$ and since $w_{\infty} \subset s_{(n)_{n \geq 1}}$ we obtain $\left(W_{r}\right)_{\Delta} \subset\left(s_{\left.\left(n r^{n}\right)_{n \geq 1}\right)}\right)_{\Delta}$, then we apply Theorem 5 with $\alpha=\left(n r^{n}\right)_{n \geq 1} \in c s$. In the same way we have $\left(W_{r}^{0}\right)_{\Delta} \subset\left(W_{r}\right)_{\Delta} \subset\left(s_{\left(n r^{n}\right)_{n \geq 1}}\right)_{\Delta}$. Then we have $\left(E_{r}\right)_{\Delta} \nsubseteq c$ for all $r \geq 1$ and $E \in\left\{w_{0}, w_{\infty}\right\}$. Indeed, the condition $\left(E_{r}\right)_{\Delta} \subset c$ should imply $\Sigma D_{r} \in\left(w_{0}, c\right)$ and $\Sigma D_{r} \in\left(c_{0}, c\right)$ since $w_{0} \supset c_{0}$ and as above we obtain $r<1$. This concludes the proof.

8. Application to the solvability of the (SSE) of the form $\left(\ell_{r}^{p}\right)_{\Delta}+F_{x}=F$

In this part we apply the results stated in the previous sections and we extend the results stated in [10] where we studied the (SSE) of the form $\left(E_{r}\right)_{\Delta}+F_{x}=F_{u}$ with $r, u>0$ and where E, F are any of the sets c_{0}, c, or ℓ_{∞} and the $(\mathrm{SSE})\left(W_{r}^{0}\right)_{\Delta}+s_{x}^{(c)}=s_{b}^{(c)}$. Then we study the (SSE) $\left(\ell_{r}^{p}\right)_{\Delta}+F_{x}=F$ where F is any of the sets c_{0}, c, or ℓ_{∞} and $p \geq 1$. In the next result we use the characterization of $\left(\ell^{p}, F\right)$ where $F=c_{0}, c$, or ℓ_{∞}, see for instance ([18], Theorem 1.37, p. 161).

Proposition 3. Let $p \geq 1$ and $r>0$, and let \mathcal{S}_{p}^{0} be the set of all positive sequences x such that $\left(\ell_{r}^{p}\right)_{\Delta}+s_{x}^{0}=c_{0}$. Then $\mathcal{S}_{p}^{0}=\varnothing$.

Proof. The entries of the triangle ΣD_{r} are defined by $\left(\Sigma D_{r}\right)_{n k}=r^{k}$ for $k \leq n$. Then we have $\lim _{n \rightarrow \infty}\left(\Sigma D_{r}\right)_{n k} \neq 0$ for all k, which implies $\Sigma D_{r} \notin\left(\ell^{p}, c_{0}\right)$ and $\left(\ell_{r}^{p}\right)_{\Delta} \nsubseteq c_{0}$. We conclude $\mathcal{S}_{p}^{0}=\varnothing$.

We also obtain the next result.
Theorem 6. Let $r, u>0$ and let $p \geq 1$. Then we have:
i) Let $p>1$. Then the set $\mathcal{S}_{p}^{F}=\mathcal{S}\left(\left(\ell_{r}^{p}\right)_{\Delta}, F\right)$ of all positive sequences x such that $\left(\ell_{r}^{p}\right)_{\Delta}+F_{x}=F$ where F is either of the sets c, or ℓ_{∞} is determined by

$$
\mathcal{S}_{p}^{F}= \begin{cases}c l^{F}(e) & \text { if } r<1 \\ \varnothing & \text { if } r \geq 1\end{cases}
$$

ii) a) The set $\mathcal{S}_{1}^{\infty}=\mathcal{S}\left(\left(\ell_{r}^{1}\right)_{\Delta}, \ell_{\infty}\right)$ of all positive sequences x such that $\left(\ell_{r}^{1}\right)_{\Delta}+s_{x}=s_{1}$ is determined by

$$
\mathcal{S}_{1}^{\infty}= \begin{cases}c l^{\infty}(e) & \text { if } r \leq 1 \\ \varnothing & \text { if } r>1\end{cases}
$$

b) The set $\mathcal{S}_{1}^{c}=\mathcal{S}\left(\left(\ell_{r}^{1}\right)_{\Delta}, c\right)$ satisfies the identity $\mathcal{S}_{1}^{c}=c l^{c}(e)$ for $r<1$ and $\mathcal{S}_{1}^{c}=\varnothing$ for $r>1$.

