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EXTENSION OF SOME RESULTS ON THE (SSIE) AND

THE (SSE) OF THE FORM F ⊂ E + F ′x and E + Fx = F

Abstract. Given any sequence a = (an)n≥1 of positive real num-
bers and any set E of complex sequences, we write Ea for the set
of all sequences y = (yn)n≥1 such that y/a = (yn/an)n≥1 ∈ E. In
this paper we deal with the solvability of the (SSIE) of the form
`∞ ⊂ E+F ′x where E is a linear space of sequences and F ′ is either
c0, or `∞ and we solve the (SSIE) c0 ⊂ E + sx for E ⊂ (sα)∆ and

α ∈ c0. Then we study the (SSIE) c ⊂ E + s
(c)
x and the (SSE)

E + s
(c)
x = c. Then we apply the previous results to the solvability

of the (SSE) of the form (`pr)∆ + Fx = F for p ≥ 1 and F is any
of the sets c0, c, or `∞. These results extend some of those given
in [8] and [9].
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1. Introduction

We write ω for the set of all complex sequences y = (yn)n≥1, `∞, c and c0

for the sets of all bounded, convergent and null sequences, respectively. We
write cs for the set of all convergent series and `p = {y ∈ ω :

∑∞
n=1 |yn|

p <∞}
for 1 ≤ p < ∞. If y, z ∈ ω, then we write yz = (ynzn)n≥1. Let U =
{y ∈ ω : yn 6= 0} and U+ = {y ∈ ω : yn > 0}. We write z/u = (zn/un)n≥1

for all z ∈ ω and all u ∈ U , in particular 1/u = e/u, where e is the sequence
with en = 1 for all n. Finally, if a ∈ U+ and E is any subset of ω, then we put
Ea = (1/a)−1 ∗E = {y ∈ ω : y/a ∈ E}. Let E and F be subsets of ω. In [1],

the sets sa, s
0
a and s

(c)
a were defined for positive sequences a by (1/a)−1 ∗E

and E = `∞, c0, c, respectively. In [2] the sum Ea + Fb and the product
Ea ∗Fb were defined where E, F are any of the symbols s, s0, or s(c). Then
in [5] the solvability was determined of sequences spaces inclusion equations
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Gb ⊂ Ea + Fx where E, F , G ∈
{
s0, s(c), s

}
and some applications were

given to sequence spaces inclusions with operators. Recall that the spaces
w∞ and w0 of strongly bounded and summable sequences are the sets of
all y such that

(
n−1

∑n
k=1 |yk|

)
n

is bounded and tends to zero, respectively.
These spaces were studied by Maddox [19] and Malkowsky, Rakočević [18].
In [11] we gave some properties of well-known operators defined on the sets
Wa = (1/a)−1 ∗ w∞ and W 0

a = (1/a)−1 ∗ w0. In this paper we deal with
special sequence spaces inclusion equations (SSIE), (resp. sequence spaces
equations (SSE)), which are determined by an inclusion, (resp. identity),
for which each term is a sum or a sum of products of sets of the form (Ea)T
and (Ef(x))T where f maps U+ to itself, E is any linear space of sequences
and T is a triangle. Some results on (SSE) and (SSIE) were stated in [3],
[7], [16], [5], [15], [6], [12], [13].

In this paper for given linear spaces of sequences E , F and F ′ we consider
the (SSIE) F ⊂ E + F ′x as a perturbed inclusion equation of the elementary
inclusion equation F ⊂ F ′x. In this way it is interesting to determine what
are the linear spaces of sequences E such that F " E for which the elementary
and the perturbed inclusions equations have the same solutions. In a similar
way the (SSE) E + Fx = F can be considered as the perturbed equation of
the equation Fx = F . Our aim is to extend some of the known results
on the solvability of the (SSIE) of the form F ⊂ E + F ′x stated in [15],
[6], [5], [13], [7], [8], [9]. In [8] writing Dr for the diagonal matrix with
(Dr)nn = rn, we dealt with the solvability of the (SSIE) using the operator
of the first difference ∆, defined by c ⊂ Dr ∗ E∆ + cx with E = c0, or

s1. Then we dealt with the (SSIE) c ⊂ Dr ∗ EC1 + s
(c)
x with E = c0, c

or s1, and s1 ⊂ Dr ∗ EC1 + sx with E = c or s1, where C1 is the Cesàro
operator defined by (C1)n y = (

∑n
k=1 yk) /n. In [10] we solved the (SSE)

with operator and (Er)∆ + Fx = Fu for r, u > 0 where E, F are any of the

sets c0, c, `∞ and the (SSE)
(
W 0
r

)
∆

+ s
(c)
x = s

(c)
u . In [9] we dealt with the

class of (SSIE) of the form F ⊂ Ea + F ′x where F ∈ {c0, `
p, w0, w∞} and

E, F ′ ∈ {c0, c, `∞, `
p, w0, w∞}, (p ≥ 1). In this paper we extend the results

stated in [8], [9]. In this way we deal with the (SSIE) c0 ⊂ E + sx where
E ⊂ (sα)∆ for α ∈ c0 and we solve the (SSIE) of the form `∞ ⊂ E + F ′x
where F ′ is either c0, or `∞. Then we study the (SSIE) c ⊂ E + s

(c)
x and the

(SSE) E + s
(c)
x = c with E ⊂ (sα)∆ with α ∈ cs+.

This paper is organized as follows. In Section 2 we recall some well-known
results on sequence spaces and matrix transformations. In Section 3 we
recall some results on the multipliers and on the characterizations of matrix
transformations. In Section 4 we recall some general results on the solvability
of the (SSIE) of the form F ⊂ Ea + F ′x. In Section 5 we deal with the
solvability of the (SSIE) of the form `∞ ⊂ E + F ′x where F ′ is either c0, or



Extension of some results on the (SSIE) and . . . 109

`∞. In Section 6 we solve the (SSIE) c0 ⊂ E + sx. In Section 7 we study

the (SSIE) c ⊂ E + s
(c)
x and the (SSE) E + s

(c)
x = c. In Section 8 we apply

results of the previous sections to the solvability of the (SSE) of the form
(`pr)∆ + Fx = F .

