Nr 59

2017 DOI:10.1515/fascmath-2017-0020

Bruno de Malafosse

EXTENSION OF SOME RESULTS ON THE (SSIE) AND THE (SSE) OF THE FORM $F \subset \mathcal{E} + F'_x$ and $\mathcal{E} + F_x = F$

ABSTRACT. Given any sequence $a = (a_n)_{n\geq 1}$ of positive real numbers and any set E of complex sequences, we write E_a for the set of all sequences $y = (y_n)_{n\geq 1}$ such that $y/a = (y_n/a_n)_{n\geq 1} \in E$. In this paper we deal with the solvability of the (SSIE) of the form $\ell_{\infty} \subset \mathcal{E} + F'_x$ where \mathcal{E} is a linear space of sequences and F' is either c_0 , or ℓ_{∞} and we solve the (SSIE) $c_0 \subset \mathcal{E} + s_x$ for $\mathcal{E} \subset (s_\alpha)_{\Delta}$ and $\alpha \in c_0$. Then we study the (SSIE) $c \subset \mathcal{E} + s_x^{(c)}$ and the (SSE) $\mathcal{E} + s_x^{(c)} = c$. Then we apply the previous results to the solvability of the (SSE) of the form $(\ell_r^p)_{\Delta} + F_x = F$ for $p \geq 1$ and F is any of the sets c_0 , c, or ℓ_{∞} . These results extend some of those given in [8] and [9].

KEY WORDS: BK space, matrix transformations, multiplier of sequence spaces, sequence spaces inclusion equations, sequence spaces inclusion equations with operator.

AMS Mathematics Subject Classification: 40C05, 46A45.

1. Introduction

We write ω for the set of all complex sequences $y = (y_n)_{n\geq 1}$, ℓ_{∞} , c and c_0 for the sets of all bounded, convergent and null sequences, respectively. We write cs for the set of all convergent series and $\ell^p = \{y \in \omega : \sum_{n=1}^{\infty} |y_n|^p < \infty\}$ for $1 \leq p < \infty$. If $y, z \in \omega$, then we write $yz = (y_n z_n)_{n\geq 1}$. Let U = $\{y \in \omega : y_n \neq 0\}$ and $U^+ = \{y \in \omega : y_n > 0\}$. We write $z/u = (z_n/u_n)_{n\geq 1}$ for all $z \in \omega$ and all $u \in U$, in particular 1/u = e/u, where e is the sequence with $e_n = 1$ for all n. Finally, if $a \in U^+$ and E is any subset of ω , then we put $E_a = (1/a)^{-1} * E = \{y \in \omega : y/a \in E\}$. Let E and F be subsets of ω . In [1], the sets s_a, s_a^0 and $s_a^{(c)}$ were defined for positive sequences a by $(1/a)^{-1} * E$ and $E = \ell_{\infty}, c_0, c$, respectively. In [2] the sum $E_a + F_b$ and the product $E_a * F_b$ were defined where E, F are any of the symbols s, s^0 , or $s^{(c)}$. Then in [5] the solvability was determined of sequences spaces inclusion equations

NT **F**O

 $G_b \subset E_a + F_x$ where $E, F, G \in \{s^0, s^{(c)}, s\}$ and some applications were given to sequence spaces inclusions with operators. Recall that the spaces w_{∞} and w_0 of strongly bounded and summable sequences are the sets of all y such that $(n^{-1} \sum_{k=1}^{n} |y_k|)_n$ is bounded and tends to zero, respectively. These spaces were studied by Maddox [19] and Malkowsky, Rakočević [18]. In [11] we gave some properties of well-known operators defined on the sets $W_a = (1/a)^{-1} * w_{\infty}$ and $W_a^0 = (1/a)^{-1} * w_0$. In this paper we deal with special sequence spaces inclusion equations (SSIE), (resp. sequence spaces equations (SSE)), which are determined by an inclusion, (resp. identity), for which each term is a sum or a sum of products of sets of the form $(E_a)_T$ and $(E_{f(x)})_T$ where f maps U^+ to itself, E is any linear space of sequences and T is a triangle. Some results on (SSE) and (SSIE) were stated in [3], [7], [16], [5], [15], [6], [12], [13].

In this paper for given linear spaces of sequences \mathcal{E} , F and F' we consider the (SSIE) $F \subset \mathcal{E} + F'_x$ as a perturbed inclusion equation of the elementary inclusion equation $F \subset F'_x$. In this way it is interesting to determine what are the linear spaces of sequences \mathcal{E} such that $F \not\subseteq \mathcal{E}$ for which the elementary and the perturbed inclusions equations have the same solutions. In a similar way the (SSE) $\mathcal{E} + F_x = F$ can be considered as the perturbed equation of the equation $F_x = F$. Our aim is to extend some of the known results on the solvability of the (SSIE) of the form $F \subset \mathcal{E} + F'_x$ stated in [15], [6], [5], [13], [7], [8], [9]. In [8] writing D_r for the diagonal matrix with $(D_r)_{nn} = r^n$, we dealt with the solvability of the (SSIE) using the operator of the first difference Δ , defined by $c \subset D_r * E_{\Delta} + c_x$ with $E = c_0$, or s_1 . Then we dealt with the (SSIE) $c \subset D_r * E_{C_1} + s_x^{(c)}$ with $E = c_0, c_1$ or s_1 , and $s_1 \in D_r * E_{C_1} + s_x$ with E = c or s_1 , where C_1 is the Cesàro operator defined by $(C_1)_n y = (\sum_{k=1}^n y_k) / n$. In [10] we solved the (SSE) with operator and $(E_r)_{\Delta} + F_x = F_u$ for r, u > 0 where E, F are any of the sets c_0, c, ℓ_{∞} and the (SSE) $(W_r^0)_{\Delta} + s_x^{(c)} = s_u^{(c)}$. In [9] we dealt with the class of (SSIE) of the form $F \subset E_a + F'_x$ where $F \in \{c_0, \ell^p, w_0, w_\infty\}$ and $E, F' \in \{c_0, c, \ell_\infty, \ell^p, w_0, w_\infty\}, (p \ge 1)$. In this paper we extend the results stated in [8], [9]. In this way we deal with the (SSIE) $c_0 \subset \mathcal{E} + s_x$ where $\mathcal{E} \subset (s_{\alpha})_{\Lambda}$ for $\alpha \in c_0$ and we solve the (SSIE) of the form $\ell_{\infty} \subset \mathcal{E} + F'_x$ where F' is either c_0 , or ℓ_{∞} . Then we study the (SSIE) $c \subset \mathcal{E} + s_x^{(c)}$ and the (SSE) $\mathcal{E} + s_x^{(c)} = c$ with $\mathcal{E} \subset (s_\alpha)_{\Lambda}$ with $\alpha \in cs^+$.

