DE DE GRUYTER
OPEN

G FASCICULI MATHEMATTICI
Nr 59 2017

DOI:10.1515/fascmath-2017-0020

BRUNO DE MALAFOSSE

EXTENSION OF SOME RESULTS ON THE (SSIE) AND
THE (SSE) OF THE FORM F C £+ F' and £+ F, = F

ABSTRACT. Given any sequence a = (ay,),>1 of positive real num-
bers and any set E of complex sequences, we write F, for the set
of all sequences y = (yn)n>1 such that y/a = (yn/an)n>1 € E. In
this paper we deal with the solvability of the (SSIE) of the form
ls C E+F. where £ is a linear space of sequences and F” is either
Co, or Lo and we solve the (SSIE) ¢ C € + s, for £ C (s4), and
a € ¢g. Then we study the (SSIE) ¢ C & + st and the (SSE)
E+ séc) = c¢. Then we apply the previous results to the solvability
of the (SSE) of the form (¢£), + F, = F for p > 1 and F is any
of the sets ¢y, ¢, or £,. These results extend some of those given
in [8] and [9].

KeEy worbDs: BK space, matrix transformations, multiplier of
sequence spaces, sequence spaces inclusion equations, sequence
spaces inclusion equations with operator.

AMS Mathematics Subject Classification: 40C05, 46A45.

1. Introduction

We write w for the set of all complex sequences ¥ = (Yn)n>1, oo, ¢ and ¢
for the sets of all bounded, convergent and null sequences, respectively. We
write c¢s for the set of all convergent series and 7 = {y € w: Y 2, |yn|’ < oo}
for 1 <p < oo. Ify, z € w, then we write yz = (ynzn),~;- Let U =
{yew:y, #0} and UT = {y € w: y, > 0}. We write z/u = (2n/un), >,
for all z € w and all v € U, in particular 1/u = e/u, where e is the sequence
with e,, = 1 for all n. Finally, ifa € U™ and F is any subset of w, then we put
E,=(1/a) '« E={ycw:y/ac E}. Let E and F be subsets of w. In [1],
the sets sq, s and s were defined for positive sequences a by (1/a)™ « E
and E = l, ¢, c, respectively. In [2] the sum E, + F}, and the product
E, * Fy, were defined where F, F are any of the symbols s, s°, or s(9. Then
in [5] the solvability was determined of sequences spaces inclusion equations
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Gy C E, + F, where E, F, G € {so,s(c),s} and some applications were
given to sequence spaces inclusions with operators. Recall that the spaces
Weo and wq of strongly bounded and summable sequences are the sets of
all y such that (™'Y}, \ykl)n is bounded and tends to zero, respectively.
These spaces were studied by Maddox [19] and Malkowsky, Rakocevi¢ [18].
In [11] we gave some properties of well-known operators defined on the sets
Wa = (1/a)"' % we and WO = (1/a) ™ % wp. In this paper we deal with
special sequence spaces inclusion equations (SSIE), (resp. sequence spaces
equations (SSE)), which are determined by an inclusion, (resp. identity),
for which each term is a sum or a sum of products of sets of the form (Eq)p
and (E f(x))T where f maps U™ to itself, E is any linear space of sequences
and T is a triangle. Some results on (SSE) and (SSIE) were stated in [3],
[7], [16], [5], [15], [6], [12], [13].

In this paper for given linear spaces of sequences £, F' and F’ we consider
the (SSIE) F C € + F as a perturbed inclusion equation of the elementary
inclusion equation F' C F.. In this way it is interesting to determine what
are the linear spaces of sequences & such that F' € & for which the elementary
and the perturbed inclusions equations have the same solutions. In a similar
way the (SSE) £ + F, = F can be considered as the perturbed equation of
the equation F, = F. Our aim is to extend some of the known results
on the solvability of the (SSIE) of the form F C & + F, stated in [15],
[6], [5], [13], [7], [8], [9]. In [8] writing D, for the diagonal matrix with
(Dy),,, =", we dealt with the solvability of the (SSIE) using the operator
of the first difference A, defined by ¢ C D, * Ea + ¢, with F = ¢y, or
s1. Then we dealt with the (SSIE) ¢ C D, % E¢, + s with E = ¢, ¢
or s1, and s; C D, *x E¢, + s, with E = ¢ or s1, where (] is the Cesaro
operator defined by (C1),y = (3 r_, yx) /n. In [10] we solved the (SSE)
with operator and (E,), + F = F,, for r, u > 0 where E, F are any of the
sets ¢, ¢, {» and the (SSE) (WP)A + sgf) = 31([:). In [9] we dealt with the
class of (SSIE) of the form F' C E, + F,, where F' € {cp, P, wp, ws} and
E, F' € {co, ¢, loo, P, w0, Weo }, (p > 1). In this paper we extend the results
stated in [8], [9]. In this way we deal with the (SSIE) ¢y C € + s, where
E C (Ssa)p for a € ¢y and we solve the (SSIE) of the form 4o, C € + F,
where F” is either ¢g, or £o. Then we study the (SSIE) ¢ C £+ sﬁf) and the
(SSE) &€ + s = ¢ with € ¢ (Sa) A With a € es™.