Proof. i) Case $F=c$. Let $x \in \mathcal{S}_{p}^{c}$. Then we have

$$
\begin{equation*}
\left(\ell_{r}^{p}\right)_{\Delta} \subset c \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
x \in c \tag{9}
\end{equation*}
$$

We have (8) if and only if $\Sigma D_{r} \in\left(\ell^{p}, c\right)$ and by the characterization of ($\left.\ell^{p}, c\right)$ it can easily be shown that the condition in (8) is equivalent to

$$
\begin{equation*}
\sup _{n \geq 1} \sum_{k=1}^{n} r^{k q}<\infty \quad \text { with } \quad q=p /(p-1) . \tag{10}
\end{equation*}
$$

So we have $\mathcal{S}_{p}^{c} \neq \varnothing$ implies $r<1$ and $\mathcal{S}_{p}^{c}=\varnothing$ if $r \geq 1$. Then for $r<1$ we have $\left(\ell_{r}^{p}\right)_{\Delta} \subset\left(s_{r}\right)_{\Delta}$ with $\left(r^{n}\right)_{n \geq 1} \in c s$ and we conclude by Theorem 5 that $\mathcal{S}_{p}^{c}=c l^{c}(e)$.

Case $F=\ell_{\infty}$. Let $x \in \mathcal{S}_{p}^{\infty}$. Then we have

$$
\begin{gather*}
\left(\ell_{r}^{p}\right)_{\Delta} \subset \ell_{\infty} \tag{11}\\
x \in \ell_{\infty} \tag{12}
\end{gather*}
$$

and

$$
\begin{equation*}
\ell_{\infty} \subset\left(\ell_{r}^{p}\right)_{\Delta}+s_{x} \tag{13}
\end{equation*}
$$

As we have seen above the condition in (11) is equivalent to $\Sigma D_{r} \in\left(\ell^{p}, \ell_{\infty}\right)$ and to (10). So we have $r<1$. Then by Theorem 2 with $\mathcal{E}=\left(\ell_{r}^{p}\right)_{\Delta} \subset c$
and by (12) the condition in (13) implies $x \in c l^{\infty}(e)$. So we have shown $\mathcal{S}_{p}^{\infty} \subset c l^{\infty}(e)$ for $r<1$. Conversely, let $r<1$ and $x \in c l^{\infty}(e)$. Then we have $s_{x}=\ell_{\infty}$ and $\left(\ell_{r}^{p}\right)_{\Delta} \subset \ell_{\infty}$ which imply $\left(\ell_{r}^{p}\right)_{\Delta}+s_{x}=\left(\ell_{r}^{p}\right)_{\Delta}+\ell_{\infty}=\ell_{\infty}$. So we have $c l^{\infty}(e) \subset \mathcal{S}_{p}^{\infty}$. This concludes the proof of $\left.i\right)$.
ii) a) Let $x \in \mathcal{S}_{1}^{\infty}$. Then the conditions in (11), (12) and (13) hold with $p=1$. The condition in (11) with $p=1$ is equivalent to $\Sigma D_{r} \in\left(\ell^{1}, \ell_{\infty}\right)$ and to $\left(r^{n}\right)_{n \geq 1} \in \ell_{\infty}$. So we have $\mathcal{S}_{1}^{\infty} \neq \varnothing$ if $r \leq 1$. For $r<1$, by Theorem 2 where $\mathcal{E}=\left(\ell_{r}^{1}\right)_{\Delta} \subset\left(s_{\alpha}\right)_{\Delta}$ for $\alpha=\left(r^{n}\right)_{n \geq 1} \in c_{0}$ the inclusion in (13) with $p=1$ implies $x \in \overline{s_{1}}$ and since (12) holds we conclude $\mathcal{S}_{1}^{\infty} \subset c l^{\infty}(e)$. By similar arguments as those used above we obtain $c l^{\infty}(e) \subset \mathcal{S}_{1}^{\infty}$ for $r<1$ and we conclude $\mathcal{S}_{1}^{\infty}=c l^{\infty}(e)$.