This paper is organized as follows. In Section 2 we recall some well-known results on sequence spaces and matrix transformations. In Section 3 we recall some results on the multipliers and on the characterizations of matrix transformations. In Section 4 we recall some general results on the solvability of the (SSIE) of the form $F \subset E_a + F'_x$. In Section 5 we deal with the solvability of the (SSIE) of the form $\ell_{\infty} \subset \mathcal{E} + F'_x$ where F' is either c_0 , or ℓ_{∞} . In Section 6 we solve the (SSIE) $c_0 \subset \mathcal{E} + s_x$. In Section 7 we study the (SSIE) $c \subset \mathcal{E} + s_x^{(c)}$ and the (SSE) $\mathcal{E} + s_x^{(c)} = c$. In Section 8 we apply results of the previous sections to the solvability of the (SSE) of the form $(\ell_r^p)_{\Lambda} + F_x = F$.

2. Premilinaries and notations

An FK space is a complete linear metric space, for which convergence implies coordinatewise convergence. A BK space is a Banach space of sequences that is an FK space. A BK space E is said to have AK if for every sequence $y = (y_k)_{k\geq 1} \in E$, then $y = \lim_{p\to\infty} \sum_{k=1}^p y_k e^{(k)}$, where $e^{(k)} = (0, ..., 0, 1, 0, ...), 1$ being in the k - th position.

Let \mathbb{R} be the set of all real numbers. For any given infinite matrix A = $(\mathbf{a}_{nk})_{n,k\geq 1}$ we define the operators $A_n = (\mathbf{a}_{nk})_{k\geq 1}$ for any integer $n \geq 1$, by $A_n y = \sum_{k=1}^{\infty} \mathbf{a}_{nk} y_k$, where $y = (y_k)_{k \ge 1}$, and the series are assumed convergent for all n. So we are led to the study of the operator A defined by $Ay = (A_n y)_{n \ge 1}$ mapping between sequence spaces. When A maps E into F, where E and F are subsets of ω , we write $A \in (E, F)$, (cf. [19], [20]). It is well known that if E has AK, then the set $\mathcal{B}(E)$ of all bounded *linear operators* L mapping in E, with norm $||L|| = \sup_{y \neq 0} (||L(y)||_E / ||y||_E)$ satisfies the identity $\mathcal{B}(E) = (E, E)$. For any subset F of ω , we write $F_A = \{y \in \omega : Ay \in F\}$ for the matrix domain of A in F. Then for any given sequence $u = (u_n)_{n \ge 1} \in \omega$ we define the diagonal matrix D_u by $[D_u]_{nn} = u_n$ for all n. It is interesting to rewrite the set E_u using a diagonal matrix. Let E be any subset of ω and $u \in U^+$ we have $E_u = D_u * E =$ $\{y = (y_n)_n \in \omega : y/u \in E\}$. We use the sets $s_a^0, s_a^{(c)}, s_a$ and $(\ell^p)_a$ defined as follows (cf. [1]). For given $a \in U^+$ and $p \ge 1$ we put $D_a * c_0 = s_a^0$, $D_a * c = s_a^{(c)}, D_a * \ell_{\infty} = s_a, \text{ and } D_a * \ell^p = (\ell^p)_a.$ Each of the spaces $D_a * E$, where $E \in \{c_0, c, \ell_\infty\}$ is a *BK space normed* by $\|y\|_{s_a} = \sup_n (|y_n|/a_n)$ and s_a^0 has AK. The set ℓ^p , $(p \ge 1)$ normed by $||y||_{\ell^p} = (\sum_{k=1}^{\infty} |y_k|^p)^{1/p}$ is a BK space with AK. If $a = (R^n)_{n\geq 1}$ with R > 0, we write $s_R, s_R^0, s_R^{(c)}, (\text{or } c_R)$ and $(\ell^p)_R$ for the sets s_a , s_a^0 , $s_a^{(c)}$ and $(\ell^p)_a$, respectively. We also write D_R for $D_{(R^n)_{n\geq 1}}$. When R = 1, we obtain $s_1 = \ell_{\infty}$, $s_1^0 = c_0$ and $s_1^{(c)} = c$. Notice that the set $S_1 = (s_1, s_1)$ is a Banach algebra with $||A||_{S_1} = \sup_n \left(\sum_{k=1}^\infty |\mathbf{a}_{nk}|\right)$ and we have $(c_0, s_1) = (c, s_1) = (s_1, s_1) = S_1$. In the following we use the Schur's theorem (cf. [20], Theorem 1.17 (*iii*)) stated as follows. We have $A \in (s_1, c)$ if and only if $\lim_{n\to\infty} \mathbf{a}_{nk} = l_k$ for all k and for some scalar l_k and $\lim_{n\to\infty}\sum_{k=1}^{\infty} |\mathbf{a}_{nk}| = \sum_{k=1}^{\infty} |l_k|$. We also use the well known properties, stated as follows.

Lemma 1. Let $a, b \in U^+$ and let $E, F \subset \omega$ be any linear spaces. We have $A \in (E_a, F_b)$ if and only if $D_{1/b}AD_a \in (E, F)$.

Recall that the infinite matrix $T = (t_{nk})_{n,k\geq 1}$ is a triangle if $t_{nk} = 0$ for k > n and $t_{nn} \neq 0$ for all n. Then we obtain the next lemma.

Lemma 2 ([4], Lemma 9, p. 45). Let T' and T'' be any given triangles and let $E, F \subset \omega$. Then for any given operator T represented by a triangle we have $T \in (E_{T'}, F_{T''})$ if and only if $T''TT'^{-1} \in (E, F)$.

3. Some results on matrix transformations and on the multipliers of special sets

3.1. On the triangles $C(\lambda)$ and $\Delta(\lambda)$ and the sets W_a and W_a^0

For $\lambda \in U$ the infinite matrices $C(\lambda)$ and $\Delta(\lambda)$ are triangles. We have $[C(\lambda)]_{nk} = 1/\lambda_n$ for $k \leq n$, and the nonzero entries of $\Delta(\lambda)$ are determined by $[\Delta(\lambda)]_{nn} = \lambda_n$ for all n, and $[\Delta(\lambda)]_{n,n-1} = -\lambda_{n-1}$ for all $n \geq 2$. It can be shown that the matrix $\Delta(\lambda)$ is the inverse of $C(\lambda)$, that is, $C(\lambda)(\Delta(\lambda)y) = \Delta(\lambda)(C(\lambda)y) = y$ for all $y \in \omega$. If $\lambda = e$ we obtain the well known operator of the first difference represented by $\Delta(e) = \Delta$. We then have $\Delta_n y = y_n - y_{n-1}$ for all $n \geq 1$, with the convention $y_0 = 0$. It is usually written $\Sigma = C(e)$ and then we may write $C(\lambda) = D_{1/\lambda}\Sigma$. Notice that $\Delta = \Sigma^{-1}$. We also have $cs = c_{\Sigma}$ for the set of all convergent series. The Cesàro operator is defined By $C_1 = C((n)_{n\geq 1})$. We use the sets of sequences that are a-strongly bounded and a-strongly convergent to zero defined for $a \in U^+$ by $W_a = \{y \in \omega : ||y||_{W_a} = \sup_n (n^{-1} \sum_{k=1}^n |y_k|/a_k) < \infty\}$ and

$$W_a^0 = \left\{ y \in \omega : \lim_{n \to \infty} \left(\frac{1}{n} \sum_{k=1}^n |y_k| / a_k \right) = 0 \right\},$$