This paper is organized as follows. In Section 2 we recall some well-known
results on sequence spaces and matrix transformations. In Section 3 we
recall some results on the multipliers and on the characterizations of matrix
transformations. In Section 4 we recall some general results on the solvability
of the (SSIE) of the form F C E, + F,. In Section 5 we deal with the
solvability of the (SSIE) of the form ¢, C € + F. where F’ is either co, or
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l. In Section 6 we solve the (SSIE) ¢y C € + s,. In Section 7 we study
the (SSIE) ¢ C € + st and the (SSE) € + s%) = ¢. In Section 8 we apply
results of the previous sections to the solvability of the (SSE) of the form
(YA + Fp =F.

2. Premilinaries and notations

An FK space is a complete linear metric space, for which convergence
implies coordinatewise convergence. A BK space is a Banach space of se-
quences that is an FK space. A BK space E is said to have AK if for
every sequence y = (yp)p>1 € E, then y = limp oo D 1y yre® | where
e) =(0,...,0,1,0,...), 1 being in the k — th position.

Let R be the set of all real numbers. For any given infinite matrix A =
(ank)nk>1 we define the operators A, = (apg)r>1 for any integer n > 1,
by Ay = Y peq ankYk, where y = (yg)g>1, and the series are assumed
convergent for all n. So we are led to the study of the operator A defined
by Ay = (Any),~; mapping between sequence spaces. When A maps E
into F, where E and F are subsets of w, we write A € (E,F), (cf. [19],
[20]). It is well known that if E has AK, then the set B (E) of all bounded
linear operators L mapping in E, with norm ||L|| = sup,.o ([|[L (¥)||g / [lv] £)
satisfies the identity B(E) = (F,E). For any subset F of w, we write
Fy ={y€w : Ay € F} for the matrix domain of A in F. Then for any
given sequence u = (up),~; € w we define the diagonal matrix D, by
[Dul,,,, = un for all n. It is interesting to rewrite the set E, using a diagonal
matrix. Let E be any subset of w and u € U™ we have E, = D, * E =
{y=(yn)n Ew :y/u € E}. We use the sets s, s((f), sq and (¢P), defined
as follows (cf. [1]). For given a € UT and p > 1 we put D, * ¢y = 82,
D,xc= sﬁf), Dy *lso = 84, and D, x P = (Ep)a. Each of the spaces D, * F,
where E € {co,¢,{x} is a BK space normed by ||y||, = sup, (|ya|/an) and
s has AK. The set (P, (p > 1) normed by ||yll,, = O rey |yk|p)1/p is a BK
space with AK. If a = (R"),>1 with R > 0, we write sg, SOR, sg), (or cg) and
(P) , for the sets sq, 89, &) and (¢7),, respectively. We also write Dp for
D(Rn)n>1. When R = 1, we obtain s1 = £, 3(1) = ¢p and sgc) = c¢. Notice that
the set S; = (s1,51) is a Banach algebra with HAHS1 = sup,, X rey |ank|)
and we have (cg,s1) = (¢,s1) = (s1,51) = S1. In the following we use the
Schur’s theorem (cf. [20], Theorem 1.17 (iii)) stated as follows. We have
A € (s1,¢) if and only if lim, o ay, = I for all k and for some scalar [,
and limy, o0 Y poy |@nk| = D pey |lk|. We also use the well known properties,
stated as follows.

Lemma 1. Let a, b€ UT and let E, F C w be any linear spaces. We
have A € (Eq, Fy) if and only if Dy, AD, € (E, F).
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Recall that the infinite matrix T = (tnk)n,k:zl is a triangle if ¢,,;, = 0 for
k > n and t,, # 0 for all n. Then we obtain the next lemma.

Lemma 2 ([4], Lemma 9, p. 45). Let T" and T" be any given triangles
and let B, F' C w. Then for any given operator T represented by a triangle
we have T € (Eq/, Fpr) if and only if T"TT ~' € (E, F).

3. Some results on matrix transformations and
on the multipliers of special sets

3.1. On the triangles C'()\) and A (\) and the sets W, and W)

For A € U the infinite matrices C'(\) and A (\) are triangles. We have
[C (N)],,x = 1/ for k < n, and the nonzero entries of A (\) are determined
by [A (M)],,,, = A for all n, and [A (N)],, ,, ; = —Ap—1 foralln > 2. It can be
shown that the matrix A () is the inverse of C' ()), that is, C'(A\) (A (N y) =
AN (CN)y) =y for all y € w. If A = e we obtain the well known
operator of the first difference represented by A(e) = A. We then have
Any = yn — yYn—1 for all n > 1, with the convention yy = 0. It is usually
written ¥ = C'(e) and then we may write C'(A\) = D;/3X. Notice that
A = Y71 We also have c¢s = ¢y for the set of all convergent series. The
Cesaro operator is defined By C; = C((n),>1) . We use the sets of sequences
that are a—strongly bounded and a—strongly convergent to zero defined for

acU" by Wo={yecw:|lyly, =sap, (n~ "> 5_; [yl /ar) < oo} and

(1
Wf:{yew:nlggo (nZ\yk\/ak) :0},
k=1

(cf. [14], [11]). It can easily be seen that W, = {y € w : C1 Dy, |y| € s1}. If
a=(r"),~, the sets W, and W2 are denoted by W, and W?. For r = 1 we
obtain the well-known sets wo, = {y € w: 1Yll,,. = sup, (n=t >0 lukl)
< oo} and wy = {y € w:limy oo (nfl py ]yk|) = O} called the spaces of
sequences that are strongly bounded and strongly summable to zero by the
Cesaro method (cf. [17]).