2. Premilinaries and notations

An FK space is a complete linear metric space, for which convergence
implies coordinatewise convergence. A BK space is a Banach space of se-
quences that is an FK space. A BK space E is said to have AK if for
every sequence y = (yk)k≥1 ∈ E, then y = limp→∞

∑p
k=1 yke

(k), where
e(k) = (0, ..., 0, 1, 0, ...), 1 being in the k − th position.

Let R be the set of all real numbers. For any given infinite matrix A =
(ank)n,k≥1 we define the operators An = (ank)k≥1 for any integer n ≥ 1,
by Any =

∑∞
k=1 ankyk, where y = (yk)k≥1, and the series are assumed

convergent for all n. So we are led to the study of the operator A defined
by Ay = (Any)n≥1 mapping between sequence spaces. When A maps E
into F , where E and F are subsets of ω, we write A ∈ (E,F ), (cf. [19],
[20]). It is well known that if E has AK, then the set B (E) of all bounded
linear operators L mapping in E, with norm ‖L‖ = supy 6=0 (‖L (y)‖E / ‖y‖E)
satisfies the identity B (E) = (E,E). For any subset F of ω, we write
FA = {y ∈ ω : Ay ∈ F} for the matrix domain of A in F . Then for any
given sequence u = (un)n≥1 ∈ ω we define the diagonal matrix Du by
[Du]nn = un for all n. It is interesting to rewrite the set Eu using a diagonal
matrix. Let E be any subset of ω and u ∈ U+ we have Eu = Du ∗ E =

{y = (yn)n ∈ ω : y/u ∈ E}. We use the sets s0
a, s

(c)
a , sa and (`p)a defined

as follows (cf. [1]). For given a ∈ U+ and p ≥ 1 we put Da ∗ c0 = s0
a,

Da ∗ c = s
(c)
a , Da ∗ `∞ = sa, and Da ∗ `p = (`p)a. Each of the spaces Da ∗E,

where E ∈ {c0, c, `∞} is a BK space normed by ‖y‖sa = supn (|yn| /an) and

s0
a has AK. The set `p, (p ≥ 1) normed by ‖y‖`p = (

∑∞
k=1 |yk|

p)1/p is a BK

space with AK. If a = (Rn)n≥1 with R > 0, we write sR, s0
R, s

(c)
R , (or cR) and

(`p)R for the sets sa, s
0
a, s

(c)
a and (`p)a, respectively. We also write DR for

D(Rn)n≥1
. When R = 1, we obtain s1 = `∞, s0

1 = c0 and s
(c)
1 = c. Notice that

the set S1 = (s1, s1) is a Banach algebra with ‖A‖S1
= supn (

∑∞
k=1 |ank|)

and we have (c0, s1) = (c, s1) = (s1, s1) = S1. In the following we use the
Schur’s theorem (cf. [20], Theorem 1.17 (iii)) stated as follows. We have
A ∈ (s1, c) if and only if limn→∞ ank = lk for all k and for some scalar lk
and limn→∞

∑∞
k=1 |ank| =

∑∞
k=1 |lk|. We also use the well known properties,

stated as follows.

Lemma 1. Let a, b ∈ U+ and let E, F ⊂ ω be any linear spaces. We
have A ∈ (Ea, Fb) if and only if D1/bADa ∈ (E,F ).
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Recall that the infinite matrix T = (tnk)n,k≥1 is a triangle if tnk = 0 for
k > n and tnn 6= 0 for all n. Then we obtain the next lemma.

Lemma 2 ([4], Lemma 9, p. 45). Let T ′ and T ′′ be any given triangles
and let E, F ⊂ ω. Then for any given operator T represented by a triangle
we have T ∈ (ET ′ , FT ′′) if and only if T ′′TT

′−1 ∈ (E,F ).

3. Some results on matrix transformations and
on the multipliers of special sets

3.1. On the triangles C (λ) and ∆ (λ) and the sets Wa and W 0
a

For λ ∈ U the infinite matrices C (λ) and ∆ (λ) are triangles. We have
[C (λ)]nk = 1/λn for k ≤ n, and the nonzero entries of ∆ (λ) are determined
by [∆ (λ)]nn = λn for all n, and [∆ (λ)]n,n−1 = −λn−1 for all n ≥ 2. It can be
shown that the matrix ∆ (λ) is the inverse of C (λ), that is, C (λ) (∆ (λ) y) =
∆ (λ) (C (λ) y) = y for all y ∈ ω. If λ = e we obtain the well known
operator of the first difference represented by ∆ (e) = ∆. We then have
∆ny = yn − yn−1 for all n ≥ 1, with the convention y0 = 0. It is usually
written Σ = C (e) and then we may write C (λ) = D1/λΣ. Notice that
∆ = Σ−1. We also have cs = cΣ for the set of all convergent series. The
Cesàro operator is defined By C1 = C((n)n≥1) . We use the sets of sequences
that are a−strongly bounded and a−strongly convergent to zero defined for
a ∈ U+ by Wa =

{
y ∈ ω : ‖y‖Wa

= supn
(
n−1

∑n
k=1 |yk| /ak

)
<∞

}
and

W 0
a =

{
y ∈ ω : lim

n→∞

(
1

n

n∑
k=1

|yk| /ak

)
= 0

}
,

(cf. [14], [11]). It can easily be seen that Wa =
{
y ∈ ω : C1D1/a |y| ∈ s1

}
. If

a = (rn)n≥1 the sets Wa and W 0
a are denoted by Wr and W 0

r . For r = 1 we

obtain the well-known sets w∞ =
{
y ∈ ω : ‖y‖w∞ = supn

(
n−1

∑n
k=1 |yk|

)
<∞} and w0 =

{
y ∈ ω : limn→∞

(
n−1

∑n
k=1 |yk|

)
= 0
}

called the spaces of
sequences that are strongly bounded and strongly summable to zero by the
Cesàro method (cf. [17]).