(cf. [14], [11]). It can easily be seen that $W_a = \{y \in \omega : C_1 D_{1/a} | y| \in s_1\}$. If $a = (r^n)_{n \ge 1}$ the sets W_a and W_a^0 are denoted by W_r and W_r^0 . For r = 1 we obtain the well-known sets $w_{\infty} = \{y \in \omega : ||y||_{w_{\infty}} = \sup_n \left(n^{-1} \sum_{k=1}^n |y_k|\right) < \infty\}$ and $w_0 = \{y \in \omega : \lim_{n \to \infty} \left(n^{-1} \sum_{k=1}^n |y_k|\right) = 0\}$ called the spaces of sequences that are strongly bounded and strongly summable to zero by the Cesàro method (cf. [17]).

3.2. On the multipliers of some sets

First we need to recall some well known results. Let y and z be sequences and let E and F be two subsets of ω , we then write $M(E, F) = \{y \in \omega : yz \in F \text{ for all } z \in E\}$, the set M(E, F) is called the *multiplier* space of E and F. In the following we use the next well known results.

Lemma 3. Let E, \widetilde{E}, F and \widetilde{F} be arbitrary subsets of ω . Then (i) $M(E,F) \subset M(\widetilde{E},F)$ for all $\widetilde{E} \subset E$. (ii) $M(E,F) \subset M(E,\widetilde{F})$ for all $F \subset \widetilde{F}$.

Recall that for $a, b \in U^+$ and E and $F \subset \omega$ we have $D_a * E \subset D_b * F$ if and only if $a/b \in M(E, F)$. In the following we use the results stated below.

Lemma 4 ([9], Lemma 6, pp. 214-215). Let $p \ge 1$. We have:

i) a) $M(c,c_0) = M(\ell_{\infty},c) = M(\ell_{\infty},c_0) = c_0$ and M(c,c) = c. b) $M(E,\ell_{\infty}) = M(c_0,F) = \ell_{\infty}$ for $E, F = c_0, c, \text{ or } \ell_{\infty}. c) M(c_0,\ell^p) = M(c,\ell^p) = M(\ell_{\infty},\ell^p) = \ell^p.$ d) $M(\ell^p,F) = \ell_{\infty}$ for $F \in \{c_0,c,s_1,\ell^p\}.$

 $\begin{array}{ll} ii) \ a) \ M(w_0,F) \ = \ M(w_{\infty},\ell_{\infty}) \ = \ s_{(1/n)_{n\geq 1}} \ for \ F \ = \ c_0, \ c, \ or \ \ell_{\infty}. \\ b) \ M(w_{\infty},c_0) \ = \ M(w_{\infty},c) \ = \ s_{(1/n)_{n\geq 1}}^0. \ c) \ M(\ell_1,w_{\infty}) \ = \ s_{(n)_{n\geq 1}} \ and \\ M(\ell_1,w_0) \ = \ s_{(n)_{n\geq 1}}^0. \ d) \ M(E,w_0) \ = \ w_0 \ for \ E \ = \ s_1, \ or \ c. \ e) \ M(E,w_{\infty}) \ = \\ w_{\infty} \ for \ E \ = \ c_0, \ s_1, \ or \ c. \end{array}$

3.3. The equivalence relation $R_{\mathcal{E}}$

We need to recall some results on the equivalence relation $R_{\mathcal{E}}$ which is defined using the multiplier of sequence spaces. For $b \in U^+$ and for any subset \mathcal{E} of ω , we denote by $cl^{\mathcal{E}}(b)$ the equivalence class for the equivalence relation $R_{\mathcal{E}}$ defined by $xR_{\mathcal{E}}b$ if $\mathcal{E}_x = \mathcal{E}_b$ for $x \in U^+$. It can easily be seen that $cl^{\mathcal{E}}(b)$ is the set of all $x \in U^+$ such that $x/b \in M(\mathcal{E}, \mathcal{E})$ and $b/x \in M(\mathcal{E}, \mathcal{E})$, (cf. [15]). We then have $cl^{\mathcal{E}}(b) = cl^{M(\mathcal{E},\mathcal{E})}(b)$. For instance $cl^c(b)$ is the set of all $x \in U^+$ such that $s_x^{(c)} = s_b^{(c)}$. This is the set of all sequences $x \in U^+$ such that $x_n \sim Cb_n$ $(n \to \infty)$ for some C > 0. We denote by $cl^{\infty}(b)$ the class $cl^{\ell_{\infty}}(b)$. Recall that $cl^{\infty}(b)$ is the set of all $x \in U^+$, such that $K_1 \leq x_n/b_n \leq K_2$ for all n and for some $K_1, K_2 > 0$.

4. Some general results on the (SSIE) $F \subset \mathcal{E} + F'_x$

Here we are interested in the study of the set of all positive sequences x that satisfy the inclusion $F \subset \mathcal{E} + F'_x$ where \mathcal{E} , F and F' are linear spaces of sequences. We may consider this problem as a *perturbation problem*.

4.1. The perturbed problem

If we know the set M(F, F'), then the solutions of the elementary inclusion $F'_x \supset F$ are determined by $1/x \in M(F, F')$. Now the question is: let \mathcal{E} be a linear space of sequences. What are the solutions of the perturbed inclusion $F'_x + \mathcal{E} \supset F$? An additional question may be the following one: what are the conditions on \mathcal{E} under which the solutions of the elementary and the perturbed inclusions are the same? In the following we write $\mathcal{I}(\mathcal{E}, F, F') = \{x \in U^+ : F \subset \mathcal{E} + F'_x\}$, where E, F and F' are linear spaces of sequences. If F = F' we write $\mathcal{I}(\mathcal{E}, F) = \mathcal{I}(\mathcal{E}, F, F')$.