3.2. On the multipliers of some sets

First we need to recall some well known results. Let y and z be se-
quences and let £ and F' be two subsets of w, we then write M (E, F) =
{y€ew: yze Fforall z€ E}, the set M (E,F) is called the multiplier
space of E and F. In the following we use the next well known results.

Lemma 3. Let E, E, F and F be arbitrary subsets of w. _Then (i)
M(E,F) C M(E,F) for all E C E. (ii) M (E,F) C M(E,F) for all
FCF.



EXTENSION OF SOME RESULTS ON THE (SSIE) AND ... 111

Recall that for a, b € U' and E and F C w we have D, x E C Dy x F
if and only if a/b € M (E,F). In the following we use the results stated
below.

Lemma 4 ([9], Lemma 6, pp. 214-215). Let p > 1. We have:

i) a) M(c,c9) = M (boo,c) = M (boo,c0) = ¢o and M (c,c) = c. b)
M (Els) = M (co, F) = b for E, F = ¢y, ¢, or bs. ¢) M (co,lP) =
M (e, lP) = M (boo, #P) = ¢P. d) M ({P, F) = lo for F € {co,c,s1,0P}.

i) a) M (wo, F) = M (Weo,lo0) = Saiym),., for F' = co, ¢, or le.
b) M(woo;CO) = M(womc) = S? C) M(Elvwoo)

1/n)p>1” = ()

M (41, wp) = s?n) o d) M (E,wy) = wpy for E=s1, orc. e) M (E,ws) =

Woo for E = cg, 51, or c.

QL

an

3.3. The equivalence relation R¢

We need to recall some results on the equivalence relation Rg which is
defined using the multiplier of sequence spaces. For b € UT and for any
subset € of w, we denote by cI€ (b) the equivalence class for the equivalence
relation Rg defined by xRgb if £, = &, for x € U™T. It can easily be seen that
cl€ (b) is the set of all z € U such that /b€ M (£,) and b/xz € M (£,€),
(cf. [15]). We then have clf (b) = c/™(&€) (b). For instance cl® (b) is the
set of all z € U™ such that s§f) = sl()c). This is the set of all sequences
x € UT such that x,, ~ Cb, (n — o0) for some C > 0. We denote by cl* (b)
the class cl’ (b). Recall that ¢/ (b) is the set of all x € U™, such that
K <, /b, < K for all n and for some K, Ko > 0.

4. Some general results on the (SSIE) F C £ + F]

Here we are interested in the study of the set of all positive sequences x
that satisfy the inclusion F' C £ + F, where £, F and F' are linear spaces
of sequences. We may consider this problem as a perturbation problem.

4.1. The perturbed problem

If we know the set M (F, F’), then the solutions of the elementary in-
clusion F| D F are determined by 1/x € M (F,F’). Now the question
is: let £ be a linear space of sequences. What are the solutions of the
perturbed inclusion F., + & D F? An additional question may be the fol-
lowing one: what are the conditions on £ under which the solutions of the
elementary and the perturbed inclusions are the same? In the following we
write Z(E,F,F') ={x €Ut : F C &+ F.}, where E, F and F’ are linear
spaces of sequences. If F' = F' we write Z (£, F) =TI (E,F, F').
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4.2. Some known results on the solvability of (SSIE)

For any set x of sequences we let X = {x € UT : 1/x € x} and we write
O = {cp,c, 81,0, wo, w0} with p > 1. By ¢(1) we define the set of all

sequences o € U™ that satisfy lim, ,oc @, = 1. Then we consider the
condition
(1) G C Gy forallaec(l),

for any given linear space G of sequences. Notice that condition (1) is
satisfied for all G € ®. In this part we denote by U 1+ the set of all sequences
a with 0 < ap, < 1 for all n. We consider the condition

(2) G C Gy, for all a € Uy

for any given linear space G of sequences. Then we introduce a linear space
of sequences H which contains the spaces E and F’. The proof of the next
theorem is based on the fact that if H satisfies the condition in (2) we then
have H, + Hg = Hyyp for all o, B € Ut (cf. [13], Proposition 5.1, pp.
599-600). Notice that ¢ does not satisfy this condition, but each of the sets
o, oo, PP, (p>1), wo and we, satisfies the condition in (2). So we have
for instance s + s% = ngrﬁ. In the following we write M (F,F’) = x.
The next result is used to determine some classes of (SSIE), where we write
To (B, F,F'Y =T (E,, F,F') foracU".