3.2. On the multipliers of some sets

First we need to recall some well known results. Let y and z be se-
quences and let E and F be two subsets of ω, we then write M (E,F ) =
{y ∈ ω : yz ∈ F for all z ∈ E}, the set M (E,F ) is called the multiplier
space of E and F . In the following we use the next well known results.

Lemma 3. Let E, Ẽ, F and F̃ be arbitrary subsets of ω. Then (i)
M(E,F ) ⊂ M(Ẽ, F ) for all Ẽ ⊂ E. (ii) M (E,F ) ⊂ M(E, F̃ ) for all
F ⊂ F̃ .
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Recall that for a, b ∈ U+ and E and F ⊂ ω we have Da ∗ E ⊂ Db ∗ F
if and only if a/b ∈ M (E,F ). In the following we use the results stated
below.

Lemma 4 ([9], Lemma 6, pp. 214-215). Let p ≥ 1. We have:
i) a) M (c, c0) = M (`∞, c) = M (`∞, c0) = c0 and M (c, c) = c. b)

M (E, `∞) = M (c0, F ) = `∞ for E, F = c0, c, or `∞. c) M (c0, `
p) =

M (c, `p) = M (`∞, `
p) = `p. d) M (`p, F ) = `∞ for F ∈ {c0, c, s1, `

p}.
ii) a) M (w0, F ) = M (w∞, `∞) = s(1/n)n≥1

for F = c0, c, or `∞.

b) M (w∞, c0) = M (w∞, c) = s0
(1/n)n≥1

. c) M (`1, w∞) = s(n)n≥1
and

M (`1, w0) = s0
(n)n≥1

. d) M (E,w0) = w0 for E = s1, or c. e) M (E,w∞) =

w∞ for E = c0, s1, or c.

3.3. The equivalence relation RE

We need to recall some results on the equivalence relation RE which is
defined using the multiplier of sequence spaces. For b ∈ U+ and for any
subset E of ω, we denote by clE (b) the equivalence class for the equivalence
relation RE defined by xREb if Ex = Eb for x ∈ U+. It can easily be seen that
clE (b) is the set of all x ∈ U+ such that x/b ∈M (E , E) and b/x ∈M (E , E),
(cf. [15]). We then have clE (b) = clM(E,E) (b). For instance clc (b) is the

set of all x ∈ U+ such that s
(c)
x = s

(c)
b . This is the set of all sequences

x ∈ U+ such that xn ∼ Cbn (n→∞) for some C > 0. We denote by cl∞ (b)
the class cl`∞ (b). Recall that cl∞ (b) is the set of all x ∈ U+, such that
K1 ≤ xn/bn ≤ K2 for all n and for some K1, K2 > 0.

4. Some general results on the (SSIE) F ⊂ E + F ′x

Here we are interested in the study of the set of all positive sequences x
that satisfy the inclusion F ⊂ E + F ′x where E , F and F ′ are linear spaces
of sequences. We may consider this problem as a perturbation problem.

4.1. The perturbed problem

If we know the set M (F, F ′), then the solutions of the elementary in-
clusion F ′x ⊃ F are determined by 1/x ∈ M (F, F ′). Now the question
is: let E be a linear space of sequences. What are the solutions of the
perturbed inclusion F ′x + E ⊃ F? An additional question may be the fol-
lowing one: what are the conditions on E under which the solutions of the
elementary and the perturbed inclusions are the same? In the following we
write I (E , F, F ′) = {x ∈ U+ : F ⊂ E + F ′x}, where E, F and F ′ are linear
spaces of sequences. If F = F ′ we write I (E , F ) = I (E , F, F ′).
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4.2. Some known results on the solvability of (SSIE)

For any set χ of sequences we let χ = {x ∈ U+ : 1/x ∈ χ} and we write
Φ = {c0, c, s1, `

p, w0, w∞} with p ≥ 1. By c (1) we define the set of all
sequences α ∈ U+ that satisfy limn→∞ αn = 1. Then we consider the
condition

(1) G ⊂ G1/α for all α ∈ c (1) ,

for any given linear space G of sequences. Notice that condition (1) is
satisfied for all G ∈ Φ. In this part we denote by U+

1 the set of all sequences
α with 0 < αn ≤ 1 for all n. We consider the condition

(2) G ⊂ G1/α for all α ∈ U+
1 .

for any given linear space G of sequences. Then we introduce a linear space
of sequences H which contains the spaces E and F ′. The proof of the next
theorem is based on the fact that if H satisfies the condition in (2) we then
have Hα + Hβ = Hα+β for all α, β ∈ U+ (cf. [13], Proposition 5.1, pp.
599-600). Notice that c does not satisfy this condition, but each of the sets
c0, `∞, `p, (p ≥ 1), w0 and w∞ satisfies the condition in (2). So we have
for instance s0

α + s0
β = s0

α+β. In the following we write M (F, F ′) = χ.
The next result is used to determine some classes of (SSIE), where we write
Ia (E,F, F ′) = I (Ea, F, F

′) for a ∈ U+.

Theorem 1 ([9], Theorem 9, p. 216). Let a ∈ U+ and let E, F and F ′

be linear subspaces of ω. Assume
a) χ satisfies condition (1).
b) There is a linear space of sequences H that satisfies the condition in

(2) and conditions α) and β), where α) E, F ′ ⊂ H, β) M (F,H) = χ.
Then we have: i) a ∈ M (χ, c0) implies Ia (E,F, F ′) = χ. ii) a ∈

M (F,E) implies Ia (E,F, F ′) = U+.

As a direct consequence of the preceding we obtain the following result.

Lemma 5 ([9], Corollary 10, p. 216). Let a ∈ U+, let E, F and F ′ be
linear subspaces of ω. Assume χ satisfies condition (1) and assume E ⊂ F ′
where F ′ satisfies the condition in (2). Then we have: i) The condition
a ∈ M (χ, c0) implies Ia (E,F, F ′) = χ, ii) the condition a ∈ M (F,E)
implies Ia (E,F, F ′) = U+.