4.2. Some known results on the solvability of (SSIE)

For any set χ of sequences we let $\overline{\chi} = \{x \in U^+ : 1/x \in \chi\}$ and we write $\Phi = \{c_0, c, s_1, \ell^p, w_0, w_\infty\}$ with $p \ge 1$. By c(1) we define the set of all sequences $\alpha \in U^+$ that satisfy $\lim_{n\to\infty} \alpha_n = 1$. Then we consider the condition

(1)
$$G \subset G_{1/\alpha}$$
 for all $\alpha \in c(1)$,

for any given linear space G of sequences. Notice that condition (1) is satisfied for all $G \in \Phi$. In this part we denote by U_1^+ the set of all sequences α with $0 < \alpha_n \leq 1$ for all n. We consider the condition

(2)
$$G \subset G_{1/\alpha} \text{ for all } \alpha \in U_1^+$$

for any given linear space G of sequences. Then we introduce a linear space of sequences H which contains the spaces E and F'. The proof of the next theorem is based on the fact that if H satisfies the condition in (2) we then have $H_{\alpha} + H_{\beta} = H_{\alpha+\beta}$ for all $\alpha, \beta \in U^+$ (cf. [13], Proposition 5.1, pp. 599-600). Notice that c does not satisfy this condition, but each of the sets $c_0, \ell_{\infty}, \ell^p, (p \ge 1), w_0$ and w_{∞} satisfies the condition in (2). So we have for instance $s^0_{\alpha} + s^0_{\beta} = s^0_{\alpha+\beta}$. In the following we write $M(F, F') = \chi$. The next result is used to determine some classes of (SSIE), where we write $\mathcal{I}_a(E, F, F') = \mathcal{I}(E_a, F, F')$ for $a \in U^+$.

Theorem 1 ([9], Theorem 9, p. 216). Let $a \in U^+$ and let E, F and F' be linear subspaces of ω . Assume

a) χ satisfies condition (1).

b) There is a linear space of sequences H that satisfies the condition in (2) and conditions α) and β), where α) $E, F' \subset H, \beta$) $M(F, H) = \chi$.

 $\frac{Then}{M(F,E)} we have: i) \ a \in M(\chi,c_0) \ implies \ \mathcal{I}_a(E,F,F') = \overline{\chi}. \ ii) \ a \in \overline{M(F,E)} \ implies \ \mathcal{I}_a(E,F,F') = U^+.$

As a direct consequence of the preceding we obtain the following result.

Lemma 5 ([9], Corollary 10, p. 216). Let $a \in U^+$, let E, F and F' be linear subspaces of ω . Assume χ satisfies condition (1) and assume $E \subset F'$ where F' satisfies the condition in (2). Then we have: i) The condition $a \in M(\chi, c_0)$ implies $\mathcal{I}_a(E, F, F') = \overline{\chi}$, ii) the condition $a \in \overline{M(F, E)}$ implies $\mathcal{I}_a(E, F, F') = U^+$.

In [8] we have shown the next result on the (SSIE) $c \subset s_a^{(c)} + F'_x$ and $s_1 \subset s_a^{(c)} + F'_x$ with $F' \in \Phi$.

Proposition 1 ([8]). Let $a \in U^+$ and let $F' \in \Phi$. We have: i) $\mathcal{I}_a(c,c,F') = \overline{F'}$ if $a \in c_0$, and $\mathcal{I}_a(c,c,F') = U^+$ if $1/a \in c$. ii) $\mathcal{I}_a(c,s_1,F') = \overline{F'}$ if $a \in c_0$, and $\mathcal{I}_a(c,s_1,F') = U^+$ if $1/a \in c_0$.

5. Solvability of the (SSIE) of the form $\ell_{\infty} \subset \mathcal{E} + F'_x$ where F' is either c_0 or ℓ_{∞}

5.1. Solvability of the (SSIE) of the form $\ell_{\infty} \subset \mathcal{E} + s_x$

By Proposition 1 *ii*) the (SSIE) $s_1
ightharpoondown s_a^{(c)} + s_x$ is equivalent to $x
ightharpoondown \overline{s_1}$ for all $a
ightharpoondown c_0$. In the next theorem we extend this result to the case when $a
ightharpoondown c_0$. For instance, notice that x is a positive solution of the (SSE) $s_1
ightharpoondown c_1 + s_x$ if the next statement holds. The condition $y_n = O(1)$ implies there are u, $v
ightharpoondown c_1$ and $v_n/x_n = O(1)$ (n
ightharpoondown) for all $y
ightharpoondown c_1$ and for some scalar l. Now we state a more general result.

Theorem 2. Let $\mathcal{E} \subset c$ be a linear space of sequences. Then the set $\mathcal{I}(\mathcal{E}, s_1)$ of all positive sequences x such that $s_1 \subset \mathcal{E} + s_x$ is determined by

$$\mathcal{I}\left(\mathcal{E},s_{1}\right)=\overline{s_{1}}$$

Proof. *i*) Since $\mathcal{E} \subset c$ we obtain $\mathcal{I}(\mathcal{E}, s_1) \subset \mathcal{I}(c, s_1)$. So we begin to show the inclusion $\mathcal{I}(c, s_1) \subset \overline{s_1}$. For this, we assume $x \in \mathcal{I}(c, s_1)$ and $x \notin \overline{s_1}$. Then we have $1/x \notin \ell_{\infty}$ and there is a strictly increasing sequence $(n_i)_{i\geq 1}$ tending to infinity such that $x_{n_i} \to 0$ $(i \to \infty)$. Now let $h \in \ell_{\infty}$ be the sequence defined by $h_{n_i} = (-1)^i$ and $h_n = 0$ for all $n \notin \{n_i : i \in \mathbb{N}\}$. Since $\ell_{\infty} \subset c + s_x$ there are sequences $\varphi \in c$ and $\rho \in \ell_{\infty}$ such that $h = \varphi + x\rho$ and $(-1)^i = \varphi_{n_i} + \rho_{n_i} x_{n_i}$. This leads to a contradiction since $\rho_{n_i} x_{n_i} \to 0$ and $\varphi_{n_i} + \rho_{n_i} x_{n_i}$ tends to a limit as $i \to \infty$. This implies $\mathcal{I}(c, s_1) \subset \overline{s_1}$. So we have shown the inclusion $\mathcal{I}(\mathcal{E}, s_1) \subset \overline{s_1}$. Conversely, we show $\overline{s_1} \subset \mathcal{I}(c, s_1)$. For this, let $x \in \overline{s_1}$, that is, $1/x \in s_1$. Since $s_1 = M(s_1, s_1)$ we obtain $s_1 \subset s_x$, $s_1 \subset \mathcal{E} + s_x$ and $x \in \mathcal{I}(\mathcal{E}, s_1)$. This shows the inclusion $\overline{s_1} \subset \mathcal{I}(\mathcal{E}, s_1)$ and we conclude $\mathcal{I}(\mathcal{E}, s_1) = \overline{s_1}$.

As an immediate consequence of Theorem 2 we obtain the next useful result.

Corollary 1. i) The set $\mathcal{I}(c, s_1)$ of all positive sequences x such that $s_1 \subset c + s_x$ is determined by $\mathcal{I}(c, s_1) = \overline{s_1}$.

ii) The set $S(c, s_1)$ of all positive sequences x such that $c + s_x = s_1$ is determined by $S(c, s_1) = cl^{\infty}(e)$.

Proof. The proof of *i*) is immediate and *ii*) follows from *i*) and the equivalence of $c + s_x \subset s_1$ and $x \in s_1$.