Theorem 1 ([9], Theorem 9, p. 216). Let a € U and let E, F and F’
be linear subspaces of w. Assume

a) x satisfies condition (1).

b) There is a linear space of sequences H that satisfies the condition in
(2) and conditions «) and 3), where o) E, F' C H, 3) M (F,H) = .

Then we have: i) a € M (x,co) implies I, (E,F,F') = X. i) a €

M (F,E) implies T, (E,F,F') =U".
As a direct consequence of the preceding we obtain the following result.

Lemma 5 ([9], Corollary 10, p. 216). Let a € UT, let E, F and F' be
linear subspaces of w. Assume x satisfies condition (1) and assume E C F’
where F' satisfies the condition in (2). Then we have: i) The condition

a € M (x,co) implies T, (E, F,F') = X, ii) the condition a € M (F,E)
implies I, (E,F,F') =UT.

In [8] we have shown the next result on the (SSIE) ¢ C s + F! and
s1 C &) + F! with F' € &.

Proposition 1 ([8]). Let a € Ut and let F' € ®. We have: i)
Zo(c,c, F') = Flifa € co, and Ly (c,c, F') = U™ if1/a € c. ii) Ty (¢, 51, F') =
F'ifa € cy, and I, (¢, 81, F') =U" if 1/a € cy.
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5. Solvability of the (SSIE) of the form ¢, C £ + F]
where F’ is either ¢y or /.,

5.1. Solvability of the (SSIE) of the form /., C £ + s,

By Proposition 1 i¢) the (SSIE) s; C s + s, is equivalent to = € 57 for
all a € ¢y. In the next theorem we extend this result to the case when a € c.
For instance, notice that = is a positive solution of the (SSE) s; C ¢+ s,
if the next statement holds. The condition y, = O (1) implies there are u,
v € w such that u, — [ and v,/z, = O (1) (n — o0) for all y € w and for
some scalar [. Now we state a more general result.

Theorem 2. Let £ C ¢ be a linear space of sequences. Then the set
T (&,s1) of all positive sequences x such that s1 C € + s, is determined by

1(5781) = 81-

Proof. i) Since £ C ¢ we obtain Z (€, s1) C I (¢, s1). So we begin to show
the inclusion Z (¢, s1) C $7. For this, we assume x € Z (¢,s1) and = ¢ 37.
Then we have 1/x ¢ {+ and there is a strictly increasing sequence (n;),~,
tending to infinity such that z,, — 0 (i = o0). Now let h € £, be the
sequence defined by h,,, = (—=1)" and h,, = 0 for all n ¢ {n; : i € N}. Since
loo C ¢+ sz there are sequences ¢ € c and p € ¢, such that h = ¢ +2xp and
(=1)" = @n, + pn,n,. This leads to a contradiction since p,,x,, — 0 and
©n;+Pn,; T, tends to a limit as i — co. This implies Z (¢, s1) C S1. So we have
shown the inclusion Z (€, s1) C 51. Conversely, we show 57 C Z (¢, s1). For
this, let = € 57, that is, 1/x € s1. Since s1 = M (s1,s1) we obtain s1 C s,
s1 CE+ s, and x € Z(E,s1). This shows the inclusion 57 C Z (£, s1) and
we conclude Z (€, s1) = 57. [

As an immediate consequence of Theorem 2 we obtain the next useful
result.

Corollary 1. i) The set Z (c,s1) of all positive sequences = such that
s1 C ¢+ 8y is determined by T (¢, s1) = S1.

ii) The set S(c,s1) of all positive sequences x such that ¢ + sz = s1 is
determined by S (¢, s1) = cl™ (e).

Proof. The proof of i) is immediate and i) follows from i) and the
equivalence of ¢+ s, C s; and x € s7. |

In all that follows we write AT = A\ U™ for any given subset A of w. By
Theorem 2 we obtain the following corollary.
Corollary 2. Let a € (cs)Jr and let € be a linear space of sequences
such that £ C (sq)a- Then the set Ig° of all positive sequences x such that

51 C € + s; is determined by 1g°=57.
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Proof. First recall that XD, is the triangle defined by (¥D,),, = ax
for k < n. We have (sq)5 C c since by the Schur’s theorem a € c¢s implies
YD, € (s1,¢). So we have £+ s, C ¢+ s, which implies Zg° C Z (¢, s1) C 57.
It can easily be seen that 57 C Zg° and Zg° = 51. This concludes the proof. B

Corollary 3. Let a € (¢s)". The next (SSIE) log C (s2)A + Sz, Loo C
(sff))A + 55 and Uy C (Sq)p + Sz, have the same set of solutions that are
determined by Ia = 7.

Corollary 4. Let p > 1 and let a?/?=Y) € (¢s)™. Then the solutions of

the (SSIE) Lo C (£G) A + Sz are determined by I(oz’p) =357.
RN

We obtain a direct extension of Proposition 1 in the case E € {cy, ¢, lo }
and F' = F' = {.