In [8] we have shown the next result on the (SSIE) c ⊂ s
(c)
a + F ′x and

s1 ⊂ s(c)
a + F ′x with F ′ ∈ Φ.

Proposition 1 ([8]). Let a ∈ U+ and let F ′ ∈ Φ. We have: i)
Ia (c, c, F ′) = F ′ if a ∈ c0, and Ia (c, c, F ′) = U+ if 1/a ∈ c. ii) Ia (c, s1, F

′) =
F ′ if a ∈ c0, and Ia (c, s1, F

′) = U+ if 1/a ∈ c0.
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5. Solvability of the (SSIE) of the form `∞ ⊂ E + F ′x
where F ′ is either c0 or `∞

5.1. Solvability of the (SSIE) of the form `∞ ⊂ E + sx

By Proposition 1 ii) the (SSIE) s1 ⊂ s(c)
a + sx is equivalent to x ∈ s1 for

all a ∈ c0. In the next theorem we extend this result to the case when a ∈ c.
For instance, notice that x is a positive solution of the (SSE) s1 ⊂ c + sx
if the next statement holds. The condition yn = O (1) implies there are u,
v ∈ ω such that un → l and vn/xn = O (1) (n→∞) for all y ∈ ω and for
some scalar l. Now we state a more general result.

Theorem 2. Let E ⊂ c be a linear space of sequences. Then the set
I (E , s1) of all positive sequences x such that s1 ⊂ E + sx is determined by

I (E , s1) = s1.

Proof. i) Since E ⊂ c we obtain I (E , s1) ⊂ I (c, s1). So we begin to show
the inclusion I (c, s1) ⊂ s1. For this, we assume x ∈ I (c, s1) and x /∈ s1.
Then we have 1/x /∈ `∞ and there is a strictly increasing sequence (ni)i≥1

tending to infinity such that xni → 0 (i→∞). Now let h ∈ `∞ be the
sequence defined by hni = (−1)i and hn = 0 for all n /∈ {ni : i ∈ N}. Since
`∞ ⊂ c+ sx there are sequences ϕ ∈ c and ρ ∈ `∞ such that h = ϕ+xρ and
(−1)i = ϕni + ρnixni . This leads to a contradiction since ρnixni → 0 and
ϕni+ρnixni tends to a limit as i→∞. This implies I (c, s1) ⊂ s1. So we have
shown the inclusion I (E , s1) ⊂ s1. Conversely, we show s1 ⊂ I (c, s1). For
this, let x ∈ s1, that is, 1/x ∈ s1. Since s1 = M (s1, s1) we obtain s1 ⊂ sx,
s1 ⊂ E + sx and x ∈ I (E , s1). This shows the inclusion s1 ⊂ I (E , s1) and
we conclude I (E , s1) = s1. �

As an immediate consequence of Theorem 2 we obtain the next useful
result.

Corollary 1. i) The set I (c, s1) of all positive sequences x such that
s1 ⊂ c+ sx is determined by I (c, s1) = s1.
ii) The set S (c, s1) of all positive sequences x such that c + sx = s1 is

determined by S (c, s1) = cl∞ (e).

Proof. The proof of i) is immediate and ii) follows from i) and the
equivalence of c+ sx ⊂ s1 and x ∈ s1. �

In all that follows we write λ+ = λ
⋂
U+ for any given subset λ of ω. By

Theorem 2 we obtain the following corollary.

Corollary 2. Let α ∈ (cs)+ and let E be a linear space of sequences
such that E ⊂ (sα)∆. Then the set I∞E of all positive sequences x such that
s1 ⊂ E + sx is determined by I∞E =s1.
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Proof. First recall that ΣDα is the triangle defined by (ΣDα)nk = ak
for k ≤ n. We have (sα)∆ ⊂ c since by the Schur’s theorem α ∈ cs implies
ΣDα ∈ (s1, c). So we have E+sx ⊂ c+sx which implies I∞E ⊂ I (c, s1) ⊂ s1.
It can easily be seen that s1 ⊂ I∞E and I∞E = s1. This concludes the proof. �

Corollary 3. Let a ∈ (cs)+. The next (SSIE) `∞ ⊂ (s0
a)∆ + sx, `∞ ⊂

(s
(c)
a )∆ + sx and `∞ ⊂ (sa)∆ + sx, have the same set of solutions that are

determined by Ĩ∆ = s1.

Corollary 4. Let p > 1 and let ap/(p−1) ∈ (cs)+. Then the solutions of
the (SSIE) `∞ ⊂ (`pa)∆ + sx are determined by I∞

(`pa)∆

=s1.

We obtain a direct extension of Proposition 1 in the case E ∈ {c0, c, `∞}
and F = F ′ = `∞.

Corollary 5. Let a ∈ U+. Then we have: i) If a ∈ s1 then the solutions
of the (SSIE) `∞ ⊂ s0

a + sx are determined by Ia (c0, s1, s1) =s1. ii) If

a ∈ c then the solutions of the (SSIE) `∞ ⊂ s
(c)
a + sx are determined by

Ia(c, s1, s1)=s1. iii) If a ∈ c0 then the solutions of the (SSIE) `∞ ⊂ sa + sx
are determined by Ia(s1, s1, s1)=s1.

Corollary 6. Let a ∈ (D(1/n)n≥1
∗ cs)+. The solutions of each of the

(SSIE) a) `∞ ⊂
(
W 0
a

)
∆

+ sx, b) `∞ ⊂ (Wa)∆ + sx, are determined by
I∞(W 0

a )∆
= I∞(Wa)∆

= s1.

Proof. We have
(
W 0
a

)
∆
⊂ c if ΣDa ∈ (w0, c). Since w0 ⊂ s0

(n)n≥1
we have(

W 0
a

)
∆
⊂ c if ΣDa ∈ (s0

(n)n≥1
, c) which is equivalent to ΣD(nan)n≥1

∈ (c0, c).