In all that follows we write $\lambda^+ = \lambda \bigcap U^+$ for any given subset λ of ω . By Theorem 2 we obtain the following corollary.

Corollary 2. Let $\alpha \in (cs)^+$ and let \mathcal{E} be a linear space of sequences such that $\mathcal{E} \subset (s_{\alpha})_{\Delta}$. Then the set $\mathcal{I}_{\mathcal{E}}^{\infty}$ of all positive sequences x such that $s_1 \subset \mathcal{E} + s_x$ is determined by $\mathcal{I}_{\mathcal{E}}^{\infty} = \overline{s_1}$.

Proof. First recall that ΣD_{α} is the triangle defined by $(\Sigma D_{\alpha})_{nk} = a_k$ for $k \leq n$. We have $(s_{\alpha})_{\Delta} \subset c$ since by the Schur's theorem $\alpha \in cs$ implies $\Sigma D_{\alpha} \in (s_1, c)$. So we have $\mathcal{E} + s_x \subset c + s_x$ which implies $\mathcal{I}_{\mathcal{E}}^{\infty} \subset \mathcal{I}(c, s_1) \subset \overline{s_1}$. It can easily be seen that $\overline{s_1} \subset \mathcal{I}_{\mathcal{E}}^{\infty}$ and $\mathcal{I}_{\mathcal{E}}^{\infty} = \overline{s_1}$. This concludes the proof.

Corollary 3. Let $a \in (cs)^+$. The next (SSIE) $\ell_{\infty} \subset (s_a^0)_{\Delta} + s_x$, $\ell_{\infty} \subset (s_a^{(c)})_{\Delta} + s_x$ and $\ell_{\infty} \subset (s_a)_{\Delta} + s_x$, have the same set of solutions that are determined by $\widetilde{\mathcal{I}}_{\Delta} = \overline{s_1}$.

Corollary 4. Let p > 1 and let $a^{p/(p-1)} \in (cs)^+$. Then the solutions of the (SSIE) $\ell_{\infty} \subset (\ell_a^p)_{\Delta} + s_x$ are determined by $\mathcal{I}_{(\ell_a^p)}^{\infty} = \overline{s_1}$.

We obtain a direct extension of Proposition 1 in the case $E \in \{c_0, c, \ell_\infty\}$ and $F = F' = \ell_\infty$.

Corollary 5. Let $a \in U^+$. Then we have: i) If $a \in s_1$ then the solutions of the (SSIE) $\ell_{\infty} \subset s_a^0 + s_x$ are determined by $\mathcal{I}_a(c_0, s_1, s_1) = \overline{s_1}$. ii) If $a \in c$ then the solutions of the (SSIE) $\ell_{\infty} \subset s_a^{(c)} + s_x$ are determined by $\mathcal{I}_a(c, s_1, s_1) = \overline{s_1}$. iii) If $a \in c_0$ then the solutions of the (SSIE) $\ell_{\infty} \subset s_a + s_x$ are determined by $\mathcal{I}_a(s_1, s_1, s_1) = \overline{s_1}$.

Corollary 6. Let $a \in (D_{(1/n)_{n\geq 1}} * cs)^+$. The solutions of each of the (SSIE) a) $\ell_{\infty} \subset (W_a^0)_{\Delta} + s_x$, b) $\ell_{\infty} \subset (W_a)_{\Delta} + s_x$, are determined by $\mathcal{I}^{\infty}_{(W_a^0)_{\Delta}} = \mathcal{I}^{\infty}_{(W_a)_{\Delta}} = \overline{s_1}$.

Proof. We have $(W_a^0)_{\Delta} \subset c$ if $\Sigma D_a \in (w_0, c)$. Since $w_0 \subset s_{(n)_{n\geq 1}}^0$ we have $(W_a^0)_{\Delta} \subset c$ if $\Sigma D_a \in (s_{(n)_{n\geq 1}}^0, c)$ which is equivalent to $\Sigma D_{(na_n)_{n\geq 1}} \in (c_0, c)$. By the characterization of (c_0, c) we deduce $(W_a^0)_{\Delta} \subset c$ if $a \in D_{(1/n)_{n\geq 1}} * cs$ and we apply Theorem 2. This shows $\mathcal{I}_{(W_a^0)_{\Delta}}^{\infty} = \overline{s_1}$. The case of b) can be obtained in a similar way. This concludes the proof.

Corollary 7. Let r > 0. Then we have: i) The set $\mathcal{I}_{r,w}^{\infty}$ of all positive sequences x that satisfy $\ell_{\infty} \subset (W_r)_{\Delta} + s_x$ is determined by $\mathcal{I}_{r,w}^{\infty} = \begin{cases} \overline{s_1} & \text{if } r < 1, \\ U^+ & \text{if } r \geq 1. \end{cases}$ The set $\mathcal{I}_{r,w}^0$ of all positive sequences x that satisfy $\ell_{\infty} \subset (W_r^0)_{\Lambda} + s_x$ is determined by $\mathcal{I}_w^0 = \mathcal{I}_w^\infty$ for all $r \neq 1$.

Proof. i) The case r < 1 follows from Corollary 6 since we have $\sum_{k=1}^{\infty} kr^k < \infty$. Then the nonzero entries of the triangle $D_{1/r}\Delta$ are defined by $(D_{1/r}\Delta)_{nn} = -(D_{1/r}\Delta)_{n,n-1} = r^{-n}$. So the condition $r \ge 1$ implies $D_{1/r}\Delta \in (\ell_{\infty}, \ell_{\infty})$ and the inclusion $(\ell_{\infty}, \ell_{\infty}) \subset (\ell_{\infty}, w_{\infty})$ successively implies $D_{1/r}\Delta \in (\ell_{\infty}, w_{\infty}), \ \ell_{\infty} \subset (W_r)_{\Delta}$ and $\mathcal{I}_{r,w}^{\infty} = U^+$. *ii*) can be shown similarly. This completes the proof.

5.2. Solvability of the (SSIE) of the form $\ell_{\infty} \subset \mathcal{E} + s_x^0$

By Proposition 1 *ii*) the (SSIE) $\ell_{\infty} \subset s_a^{(c)} + F'_x$ where $F' \in \Phi$ is equivalent to $x \in \overline{F'}$ for all $a \in c_0$. Especially we have $\ell_{\infty} \subset s_a^{(c)} + s_x^0$ with $a \in c_0$ if and only if $\lim_{n\to\infty} x_n = \infty$. In the next theorem we extend this result to the case when $a \in c$.

Theorem 3. Let $\mathcal{E} \subset c$ be a linear space of sequences. Then the set $\mathbb{I}_{\mathcal{E}}^{\infty} = \mathcal{I}(\mathcal{E}, s_1, c_0)$ of all positive sequences x such that $\ell_{\infty} \subset \mathcal{E} + s_x^0$ is determined by $\mathbb{I}_{\mathcal{E}}^{\infty} = \overline{c_0}$.