Corollary 5. Let a € U'. Then we have: i) If a € s then the solutions
of the (SSIE) lo C 8O + s, are determined by I, (co,s1,51) =81. i) If
a € c then the solutions of the (SSIE) ls C s\ + s, are determined by
Z(c, 81,81)=3871. tii) If a € ¢y then the solutions of the (SSIE) ls C Sq + Su
are determined by Lo(s1,S1,51)=51.

Corollary 6. Let a € (D(l/n)n>1 x cs)T. The solutions of each of the
(SSIE) a) OEOOO C (E/C?)A + Sz, b) bos C (Wa)a + Se, are determined by
Ty = Tiwa s = 51

Proof. We have (VV(?)A C cif XD, € (wp, c). Since wg C s(()n) _, we have

(VVS)A Ccit¥D, € (s(()n) >1,c) which is equivalent to XD ,,,,)

nz; € (co, ).
By the characterization of (co, ¢) we deduce (Wg)A Ccifac Dyny ., *cs
and we apply Theorem 2. This shows Z(Olfvo)Azsﬁ. The case of b) can be

obtained in a similar way. This concludes the proof. |

Corollary 7. Let r > 0. Then we have: i) The set 17, of all pos-
itive sequences x that satisfy loo C (W;)a + s is determined by 1725, =
{ 51 af r <1,

Ut if r>1.
loo C (VVP)A + s, is determined by IO = I for all v # 1.

i) The set Igw of all positive sequences x that satisfy

Proof. i) The case r < 1 follows from Corollary 6 since we have
Py krk < co. Then the nonzero entries of the triangle D; /A are defined
by (Dl/TA)nn = — (Dl/TA)nn—1 = r~™. So the condition » > 1 implies
Dy /A € (boo, loo) and the inclusion (o0, o) C (loo, Woo) successively im-
plies D1/, A € (loo; Weo), loo C (Wr)p and I7%, = U*. i) can be shown

similarly. This completes the proof. |
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5.2. Solvability of the (SSIE) of the form /., C £ + s¥

By Proposition 1 i7) the (SSIE) £o, C s +F] where I € ® is equivalent
to x € F' for all a € ¢y. Especially we have £, C 8((16) + 82 with a € g if
and only if lim,, o, £, = 0. In the next theorem we extend this result to

the case when a € c.

Theorem 3. Let £ C c be a linear space of sequences. Then the set Iz° =
T (&, s1,c0) of all positive sequences x such that £s, C € + 82 is determined
by I2° =¢p.

Proof. As we have seen above we have Iz° C I2°. So we first show
I C ¢. Assume there is x € I2° and = ¢ ¢5. Then we have 1/ ¢ ¢y and
there is a strictly increasing sequence (n;),~; tending to infinity such that
(%n;)j>1 € loo- Now let h € Lo be the sequence defined by h,,, = (—=1)" and
hy, =0 for all n ¢ {n; : i € N}. Since fo, C c+ s there are sequences ¢ € ¢
and € € ¢y such that h = ¢ + xe and (—1)i = @p, + €n; &y, for all 7. This
leads to a contradiction since ey, xy,, — 0 and ¢, + €, 2p, tends to a limit
as ¢ — oo. This implies I2° C ¢y and IZ° C ¢g. Conversely, we have x € ¢
implies 1/ € ¢ and since ¢y = M (s1,cp) we successively obtain £, C s2,
loo CE+3Y and z € I2°. This shows the inclusion ¢y C Ig° and we conclude
I2° = ¢o. |

As an immediate consequence of Theorem 3 we obtain the next corollary.

Corollary 8. Let a € (cs)™ and let £ be a linear space of sequences
such that € C (sq)a. Then the set IF of all positive sequences x such that
loo C E + 8Y is determined by I2°=cp.

Proof. We have (s,), C c¢ since a € ¢s implies XD, € (s1,¢). So we
have £ + s2 C ¢+ Y which implies I C I° C ¢. Conversely, as we have
just seen we have z € ¢ successively implies £o, C 80, £o, C €+ 52 and & C
I2°. We conclude Ig° = ¢y. This completes the proof. |

Corollary 9. Let a € (¢s)™. Then the next (SSIE) lo C (sg)A + 59,
Uy C (sEf))A + 89 and loo C (8a)a + 8O have the same set of solutions that
are determined by Ig:@.

Corollary 10. Let p > 1 and ¢ = p/ (p — 1) and assume a9 € (cs)".
Then the solutions of the (SSIE) loo C (£5) A+52 are determined by I?Zp) =0p.

A

We obtain a direct extension of Proposition 1 in the case E € {co, ¢, lo},
F =/, and F' = ¢p.
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Corollary 11. Let a € UT. Then we have: i) If a € sy then the
solutions of the (SSIE) lo, C 80 + sV are determined by Z, (co, 1, o) =Co-
i1) If a € c then the solutions of the (SSIE) ls C s + 59 are determined by
T, (e, 81,c0) =Cp. iii) If a € co then the solutions of the (SSIE) loy C 84+ 82
are determined by I, (s1,$1,¢0) = Cp.

By similar arguments as those used in Corollary 6 we obtain the next
result.