By the characterization of (c0, c) we deduce
(
W 0
a

)
∆
⊂ c if a ∈ D(1/n)n≥1

∗ cs
and we apply Theorem 2. This shows I∞(W 0

a )∆
=s1. The case of b) can be

obtained in a similar way. This concludes the proof. �

Corollary 7. Let r > 0. Then we have: i) The set I∞r,w of all pos-
itive sequences x that satisfy `∞ ⊂ (Wr)∆ + sx is determined by I∞r,w ={
s1 if r < 1,

U+ if r ≥ 1.
ii) The set I0

r,w of all positive sequences x that satisfy

`∞ ⊂
(
W 0
r

)
∆

+ sx is determined by I0
w = I∞w for all r 6= 1.

Proof. i) The case r < 1 follows from Corollary 6 since we have∑∞
k=1 kr

k <∞. Then the nonzero entries of the triangle D1/r∆ are defined
by
(
D1/r∆

)
nn

= −
(
D1/r∆

)
n,n−1

= r−n. So the condition r ≥ 1 implies

D1/r∆ ∈ (`∞, `∞) and the inclusion (`∞, `∞) ⊂ (`∞, w∞) successively im-
plies D1/r∆ ∈ (`∞, w∞), `∞ ⊂ (Wr)∆ and I∞r,w = U+. ii) can be shown
similarly. This completes the proof. �
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5.2. Solvability of the (SSIE) of the form `∞ ⊂ E + s0
x

By Proposition 1 ii) the (SSIE) `∞ ⊂ s(c)
a +F ′x where F ′ ∈ Φ is equivalent

to x ∈ F ′ for all a ∈ c0. Especially we have `∞ ⊂ s
(c)
a + s0

x with a ∈ c0 if
and only if limn→∞ xn = ∞. In the next theorem we extend this result to
the case when a ∈ c.

Theorem 3. Let E ⊂ c be a linear space of sequences. Then the set I∞E =
I (E , s1, c0) of all positive sequences x such that `∞ ⊂ E + s0

x is determined
by I∞E = c0.

Proof. As we have seen above we have I∞E ⊂ I∞c . So we first show
I∞c ⊂ c0. Assume there is x ∈ I∞c and x /∈ c0. Then we have 1/x /∈ c0 and
there is a strictly increasing sequence (ni)i≥1 tending to infinity such that

(xni)i≥1 ∈ `∞. Now let h ∈ `∞ be the sequence defined by hni = (−1)i and

hn = 0 for all n /∈ {ni : i ∈ N}. Since `∞ ⊂ c+ s0
x there are sequences ϕ ∈ c

and ε ∈ c0 such that h = ϕ + xε and (−1)i = ϕni + εnixni for all i. This
leads to a contradiction since εnixni → 0 and ϕni + εnixni tends to a limit
as i → ∞. This implies I∞c ⊂ c0 and I∞E ⊂ c0. Conversely, we have x ∈ c0

implies 1/x ∈ c0 and since c0 = M (s1, c0) we successively obtain `∞ ⊂ s0
x,

`∞ ⊂ E + s0
x and x ∈ I∞E . This shows the inclusion c0 ⊂ I∞E and we conclude

I∞E = c0. �

As an immediate consequence of Theorem 3 we obtain the next corollary.

Corollary 8. Let a ∈ (cs)+ and let E be a linear space of sequences
such that E ⊂ (sa)∆. Then the set I∞E of all positive sequences x such that
`∞ ⊂ E + s0

x is determined by I∞E =c0.

Proof. We have (sa)∆ ⊂ c since a ∈ cs implies ΣDa ∈ (s1, c). So we
have E + s0

x ⊂ c + s0
x which implies I∞E ⊂ I∞c ⊂ c0. Conversely, as we have

just seen we have x ∈ c0 successively implies `∞ ⊂ s0
x, `∞ ⊂ E+s0

x and c0 ⊂
I∞E . We conclude I∞E = c0. This completes the proof. �

Corollary 9. Let a ∈ (cs)+. Then the next (SSIE) `∞ ⊂
(
s0
a

)
∆

+ s0
x,

`∞ ⊂ (s
(c)
a )∆ + s0

x and `∞ ⊂ (sa)∆ + s0
x have the same set of solutions that

are determined by Ĩ0
∆=c0.

Corollary 10. Let p > 1 and q = p/ (p− 1) and assume aq ∈ (cs)+.
Then the solutions of the (SSIE) `∞ ⊂ (`pa)∆+s0

x are determined by I0
(`pa)∆

=c0.

We obtain a direct extension of Proposition 1 in the case E ∈ {c0, c, `∞},
F = `∞ and F ′ = c0.
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Corollary 11. Let a ∈ U+. Then we have: i) If a ∈ s1 then the
solutions of the (SSIE) `∞ ⊂ s0

a + s0
x are determined by Ia (c0, s1, c0) =c0.

ii) If a ∈ c then the solutions of the (SSIE) `∞ ⊂ s(c)
a +s0

x are determined by
Ia (c, s1, c0) =c0. iii) If a ∈ c0 then the solutions of the (SSIE) `∞ ⊂ sa+ s0

x

are determined by Ia (s1, s1, c0) = c0.

By similar arguments as those used in Corollary 6 we obtain the next
result.

Corollary 12. Let a ∈ D(1/n)n≥1
∗cs. The solutions of each of the (SSIE)

`∞ ⊂
(
W 0
a

)
∆

+s0
x and `∞ ⊂ (Wa)∆+s0

x, are determined by I0
(W 0

a )∆
= I0

(Wa)∆
=

c0.