Proof. As we have seen above we have $\mathbb{I}_{\mathcal{E}}^{\infty} \subset \mathbb{I}_{c}^{\infty}$. So we first show $\mathbb{I}_{c}^{\infty} \subset \overline{c_{0}}$. Assume there is $x \in \mathbb{I}_{c}^{\infty}$ and $x \notin \overline{c_{0}}$. Then we have $1/x \notin c_{0}$ and there is a strictly increasing sequence $(n_{i})_{i\geq 1}$ tending to infinity such that $(x_{n_{i}})_{i\geq 1} \in \ell_{\infty}$. Now let $h \in \ell_{\infty}$ be the sequence defined by $h_{n_{i}} = (-1)^{i}$ and $h_{n} = 0$ for all $n \notin \{n_{i} : i \in \mathbb{N}\}$. Since $\ell_{\infty} \subset c + s_{x}^{0}$ there are sequences $\varphi \in c$ and $\varepsilon \in c_{0}$ such that $h = \varphi + x\varepsilon$ and $(-1)^{i} = \varphi_{n_{i}} + \varepsilon_{n_{i}}x_{n_{i}}$ for all i. This leads to a contradiction since $\varepsilon_{n_{i}}x_{n_{i}} \to 0$ and $\varphi_{n_{i}} + \varepsilon_{n_{i}}x_{n_{i}}$ tends to a limit as $i \to \infty$. This implies $\mathbb{I}_{c}^{\infty} \subset \overline{c_{0}}$ and $\mathbb{I}_{\mathcal{E}}^{\infty} \subset \overline{c_{0}}$. Conversely, we have $x \in \overline{c_{0}}$ implies $1/x \in c_{0}$ and since $c_{0} = M(s_{1}, c_{0})$ we successively obtain $\ell_{\infty} \subset s_{x}^{0}$, $\ell_{\infty} \subset \mathcal{E} + s_{x}^{0}$ and $x \in \mathbb{I}_{\mathcal{E}}^{\infty}$. This shows the inclusion $\overline{c_{0}} \subset \mathbb{I}_{\mathcal{E}}^{\infty}$ and we conclude $\mathbb{I}_{\mathcal{E}}^{\infty} = \overline{c_{0}}$.

As an immediate consequence of Theorem 3 we obtain the next corollary.

Corollary 8. Let $a \in (cs)^+$ and let \mathcal{E} be a linear space of sequences such that $\mathcal{E} \subset (s_a)_{\Delta}$. Then the set $\mathbb{I}_{\mathcal{E}}^{\infty}$ of all positive sequences x such that $\ell_{\infty} \subset \mathcal{E} + s_x^0$ is determined by $\mathbb{I}_{\mathcal{E}}^{\infty} = \overline{c_0}$.

Proof. We have $(s_a)_{\Delta} \subset c$ since $a \in cs$ implies $\Sigma D_a \in (s_1, c)$. So we have $\mathcal{E} + s_x^0 \subset c + s_x^0$ which implies $\mathbb{I}_{\mathcal{E}}^{\infty} \subset \mathbb{I}_c^{\infty} \subset \overline{c_0}$. Conversely, as we have just seen we have $x \in \overline{c_0}$ successively implies $\ell_{\infty} \subset s_x^0$, $\ell_{\infty} \subset \mathcal{E} + s_x^0$ and $\overline{c_0} \subset \mathbb{I}_{\mathcal{E}}^{\infty}$. We conclude $\mathbb{I}_{\mathcal{E}}^{\infty} = \overline{c_0}$. This completes the proof.

Corollary 9. Let $a \in (cs)^+$. Then the next (SSIE) $\ell_{\infty} \subset (s_a^0)_{\Delta} + s_x^0$, $\ell_{\infty} \subset (s_a^{(c)})_{\Delta} + s_x^0$ and $\ell_{\infty} \subset (s_a)_{\Delta} + s_x^0$ have the same set of solutions that are determined by $\widetilde{\mathcal{I}_{\Delta}^0} = \overline{c_0}$.

Corollary 10. Let p > 1 and q = p/(p-1) and assume $a^q \in (cs)^+$. Then the solutions of the (SSIE) $\ell_{\infty} \subset (\ell_a^p)_{\Delta} + s_x^0$ are determined by $\mathcal{I}^0_{(\ell_a^p)_{\Delta}} = \overline{c_0}$.

We obtain a direct extension of Proposition 1 in the case $E \in \{c_0, c, \ell_\infty\}$, $F = \ell_\infty$ and $F' = c_0$.

Corollary 11. Let $a \in U^+$. Then we have: i) If $a \in s_1$ then the solutions of the (SSIE) $\ell_{\infty} \subset s_a^0 + s_x^0$ are determined by $\mathcal{I}_a(c_0, s_1, c_0) = \overline{c_0}$. ii) If $a \in c$ then the solutions of the (SSIE) $\ell_{\infty} \subset s_a^{(c)} + s_x^0$ are determined by $\mathcal{I}_a(c, s_1, c_0) = \overline{c_0}$. iii) If $a \in c_0$ then the solutions of the (SSIE) $\ell_{\infty} \subset s_a + s_x^0$ are determined by $\mathcal{I}_a(s_1, s_1, c_0) = \overline{c_0}$.

By similar arguments as those used in Corollary 6 we obtain the next result.

Corollary 12. Let $a \in D_{(1/n)_{n\geq 1}} * cs$. The solutions of each of the (SSIE) $\ell_{\infty} \subset (W_a^0)_{\Delta} + s_x^0$ and $\ell_{\infty} \subset (W_a)_{\Delta} + s_x^0$, are determined by $\mathcal{I}^0_{(W_a^0)_{\Delta}} = \mathcal{I}^0_{(W_a)_{\Delta}} = \overline{c_0}$.

6. On the (SSIE) $c_0 \subset \mathcal{E} + s_x$

In this part we deal with the (SSIE) $c_0 \subset \mathcal{E} + s_x$ with $\mathcal{E} \subset (s_a)_{\Delta}$ and $a \in c_0^+$. The inclusion $c_0 \subset (s_a)_{\Delta} + s_x$ is associated with the next statement. For every $y \in \omega$ there are $u, v \in \omega$ with y = u + v such that $(u_n - u_{n-1})/a_n = O(1)$ and $v_n/x_n = O(1)$ $(n \to \infty)$. Notice that if $\sum_k a_k < \infty$ then we have $(s_a)_{\Delta} \subset c$ since by the Schur's theorem we have $\Sigma D_a \in (\ell_{\infty}, c)$. Then we have $c \nsubseteq (s_a)_{\Delta}$ since the inclusion $c \subset (s_a)_{\Delta}$ is equivalent to $D_{1/a}\Delta \in (c, s_1)$ and to $a \in \overline{s_1}$.