Corollary 12. Leta € Dy, _ *cs. The solutions of each of the (SSIE)

n>

E:o C (W) \+52 and log C (Wo)a+52, are determined by I?WQ)A: I[()WG)A =
co-

6. On the (SSIE) ¢y C € + s,

In this part we deal with the (SSIE) ¢ C £ 4+ s, with £ C (s,), and
a € c¢g. The inclusion ¢y C (8q) A + 8z is associated with the next statement.
For every y € w there are u, v € w with y = u+v such that (u, — up—1) /a, =
O (1) and v, /xy, = O (1) (n — o0). Notice that if ), a; < oo then we have
(8a)p C c since by the Schur’s theorem we have XD, € ({s,c). Then we
have ¢ € (s4) since the inclusion ¢ C (s4), is equivalent to Dy, A € (c, 51)
and to a € 357.

6.1. On the identity (xa)r + (Xo)Ao = (Xa+b) A

Lemma 6. Let a, b € UT. Then we have (xa)a + (Xo)A = (Xatb) A for
X = 81, OT Cp.

Proof. Since the inclusion (Xq+6)a € (Xa)a + (Xb)a is trivial, it is

enough to show (xa)a + (X6)a € (Xa+b)a- For this, let y € (xa)a + (55)A-
Since (xa)x = (XDq) x with o € Ut there are u, v € x such that

n n n
Un =D apup+ Y bpog = (ap +bx) 2 = (EDa + ZDy),, 2,
k=1 k=1 k=1

where zp = (agug + brvg) / (ar + bg) for all k. Since 0 < ax/ (ax + br) <
1 and 0 < bg/(ax +br) < 1 we have |zi| < |ug| + |vg| for all k, and
(Jugl + [vkl)sy € loo for x = s1 and (|ug| + |vk])s; € co for x = ¢o. This
shows y € (XDa+5) X = (Xa+b)a a0d (Xa)a + (Xb)a C (Xa+b)a- This com-
pletes the proof. |

Remark 1. As a direct consequence of the preceding lemma we have
YXDux + XDpx = (XDgyp) x for x = s1, or cp.
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6.2. On the (SSIE) ¢y C £ + s, with £ C (s4), and a € ¢
For the convenience of the reader we state the next result.

Lemma 7. Let r > 0 and let > be any of the symbols s, s°, or s(9). Then
we have: i) (3) 5 € co for all . i) co C (56)p if and only if r > 1. iii)
co € (55)p for all r < 1.

Proof. i) We have D, ¢ (co,co) since lim, o0 (D), = r* # 0 for
all £ > 1. Then the condition (s, co) C (co, o) implies XD, ¢ (31, ¢p) and
(%) A & co. ii) The inclusion ¢y C (s2) o implies Dy, A € (co, 1) and since
(co,201) C (co,51) we conclude (1/7"),<, € log and r > 1. Conversely, let
7> 1. Then we have Dy ;A € (co, ¢o) and since (co, ¢) C (co, 21) we obtain

0

cog C (s4)p where s is any of the symbols s, s”, or s, ii4) is a direct

consequence of i7). This completes the proof. |

Now we state a result where we must have in mind the statements in
Lemma 7 and the equivalence of £ C (sa)s and Dy A € (€,51). So we
obtain an extension of Lemma 7 4ii) since the condition a € ¢J implies
E ¢ (sa)p for € € {co,¢,lx}, and we have not the trivial inclusion ¢y C €
which implies cg C £ + s, for all positive sequences x. In the following we

write (z7),, = p—1 for n > 2 and 27 = 1.

Theorem 4. Let o € cf and let £ C (s4) A be a linear space of sequences.
Then the set12 = T (€, co, s1) of all positive sequences x such that co C E+5,
s determined by

12 N e=cl¢ (e).

Proof. First we show s, C (5,4, )5. Indeed, this inclusion is equiv-
alent to Dy/yq,-)ADy € (s1,51) where we have [Dl/(era:_)ADrr}nn =
ZTn/ (Xp-1 + x,) and [Dl/(Hx—)ADm} = —zp_1/ (Xn_1 + x,) for all n,
the other entries being naught. Now we let = € ]Ig N c. Then we have x € ¢
and cg C (8a)a + Sz. The last inclusion implies

n,n—1

co C (£Dq) 51+ (EDyyp-) 51
and by Lemma 6 we obtain
(EDOé) 51+ (EDac—i-z*) 51 = (EDa+z+ac*) S1 = (Sa—&—x—i—x*)A .