6. On the (SSIE) c0 ⊂ E + sx

In this part we deal with the (SSIE) c0 ⊂ E + sx with E ⊂ (sa)∆ and
a ∈ c+

0 . The inclusion c0 ⊂ (sa)∆ +sx is associated with the next statement.
For every y ∈ ω there are u, v ∈ ω with y = u+v such that (un − un−1) /an =
O (1) and vn/xn = O (1) (n→∞). Notice that if

∑
k ak <∞ then we have

(sa)∆ ⊂ c since by the Schur’s theorem we have ΣDa ∈ (`∞, c). Then we
have c * (sa)∆ since the inclusion c ⊂ (sa)∆ is equivalent to D1/a∆ ∈ (c, s1)
and to a ∈ s1.

6.1. On the identity (χa)∆ + (χb)∆ = (χa+b)∆

Lemma 6. Let a, b ∈ U+. Then we have (χa)∆ + (χb)∆ = (χa+b)∆ for
χ = s1, or c0.

Proof. Since the inclusion (χa+b)∆ ⊂ (χa)∆ + (χb)∆ is trivial, it is
enough to show (χa)∆ + (χb)∆ ⊂ (χa+b)∆. For this, let y ∈ (χa)∆ + (sb)∆.
Since (χα)∆ = (ΣDα)χ with α ∈ U+ there are u, v ∈ χ such that

yn =

n∑
k=1

akuk +

n∑
k=1

bkvk =

n∑
k=1

(ak + bk) zk = (ΣDa + ΣDb)n z,

where zk = (akuk + bkvk) / (ak + bk) for all k. Since 0 < ak/ (ak + bk) <
1 and 0 < bk/ (ak + bk) < 1 we have |zk| ≤ |uk| + |vk| for all k, and
(|uk|+ |vk|)≥1 ∈ `∞ for χ = s1 and (|uk|+ |vk|)≥1 ∈ c0 for χ = c0. This
shows y ∈ (ΣDa+b)χ = (χa+b)∆ and (χa)∆ + (χb)∆ ⊂ (χa+b)∆. This com-
pletes the proof. �

Remark 1. As a direct consequence of the preceding lemma we have
ΣDaχ+ ΣDbχ = (ΣDa+b)χ for χ = s1, or c0.
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6.2. On the (SSIE) c0 ⊂ E + sx with E ⊂ (sα)∆ and α ∈ c+
0

For the convenience of the reader we state the next result.

Lemma 7. Let r > 0 and let κ be any of the symbols s, s0, or s(c). Then
we have: i) (κr)∆ * c0 for all r. ii) c0 ⊂ (κr)∆ if and only if r ≥ 1. iii)
c0 * (κr)∆ for all r < 1.

Proof. i) We have ΣDr /∈ (c0, c0) since limn→∞ (ΣDr)nk = rk 6= 0 for
all k ≥ 1. Then the condition (κ1, c0) ⊂ (c0, c0) implies ΣDr /∈ (κ1, c0) and
(κr)∆ * c0. ii) The inclusion c0 ⊂ (κr)∆ implies D1/r∆ ∈ (c0,κ1) and since
(c0,κ1) ⊂ (c0, s1) we conclude (1/rn)n≥1 ∈ `∞ and r ≥ 1. Conversely, let
r ≥ 1. Then we have D1/r∆ ∈ (c0, c0) and since (c0, c0) ⊂ (c0,κ1) we obtain

c0 ⊂ (κr)∆ where κ is any of the symbols s, s0, or s(c). iii) is a direct
consequence of ii). This completes the proof. �

Now we state a result where we must have in mind the statements in
Lemma 7 and the equivalence of E ⊂ (sα)∆ and D1/α∆ ∈ (E , s1). So we

obtain an extension of Lemma 7 iii) since the condition α ∈ c+
0 implies

E * (sα)∆ for E ∈ {c0, c, `∞}, and we have not the trivial inclusion c0 ⊂ E
which implies c0 ⊂ E + sx for all positive sequences x. In the following we
write (x−)n = xn−1 for n ≥ 2 and x−1 = 1.

Theorem 4. Let α ∈ c+
0 and let E ⊂ (sα)∆ be a linear space of sequences.

Then the set I0E = I (E , c0, s1) of all positive sequences x such that c0 ⊂ E+sx
is determined by

I0E ∩ c=clc (e) .

Proof. First we show sx ⊂ (sx+x−)∆. Indeed, this inclusion is equiv-
alent to D1/(x+x−)∆Dx ∈ (s1, s1) where we have

[
D1/(x+x−)∆Dx

]
nn

=

xn/ (xn−1 + xn) and
[
D1/(x+x−)∆Dx

]
n,n−1

= −xn−1/ (xn−1 + xn) for all n,

the other entries being naught. Now we let x ∈ I0E ∩ c. Then we have x ∈ c
and c0 ⊂ (sα)∆ + sx. The last inclusion implies

c0 ⊂ (ΣDα) s1 + (ΣDx+x−) s1

and by Lemma 6 we obtain

(ΣDα) s1 + (ΣDx+x−) s1 = (ΣDα+x+x−) s1 = (sα+x+x−)∆ .

We deduce c0 ⊂ (sα+x+x−)∆. So there isK > 0 such that (αn + xn + xn−1)−1

≤ K and xn + xn−1 ≥ 1/K − αn for all n. Since α ∈ c0, there is M > 0
such that xn + xn−1 ≥ M for all n. Then the condition x ∈ c implies
limn→∞ (xn + xn−1) = 2 limn→∞ xn ≥M and limn→∞ xn > 0 which implies

s
(c)
x = c. So we have shown I0E ∩c ⊂ c∩c = clc (e). Conversely, let x ∈ clc (e).
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Then we have limn→∞ xn = L with L > 0. So we have 1/x ∈ s1 which im-
plies c0 ⊂ sx, c0 ⊂ E + sx and since x ∈ c we conclude x ∈ I0E ∩ c. This
completes the proof. �

6.3. Application to the (SSIE) F ⊂ (Ea)∆ + F ′x

In this part we deal with some properties of the (SSIE)

(3) F ⊂ (Ea)∆ + F ′x

where E, F and F ′ are linear spaces of sequences

Proposition 2. Let E, F and F ′ be linear spaces of sequences that
satisfy F ⊃ c0 and E, F ′ ⊂ `∞. Let I ((Ea)∆ , F, F

′) ∩ c be the set of all
convergent and positive sequences x such that (3) holds. If a ∈ c+

0 then we
have:

(4) I
(
(Ea)∆ , F, F

′) ∩ c ⊂ clc (e) .