6.1. On the identity $(\chi_a)_{\Delta} + (\chi_b)_{\Delta} = (\chi_{a+b})_{\Delta}$

Lemma 6. Let $a, b \in U^+$. Then we have $(\chi_a)_{\Delta} + (\chi_b)_{\Delta} = (\chi_{a+b})_{\Delta}$ for $\chi = s_1$, or c_0 .

Proof. Since the inclusion $(\chi_{a+b})_{\Delta} \subset (\chi_a)_{\Delta} + (\chi_b)_{\Delta}$ is trivial, it is enough to show $(\chi_a)_{\Delta} + (\chi_b)_{\Delta} \subset (\chi_{a+b})_{\Delta}$. For this, let $y \in (\chi_a)_{\Delta} + (s_b)_{\Delta}$. Since $(\chi_{\alpha})_{\Delta} = (\Sigma D_{\alpha}) \chi$ with $\alpha \in U^+$ there are $u, v \in \chi$ such that

$$y_n = \sum_{k=1}^n a_k u_k + \sum_{k=1}^n b_k v_k = \sum_{k=1}^n (a_k + b_k) z_k = (\Sigma D_a + \Sigma D_b)_n z,$$

where $z_k = (a_k u_k + b_k v_k) / (a_k + b_k)$ for all k. Since $0 < a_k / (a_k + b_k) < 1$ and $0 < b_k / (a_k + b_k) < 1$ we have $|z_k| \leq |u_k| + |v_k|$ for all k, and $(|u_k| + |v_k|)_{\geq 1} \in \ell_{\infty}$ for $\chi = s_1$ and $(|u_k| + |v_k|)_{\geq 1} \in c_0$ for $\chi = c_0$. This shows $y \in (\Sigma D_{a+b}) \chi = (\chi_{a+b})_{\Delta}$ and $(\chi_a)_{\Delta} + (\chi_b)_{\Delta} \subset (\chi_{a+b})_{\Delta}$. This completes the proof.

Remark 1. As a direct consequence of the preceding lemma we have $\Sigma D_a \chi + \Sigma D_b \chi = (\Sigma D_{a+b}) \chi$ for $\chi = s_1$, or c_0 .

6.2. On the (SSIE) $c_0 \subset \mathcal{E} + s_x$ with $\mathcal{E} \subset (s_\alpha)_\Delta$ and $\alpha \in c_0^+$

For the convenience of the reader we state the next result.

Lemma 7. Let r > 0 and let \varkappa be any of the symbols s, s^0 , or $s^{(c)}$. Then we have: i) $(\varkappa_r)_{\Delta} \notin c_0$ for all r. ii) $c_0 \subset (\varkappa_r)_{\Delta}$ if and only if $r \ge 1$. iii) $c_0 \notin (\varkappa_r)_{\Delta}$ for all r < 1.

Proof. i) We have $\Sigma D_r \notin (c_0, c_0)$ since $\lim_{n\to\infty} (\Sigma D_r)_{nk} = r^k \neq 0$ for all $k \geq 1$. Then the condition $(\varkappa_1, c_0) \subset (c_0, c_0)$ implies $\Sigma D_r \notin (\varkappa_1, c_0)$ and $(\varkappa_r)_\Delta \notin c_0$. ii) The inclusion $c_0 \subset (\varkappa_r)_\Delta$ implies $D_{1/r}\Delta \in (c_0, \varkappa_1)$ and since $(c_0, \varkappa_1) \subset (c_0, s_1)$ we conclude $(1/r^n)_{n\geq 1} \in \ell_\infty$ and $r \geq 1$. Conversely, let $r \geq 1$. Then we have $D_{1/r}\Delta \in (c_0, c_0)$ and since $(c_0, c_0) \subset (c_0, \varkappa_1)$ we obtain $c_0 \subset (\varkappa_r)_\Delta$ where \varkappa is any of the symbols s, s^0 , or $s^{(c)}$. iii) is a direct consequence of ii). This completes the proof.

Now we state a result where we must have in mind the statements in Lemma 7 and the equivalence of $\mathcal{E} \subset (s_{\alpha})_{\Delta}$ and $D_{1/\alpha}\Delta \in (\mathcal{E}, s_1)$. So we obtain an extension of Lemma 7 *iii*) since the condition $\alpha \in c_0^+$ implies $\mathcal{E} \nsubseteq (s_{\alpha})_{\Delta}$ for $\mathcal{E} \in \{c_0, c, \ell_{\infty}\}$, and we have not the trivial inclusion $c_0 \subset \mathcal{E}$ which implies $c_0 \subset \mathcal{E} + s_x$ for all positive sequences x. In the following we write $(x^-)_n = x_{n-1}$ for $n \ge 2$ and $x_1^- = 1$.

Theorem 4. Let $\alpha \in c_0^+$ and let $\mathcal{E} \subset (s_\alpha)_\Delta$ be a linear space of sequences. Then the set $\mathbb{I}^0_{\mathcal{E}} = \mathcal{I}(\mathcal{E}, c_0, s_1)$ of all positive sequences x such that $c_0 \subset \mathcal{E} + s_x$ is determined by

$$\mathbb{I}^{0}_{\mathcal{E}} \cap c = cl^{c}(e) \,.$$

Proof. First we show $s_x \subset (s_{x+x^-})_{\Delta}$. Indeed, this inclusion is equivalent to $D_{1/(x+x^-)}\Delta D_x \in (s_1, s_1)$ where we have $[D_{1/(x+x^-)}\Delta D_x]_{nn} = x_n/(x_{n-1}+x_n)$ and $[D_{1/(x+x^-)}\Delta D_x]_{n,n-1} = -x_{n-1}/(x_{n-1}+x_n)$ for all n, the other entries being naught. Now we let $x \in \mathbb{I}_{\mathcal{E}}^0 \cap c$. Then we have $x \in c$ and $c_0 \subset (s_\alpha)_{\Delta} + s_x$. The last inclusion implies

$$c_0 \subset (\Sigma D_\alpha) \, s_1 + (\Sigma D_{x+x^-}) \, s_1$$

and by Lemma 6 we obtain

$$(\Sigma D_{\alpha}) s_1 + (\Sigma D_{x+x^-}) s_1 = (\Sigma D_{\alpha+x+x^-}) s_1 = (s_{\alpha+x+x^-})_{\Delta}.$$

We deduce $c_0 \subset (s_{\alpha+x+x^-})_{\Delta}$. So there is K > 0 such that $(\alpha_n + x_n + x_{n-1})^{-1} \leq K$ and $x_n + x_{n-1} \geq 1/K - \alpha_n$ for all n. Since $\alpha \in c_0$, there is M > 0 such that $x_n + x_{n-1} \geq M$ for all n. Then the condition $x \in c$ implies $\lim_{n\to\infty} (x_n + x_{n-1}) = 2\lim_{n\to\infty} x_n \geq M$ and $\lim_{n\to\infty} x_n > 0$ which implies $s_x^{(c)} = c$. So we have shown $\mathbb{I}_{\mathcal{E}}^0 \cap c \subset c \cap \overline{c} = cl^c(e)$. Conversely, let $x \in cl^c(e)$.