We deduce ¢y C (Sg4p40-)a- S0 thereis K > 0such that (o, + 2, + xn,l)_l
< K and z, + z,—1 > 1/K — «, for all n. Since o € ¢y, there is M > 0
such that =, + ,—1 > M for all n. Then the condition x € c¢ implies
limy, o0 (27, + Tp—1) = 2limy, o0 7, > M and lim, o z, > 0 which implies

') = ¢. So we have shown I2Nc C ene = cl°(e). Conversely, let z € ¢ (e).
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Then we have lim,_,~ , = L with L > 0. So we have 1/x € s; which im-
plies ¢g C sz, cg C € + s, and since © € ¢ we conclude = € ]Ig N ¢. This
completes the proof. |

6.3. Application to the (SSIE) F C (E,), + I,

In this part we deal with some properties of the (SSIE)
(3) F C(Ey)p+ Fy

where FE, F' and F’ are linear spaces of sequences

Proposition 2. Let E, F and F' be linear spaces of sequences that
satisfy F D ¢p and E, F' C ls. Let T((Eq)a ,F,F') N c be the set of all
convergent and positive sequences x such that (3) holds. If a € cg then we
have:

(4) T ((Ba)p,F,F')NcCdf(e).
Moreover if we assume ¢ C M (F, F') then
(5) Z((Ba)a,F.F)Nec=cl(e).

Proof. We have x € Z((E,),F, F') Nc implies ¢y C (sq)a + sz and
by Theorem 4 we obtain z € cl¢(e). Now we assume ¢ C M (F, F’). Then
the condition = € cl¢(e) implies 35,9 = c and there is L > 0 such that
limy, 00 1/xy, = L and 1/2 € ¢. So we obtain 1/2 € M (F,F’), F C F, and
z € Z((Eq)a,F,F')Nc. This shows the identity in (5). This concludes the
proof. |

Remark 2. As a direct consequence of the preceding proposition we
may show that if E is a linear space of sequences such that cg C F C £y
then the set S ((E,)A ,c) with 0 <7 < 1 be the set of all positive sequences

such that (E,), + %) = ¢ is determined by S ((Er)a ,c) = cl€(e).

7. On the (SSIE) ¢ C € + s and the (SSE) £+ s{Y =¢
In this part we consider the (SSIE) ¢ C € + s which is associated with
the next statement. For every y € c there are u, v € w with y = u + v such
that v € £ and v/z € ¢. Then we solve the equation & + s = ¢ where

E C (sa)p With >"27 oy < c0.
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7.1. On the (SSIE) ¢ C & + s\
We obtain the following lemma.

Lemma 8. Let £ be a linear space of sequences that satisfies £ C (sq)p
with a € (cs)T. Then the set I¢(,¢) of all positive and convergent se-

quences x that satisfy ¢ C € + sg(cc) s determined by

Z°(E,c) =cl(e).

Proof. Let £ C (s4)a with o € est. Then it can easily be seen that the
condition ¢ C £ + s(xc) implies cg C € + s5. So by Theorem 4 we have

(6) Z¢(E,¢c) C T2 NeCelt (e) .

Now since 1/x € ¢ implies ¢ C s and e c £+ 35,9, by the identity ¢Nc¢ =
cl® (e) we conclude

(7) cl(e) CI¢°(&,¢).

By (6) and (7) we obtain Z¢ (€, ¢) = cl® (e). This completes the proof. W

7.2. On the (SSE) € + s\ = c.

In the following we deal with some (SSE) of the form £ + F,, = F where
€ and F are two linear subsets of w. Recall that x satisfies this (SSE) if and

only if € CF, z € M (F,F) and x € Z(&,F). The next theorem extends
the results on the (SSE) of the form E, + sgf) = ¢ where E = ¢, ¢, or /P,
(p > 1) stated in ([6], Proposition 5.1, p. 108) and ([6], Theorem 5.2, p.
108). Indeed, here we consider the equation & + sz(vc) = c with & C (sq) 5 and
a € cst. For instance the identity (s;), = s((f) for r < 1 cannot be obtained
for any a € U™, since it should imply 1/a € ¢ and a,/r" = O (1) (n — 00)
which is contradictory.

Theorem 5. Let £ be a linear space of sequences that satisfies £ C (sa)a
with « € ¢s. Then the set S (€, c¢) of all positive sequences x that satisfy the

(SSE) € + s$ = ¢ is determined by S (E,¢) = cl(e).

Proof. Let x € S(&,¢). Then we have sg(vc) C ¢, that is, € ¢, and

cC E+5. Sowe have z € ¢ (€,¢) and by Lemma 8 we obtain S (£,¢) C
Z¢(E,¢) = cl° (e). Conversely, let x € cl¢(e). Then we have s = ¢. Since
a € c¢sT, by the Schur’s theorem we have D, € (s1,¢). This implies
€ C(sa)p Ccand £+ s\ = & 4+ ¢ =c. So we obtain cl¢ (e) € S(&,¢) and
we conclude S (€, ¢) = cl®(e). This completes the proof. [ |
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Corollary 13. The perturbed equatwns( ) —FS(m) = ¢ (s (C)) —I-sgf)

and (s T)A—I-sg)—csatzsfyS(( Nasc) =8((s (C)) A €) =S ((sp)a ) and

e 1,
e

Proof. We have S ((s;)r,c) = cl®(e) if » < 1 by Theorem 5, where
a = (r"),>; € cs. Then we have (E,), € cforallr > 1and E € {¢g, ¢, loo}-
Indeed, the condition (E,), C ¢ should imply XD, € (cp,c) and r < 1. This
completes the proof. |

Corollary 14. The perturbed (SSE) defined by (W) + s = ¢ and
(W), + s = ¢ satisfy the identities S (Wy),c) = S((W)),¢) =
S ((ST)A, c) where S ((s;) A ,c) is determined in Corollary 183.