Case $r=1$. We write ℓ^{1} for the set ℓ_{1}^{1} and we denote by $b v$ the set ℓ_{Δ}^{1} of bounded variation. Now we let $x \in \mathcal{S}\left(b v, s_{1}\right)$. Then we successively have $b v \subset \ell_{\infty}$, since $\Sigma \in\left(\ell^{1}, \ell_{\infty}\right), x \in \ell_{\infty}$ and $\ell_{\infty} \subset b v+s_{x}$. Since we have $\Sigma \in\left(\ell^{1}, c\right)$ we obtain $b v \subset c$ and by Theorem 2 the statement $\ell_{\infty} \subset b v+s_{x}$ implies $x \in \overline{s_{1}}$. So we have $\mathcal{S}\left(b v, s_{1}\right) \subset c l^{\infty}(e)$. Conversely, assume $x \in c l^{\infty}(e)$. Then we have $s_{x}=s_{1}$ and since $b v \subset \ell_{\infty}$ we obtain $b v+s_{x}=b v+s_{1}=s_{1}$ and $x \in \mathcal{S}\left(b v, s_{1}\right)$. We conclude $\mathcal{S}\left(b v, s_{1}\right)=c l^{\infty}(e)$.
b) Let $x \in \mathcal{S}_{1}^{c}$ and let $r \neq 1$. Then the conditions in (8), (9) hold with $p=1$ and the condition in (8) is equivalent to $\Sigma D_{r} \in\left(\ell^{1}, c\right)$ and to $\left(r^{n}\right)_{n \geq 1} \in c$. So we have $r<1$. As we have seen in i) we conclude by Theorem 5 that $\mathcal{S}_{1}^{c}=\operatorname{cl}^{c}(e)$.

References

[1] De Malafosse B., On some BK space, Int. J. Math. and Math. Sc., 28(2003), 1783-1801.
[2] de Malafosse B., Sum of sequence spaces and matrix transformations, Acta Math. Hung., 113(3)(2006), 289-313.
[3] de Malafosse B., Applications of the summability theory to the solvability of certain sequence spaces equations with operators of the form $B(r, s)$, Commun. Math. Anal., 13(1)(2012), 35-53.
[4] de Malafosse B., Application of the infinite matrix theory to the solvability of certain sequence spaces equations with operators, Mat. Vesnik, 54(1)(2012), 39-52.
[5] De Malafosse B., Solvability of certain sequence spaces inclusion equations with operators, Demonstratio Math., 46(2)(2013), 299-314.
[6] De Malafosse B., Solvability of sequence spaces equations using entire and analytic sequences and applications, J. Ind. Math. Soc., $81 \mathrm{~N}^{\circ} 1-2$, (2014), 97-114.
[7] de Malafosse B., On sequence spaces equations of the form $E_{T}+F_{x}=F_{b}$ for some triangle T, Jordan J. Math. Stat., 8(1)(2015) 79-105.
[8] de Malafosse B., Application of the infinite matrix theory to the solvability of sequence spaces inclusion equations with operators, Ukrainian Math. J., (under press).
[9] de Malafosse B., On new classes of sequence spaces inclusion equations involving the sets $c_{0}, c, \ell_{p},(1 \leq p \leq \infty), w_{0}$ and w_{∞}, J. Ind. Math. Soc., 84(3-4)(2017), 211-224.
[10] de Malafosse B., New results on the sequence spaces equations using the operator of the first difference, Acta Math. Univ. Comen., 86 n $^{\circ} 2$ (2017), 227-242.
[11] de Malafosse B., Malkowsky E., Matrix transformations between sets of the form W_{ξ} and operators generators of analytic semigroups, Jordan J. Math. Stat., 1(1)(2008), 51-67.
[12] de Malafosse B., Malkowsky E., On the solvability of certain (SSIE) with operators of the form $B(r, s)$, Math. J. Okayama. Univ., 56(2014), 179-198.
[13] de Malafosse B., Malkowsky E., On sequence spaces equations using spaces of strongly bounded and summable sequences by the Cesàro method, Antartica J. Math., 10(6)(2013), 589-609.
[14] de Malafosse, B., Rakočević V., Calculations in new sequence spaces and application to statistical convergence, Cubo A, 12(3)(2010), 117-132.
[15] de Malafosse B., Rakočević V., Matrix transformations and sequence spaces equations, Banach J. Math. Anal., 7(2) (2013), 1-14.
[16] Farés A., de Malafosse B., Sequence spaces equations and application to matrix transformations, Int. Math. Forum 3, (2008) n¹9, 911-927.
[17] Malkowsky E., The continuous duals of the spaces $c_{0}(\Lambda)$ and $c(\Lambda)$ for exponentially bounded sequences Λ, Acta Sci. Math. (Szeged), 61(1995), 241-250.
[18] Malkowsky E., Rakočević V., An introduction into the theory of sequence spaces and measure of noncompactness, Zbornik radova, Matematički Institut SANU, 9(17)(2000), 143-243.
[19] Maddox I.J., Infinite matrices of operators, Springer-Verlag, Berlin, Heidelberg and New York, 1980.
[20] Wilansky A., Summability through Functional Analysis, North-Holland Mathematics Studies, 85(1984).

Bruno de Malafosse
Université du Havre, France
e-mail: bdemalaf@wanadoo.fr

Received on 01.05.2017 and, in revised form, on 08.11.2017.