Moreover if we assume c ⊂M (F, F ′) then

(5) I
(
(Ea)∆ , F, F

′) ∩ c = clc (e) .

Proof. We have x ∈ I ((Ea)∆ , F, F
′) ∩ c implies c0 ⊂ (sa)∆ + sx and

by Theorem 4 we obtain x ∈ clc (e). Now we assume c ⊂ M (F, F ′). Then

the condition x ∈ clc (e) implies s
(c)
x = c and there is L > 0 such that

limn→∞ 1/xn = L and 1/x ∈ c. So we obtain 1/x ∈M (F, F ′), F ⊂ F ′x and
x ∈ I ((Ea)∆ , F, F

′) ∩ c. This shows the identity in (5). This concludes the
proof. �

Remark 2. As a direct consequence of the preceding proposition we
may show that if E is a linear space of sequences such that c0 ⊂ E ⊂ `∞
then the set S ((Er)∆ , c) with 0 < r < 1 be the set of all positive sequences

such that (Er)∆ + s
(c)
x = c is determined by S ((Er)∆ , c) = clc (e).

7. On the (SSIE) c ⊂ E + s
(c)
x and the (SSE) E + s

(c)
x = c

In this part we consider the (SSIE) c ⊂ E + s
(c)
x which is associated with

the next statement. For every y ∈ c there are u, v ∈ ω with y = u+ v such

that u ∈ E and v/x ∈ c. Then we solve the equation E + s
(c)
x = c where

E ⊂ (sα)∆ with
∑∞

k=1 αk <∞.
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7.1. On the (SSIE) c ⊂ E + s
(c)
x

We obtain the following lemma.

Lemma 8. Let E be a linear space of sequences that satisfies E ⊂ (sα)∆

with α ∈ (cs)+. Then the set Ic (E , c) of all positive and convergent se-

quences x that satisfy c ⊂ E + s
(c)
x is determined by

Ic (E , c) = clc (e) .

Proof. Let E ⊂ (sα)∆ with α ∈ cs+. Then it can easily be seen that the

condition c ⊂ E + s
(c)
x implies c0 ⊂ E + sx. So by Theorem 4 we have

(6) Ic (E , c) ⊂ I0E ∩ c⊂clc (e) .

Now since 1/x ∈ c implies c ⊂ s
(c)
x and c ⊂ E + s

(c)
x , by the identity c ∩ c =

clc (e) we conclude

(7) clc (e) ⊂ Ic (E , c) .

By (6) and (7) we obtain Ic (E , c) = clc (e). This completes the proof. �

7.2. On the (SSE) E + s
(c)
x = c.

In the following we deal with some (SSE) of the form E + Fx = F where
E and F are two linear subsets of ω. Recall that x satisfies this (SSE) if and
only if E ⊂F , x ∈ M (F, F ) and x ∈ I (E , F ). The next theorem extends

the results on the (SSE) of the form Ea + s
(c)
x = c where E = c0, c, or `p,

(p ≥ 1) stated in ([6], Proposition 5.1, p. 108) and ([6], Theorem 5.2, p.

108). Indeed, here we consider the equation E+s
(c)
x = c with E ⊂ (sα)∆ and

α ∈ cs+. For instance the identity (sr)∆ = s
(c)
a for r < 1 cannot be obtained

for any a ∈ U+, since it should imply 1/a ∈ c and an/r
n = O (1) (n→∞)

which is contradictory.

Theorem 5. Let E be a linear space of sequences that satisfies E ⊂ (sα)∆

with α ∈ cs. Then the set S (E , c) of all positive sequences x that satisfy the

(SSE) E + s
(c)
x = c is determined by S (E , c) = clc (e).

Proof. Let x ∈ S (E , c). Then we have s
(c)
x ⊂ c, that is, x ∈ c, and

c ⊂ E + s
(c)
x . So we have x ∈ Ic (E , c) and by Lemma 8 we obtain S (E , c) ⊂

Ic (E , c) = clc (e). Conversely, let x ∈ clc (e). Then we have s
(c)
x = c. Since

α ∈ cs+, by the Schur’s theorem we have ΣDα ∈ (s1, c). This implies

E ⊂ (sα)∆ ⊂ c and E + s
(c)
x = E + c = c. So we obtain clc (e) ⊂ S (E , c) and

we conclude S (E , c) = clc (e). This completes the proof. �
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Corollary 13. The perturbed equations
(
s0
r

)
∆

+s
(c)
x = c, (s

(c)
r )∆+s

(c)
x = c

and (sr)∆ + s
(c)
x = c satisfy S

((
s0
r

)
∆
, c
)

= S((s
(c)
r )∆, c) = S ((sr)∆ , c) and

S ((sr)∆ , c) =

{
clc (e) if r < 1,

∅ if r ≥ 1.

Proof. We have S ((sr)∆ , c) = clc (e) if r < 1 by Theorem 5, where
α = (rn)n≥1 ∈ cs. Then we have (Er)∆ * c for all r ≥ 1 and E ∈ {c0, c, `∞}.
Indeed, the condition (Er)∆ ⊂ c should imply ΣDr ∈ (c0, c) and r < 1. This
completes the proof. �

Corollary 14. The perturbed (SSE) defined by (Wr)∆ + s
(c)
x = c and(

W 0
r

)
∆

+ s
(c)
x = c satisfy the identities S ((Wr)∆ , c) = S

((
W 0
r

)
∆
, c
)

=
S ((sr)∆ , c) where S ((sr)∆ , c) is determined in Corollary 13.