Proof. We have (W,), = (wOO)Dl/TA and since weo C 5(,) , we obtain
(Wr)a C (S(nrm), -, )a, then we apply Theorem 5 with a = (nr™),; € cs.
In the same way we have (VVP)A C (Wi)a C (S(nrn),-,)a- Then we have
(Er)pn € cforall r > 1 and E € {wp, ws }. Indeed, the condition (E,), C ¢
should imply D, € (wo,c) and XD, € (cy,c) since wg D ¢y and as above
we obtain r < 1. This concludes the proof. |

8. Application to the solvability of the (SSE)
of the form (), + F, = F

In this part we apply the results stated in the previous sections and we
extend the results stated in [10] where we studied the (SSE) of the form
(Ey)p + Fp = F, with 7, u > 0 and where E, F' are any of the sets co,
¢, or los and the (SSE) (W9), + s& = s\, Then we study the (SSE)
((P)A + Fy = F where F is any of the sets ¢g, ¢, or o, and p > 1. In the
next result we use the characterization of (¢7, F') where F' = ¢y, ¢, or {o,
see for instance ([18], Theorem 1.37, p. 161).

Proposition 3. Letp > 1 andr > 0, and let SS be the set of all positive
sequences x such that ((X) A + 8% = co. Then Sg =

Proof. The entries of the triangle D, are defined by (XD,),, = r*
for Kk < n. Then we have lim, o (XD,),, # 0 for all k, which implies
YD, ¢ (fP,cp) and (£7) 5 € co. We conclude SO [

We also obtain the next result.

Theorem 6. Let r, u > 0 and let p > 1. Then we have:
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i) Let p > 1. Then the set sz S () A, F) of all positive sequences
such that ({7) A+ Fy = F where F is either of the sets ¢, or ls is determined

by

P

SF {ch (e) if r<1,

- 1%} if r>1.

ii) a) The set S;° =S ((f})A ,lso) of all positive sequences x such that
(E}q)A + 55 = 51 ts determined by

1 =

5 {d”@>ﬁ‘r§1

1%} if r>1.

b) The set S¢ =S ((Ei)A ,c) satisfies the identity 8¢ = ¢l (e) forr < 1
and §§ = @ forr > 1.

Proof. i) Case I' = c. Let x € S;. Then we have

(8) ((P)x C e
and
9) TEc

We have (8) if and only if ¥D, € (¢, ¢) and by the characterization of (¢7, c)
it can easily be shown that the condition in (8) is equivalent to

n

(10) SupZqu <oo with ¢g=p/(p—1).
nzly—y

So we have S # @ implies r < 1 and §; = @ if r > 1. Then for r < 1 we
have (&) C (sy)5 with (r™), <, € c¢s and we conclude by Theorem 5 that
S, = cl®(e). -

Case ' =/0,. Let x € S;jo. Then we have

(11) () A C b,
(12) x €l

and

(13) loo C (L2) A + 5.

As we have seen above the condition in (11) is equivalent to XD, € (P, {+,)
and to (10). So we have r < 1. Then by Theorem 2 with & = (/) C ¢
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and by (12) the condition in (13) implies = € ¢l* (e). So we have shown
Sp° C cl®™ (e) for 7 < 1. Conversely, let r < 1 and = € cI* (e). Then we
have s, = loo and (f£) A C loo which imply ()4 + sz = (E) A + loo = loo-
So we have cI*° (e) C §;°. This concludes the proof of ).

i7) a) Let x € S§7°. Then the conditions in (11), (12) and (13) hold with
p = 1. The condition in (11) with p = 1 is equivalent to XD, € (EI,EOO)
and to (1)1 € loo. So we have S7° # @ if r < 1. For r < 1, by Theorem
2 where £ = (éi)A C (8a)p for a = (r"),~; € co the inclusion in (13) with
p = 1 implies « € 57 and since (12) holds we conclude S° C ¢l (e). By
similar arguments as those used above we obtain c¢l* (e) C S° for r < 1
and we conclude S7° = cl™ (e).

Case 7 = 1. We write ¢! for the set /] and we denote by bv the set
% of bounded variation. Now we let € S (bv, s1). Then we successively
have bv C f, since ¥ € (EI,EOO), T € ly and £y C bv + s,. Since
we have ¥ € (fl,c) we obtain bv C ¢ and by Theorem 2 the statement
lso C bu + s, implies x € 57. So we have S (bv,s1) C cl® (e). Conversely,
assume x € cl® (e). Then we have s, = s; and since bv C /o, we obtain
bv+ sy =bv+s; = s and z € S (bv, s1). We conclude S (bv, s1) = cl™ (e).

b) Let = € Sf and let r # 1. Then the conditions in (8), (9) hold
with p = 1 and the condition in (8) is equivalent to XD, € (El,c) and to
(r"),~; € ¢. So we have r < 1. As we have seen in i) we conclude by
Theorem 5 that S§ = cl® (e). [
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