Proof. We have (Wr)∆ = (w∞)D1/r∆ and since w∞ ⊂ s(n)n≥1
we obtain

(Wr)∆ ⊂ (s(nrn)n≥1
)∆, then we apply Theorem 5 with α = (nrn)n≥1 ∈ cs.

In the same way we have
(
W 0
r

)
∆
⊂ (Wr)∆ ⊂ (s(nrn)n≥1

)∆. Then we have
(Er)∆ * c for all r ≥ 1 and E ∈ {w0, w∞}. Indeed, the condition (Er)∆ ⊂ c
should imply ΣDr ∈ (w0, c) and ΣDr ∈ (c0, c) since w0 ⊃ c0 and as above
we obtain r < 1. This concludes the proof. �

8. Application to the solvability of the (SSE)
of the form (`pr)∆ + Fx = F

In this part we apply the results stated in the previous sections and we
extend the results stated in [10] where we studied the (SSE) of the form
(Er)∆ + Fx = Fu with r, u > 0 and where E, F are any of the sets c0,

c, or `∞ and the (SSE)
(
W 0
r

)
∆

+ s
(c)
x = s

(c)
b . Then we study the (SSE)

(`pr)∆ + Fx = F where F is any of the sets c0, c, or `∞ and p ≥ 1. In the
next result we use the characterization of (`p, F ) where F = c0, c, or `∞,
see for instance ([18], Theorem 1.37, p. 161).

Proposition 3. Let p ≥ 1 and r > 0, and let S0
p be the set of all positive

sequences x such that (`pr)∆ + s0
x = c0. Then S0

p = ∅.

Proof. The entries of the triangle ΣDr are defined by (ΣDr)nk = rk

for k ≤ n. Then we have limn→∞ (ΣDr)nk 6= 0 for all k, which implies
ΣDr /∈ (`p, c0) and (`pr)∆ " c0. We conclude S0

p = ∅. �

We also obtain the next result.

Theorem 6. Let r, u > 0 and let p ≥ 1. Then we have:
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i) Let p > 1. Then the set SFp = S ((`pr)∆ , F ) of all positive sequences x
such that (`pr)∆ +Fx = F where F is either of the sets c, or `∞ is determined
by

SFp =

{
clF (e) if r < 1,

∅ if r ≥ 1.

ii) a) The set S∞1 = S
((
`1r
)

∆
, `∞

)
of all positive sequences x such that(

`1r
)

∆
+ sx = s1 is determined by

S∞1 =

{
cl∞ (e) if r ≤ 1,

∅ if r > 1.

b) The set Sc1 = S
((
`1r
)

∆
, c
)

satisfies the identity Sc1 = clc (e) for r < 1
and Sc1 = ∅ for r > 1.

Proof. i) Case F = c. Let x ∈ Scp. Then we have

(8) (`pr)∆ ⊂ c

and

(9) x ∈ c

We have (8) if and only if ΣDr ∈ (`p, c) and by the characterization of (`p, c)
it can easily be shown that the condition in (8) is equivalent to

(10) sup
n≥1

n∑
k=1

rkq <∞ with q = p/ (p− 1) .

So we have Scp 6= ∅ implies r < 1 and Scp = ∅ if r ≥ 1. Then for r < 1 we
have (`pr)∆ ⊂ (sr)∆ with (rn)n≥1 ∈ cs and we conclude by Theorem 5 that
Scp = clc (e).

Case F = `∞. Let x ∈ S∞p . Then we have

(11) (`pr)∆ ⊂ `∞,

(12) x ∈ `∞

and

(13) `∞ ⊂ (`pr)∆ + sx.

As we have seen above the condition in (11) is equivalent to ΣDr ∈ (`p, `∞)
and to (10). So we have r < 1. Then by Theorem 2 with E = (`pr)∆ ⊂ c
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and by (12) the condition in (13) implies x ∈ cl∞ (e). So we have shown
S∞p ⊂ cl∞ (e) for r < 1. Conversely, let r < 1 and x ∈ cl∞ (e). Then we
have sx = `∞ and (`pr)∆ ⊂ `∞ which imply (`pr)∆ + sx = (`pr)∆ + `∞ = `∞.
So we have cl∞ (e) ⊂ S∞p . This concludes the proof of i).
ii) a) Let x ∈ S∞1 . Then the conditions in (11), (12) and (13) hold with

p = 1. The condition in (11) with p = 1 is equivalent to ΣDr ∈
(
`1, `∞

)
and to (rn)n≥1 ∈ `∞. So we have S∞1 6= ∅ if r ≤ 1. For r < 1, by Theorem

2 where E =
(
`1r
)

∆
⊂ (sα)∆ for α = (rn)n≥1 ∈ c0 the inclusion in (13) with

p = 1 implies x ∈ s1 and since (12) holds we conclude S∞1 ⊂ cl∞ (e). By
similar arguments as those used above we obtain cl∞ (e) ⊂ S∞1 for r < 1
and we conclude S∞1 = cl∞ (e).

Case r = 1. We write `1 for the set `11 and we denote by bv the set
`1∆ of bounded variation. Now we let x ∈ S (bv, s1). Then we successively
have bv ⊂ `∞, since Σ ∈

(
`1, `∞

)
, x ∈ `∞ and `∞ ⊂ bv + sx. Since

we have Σ ∈
(
`1, c

)
we obtain bv ⊂ c and by Theorem 2 the statement

`∞ ⊂ bv + sx implies x ∈ s1. So we have S (bv, s1) ⊂ cl∞ (e). Conversely,
assume x ∈ cl∞ (e). Then we have sx = s1 and since bv ⊂ `∞ we obtain
bv + sx = bv + s1 = s1 and x ∈ S (bv, s1). We conclude S (bv, s1) = cl∞ (e).
b) Let x ∈ Sc1 and let r 6= 1. Then the conditions in (8), (9) hold

with p = 1 and the condition in (8) is equivalent to ΣDr ∈
(
`1, c

)
and to

(rn)n≥1 ∈ c. So we have r < 1. As we have seen in i) we conclude by
Theorem 5 that Sc1 = clc (e). �
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