Then we have $\lim_{n\to\infty} x_n = L$ with L > 0. So we have $1/x \in s_1$ which implies $c_0 \subset s_x$, $c_0 \subset \mathcal{E} + s_x$ and since $x \in c$ we conclude $x \in \mathbb{I}^0_{\mathcal{E}} \cap c$. This completes the proof.

6.3. Application to the (SSIE) $F \subset (E_a)_{\Lambda} + F'_x$

In this part we deal with some properties of the (SSIE)

(3)
$$F \subset (E_a)_{\Delta} + F'_x$$

where E, F and F' are linear spaces of sequences

Proposition 2. Let E, F and F' be linear spaces of sequences that satisfy $F \supset c_0$ and E, $F' \subset \ell_{\infty}$. Let $\mathcal{I}((E_a)_{\Delta}, F, F') \cap c$ be the set of all convergent and positive sequences x such that (3) holds. If $a \in c_0^+$ then we have:

(4)
$$\mathcal{I}\left((E_a)_{\Delta}, F, F'\right) \cap c \subset cl^c(e).$$

Moreover if we assume $c \subset M(F, F')$ then

(5)
$$\mathcal{I}\left((E_a)_{\Delta}, F, F'\right) \cap c = cl^c\left(e\right).$$

Proof. We have $x \in \mathcal{I}((E_a)_{\Delta}, F, F') \cap c$ implies $c_0 \subset (s_a)_{\Delta} + s_x$ and by Theorem 4 we obtain $x \in cl^c(e)$. Now we assume $c \subset M(F, F')$. Then the condition $x \in cl^c(e)$ implies $s_x^{(c)} = c$ and there is L > 0 such that $\lim_{n\to\infty} 1/x_n = L$ and $1/x \in c$. So we obtain $1/x \in M(F, F'), F \subset F'_x$ and $x \in \mathcal{I}((E_a)_{\Delta}, F, F') \cap c$. This shows the identity in (5). This concludes the proof.

Remark 2. As a direct consequence of the preceding proposition we may show that if E is a linear space of sequences such that $c_0 \subset E \subset \ell_{\infty}$ then the set $S((E_r)_{\Delta}, c)$ with 0 < r < 1 be the set of all positive sequences such that $(E_r)_{\Delta} + s_x^{(c)} = c$ is determined by $S((E_r)_{\Delta}, c) = cl^c(e)$.

7. On the (SSIE) $c \subset \mathcal{E} + s_x^{(c)}$ and the (SSE) $\mathcal{E} + s_x^{(c)} = c$

In this part we consider the (SSIE) $c \subset \mathcal{E} + s_x^{(c)}$ which is associated with the next statement. For every $y \in c$ there are $u, v \in \omega$ with y = u + v such that $u \in \mathcal{E}$ and $v/x \in c$. Then we solve the equation $\mathcal{E} + s_x^{(c)} = c$ where $\mathcal{E} \subset (s_\alpha)_\Delta$ with $\sum_{k=1}^{\infty} \alpha_k < \infty$.

7.1. On the (SSIE) $c \subset \mathcal{E} + s_x^{(c)}$

We obtain the following lemma.

Lemma 8. Let \mathcal{E} be a linear space of sequences that satisfies $\mathcal{E} \subset (s_{\alpha})_{\Delta}$ with $\alpha \in (cs)^+$. Then the set $\mathcal{I}^c(\mathcal{E}, c)$ of all positive and convergent sequences x that satisfy $c \subset \mathcal{E} + s_x^{(c)}$ is determined by

$$\mathcal{I}^{c}\left(\mathcal{E},c\right) = cl^{c}\left(e\right).$$

Proof. Let $\mathcal{E} \subset (s_{\alpha})_{\Delta}$ with $\alpha \in cs^+$. Then it can easily be seen that the condition $c \subset \mathcal{E} + s_x^{(c)}$ implies $c_0 \subset \mathcal{E} + s_x$. So by Theorem 4 we have

(6)
$$\mathcal{I}^{c}(\mathcal{E},c) \subset \mathbb{I}^{0}_{\mathcal{E}} \cap c \subset cl^{c}(e)$$

Now since $1/x \in c$ implies $c \subset s_x^{(c)}$ and $c \subset \mathcal{E} + s_x^{(c)}$, by the identity $\overline{c} \cap c = cl^c(e)$ we conclude

(7)
$$cl^{c}(e) \subset \mathcal{I}^{c}(\mathcal{E}, c).$$

By (6) and (7) we obtain $\mathcal{I}^{c}(\mathcal{E}, c) = cl^{c}(e)$. This completes the proof.

7.2. On the (SSE) $\mathcal{E} + s_x^{(c)} = c$.

In the following we deal with some (SSE) of the form $\mathcal{E} + F_x = F$ where \mathcal{E} and F are two linear subsets of ω . Recall that x satisfies this (SSE) if and only if $\mathcal{E} \subset F$, $x \in M(F, F)$ and $x \in \mathcal{I}(\mathcal{E}, F)$. The next theorem extends the results on the (SSE) of the form $E_a + s_x^{(c)} = c$ where $E = c_0, c, \text{ or } \ell^p$, $(p \geq 1)$ stated in ([6], Proposition 5.1, p. 108) and ([6], Theorem 5.2, p. 108). Indeed, here we consider the equation $\mathcal{E} + s_x^{(c)} = c$ with $\mathcal{E} \subset (s_\alpha)_\Delta$ and $\alpha \in cs^+$. For instance the identity $(s_r)_\Delta = s_a^{(c)}$ for r < 1 cannot be obtained for any $a \in U^+$, since it should imply $1/a \in c$ and $a_n/r^n = O(1)$ $(n \to \infty)$ which is contradictory.

Theorem 5. Let \mathcal{E} be a linear space of sequences that satisfies $\mathcal{E} \subset (s_{\alpha})_{\Delta}$ with $\alpha \in cs$. Then the set $\mathcal{S}(\mathcal{E}, c)$ of all positive sequences x that satisfy the (SSE) $\mathcal{E} + s_x^{(c)} = c$ is determined by $\mathcal{S}(\mathcal{E}, c) = cl^c(e)$.

Proof. Let $x \in \mathcal{S}(\mathcal{E}, c)$. Then we have $s_x^{(c)} \subset c$, that is, $x \in c$, and $c \subset \mathcal{E} + s_x^{(c)}$. So we have $x \in \mathcal{I}^c(\mathcal{E}, c)$ and by Lemma 8 we obtain $\mathcal{S}(\mathcal{E}, c) \subset \mathcal{I}^c(\mathcal{E}, c) = cl^c(e)$. Conversely, let $x \in cl^c(e)$. Then we have $s_x^{(c)} = c$. Since $\alpha \in cs^+$, by the Schur's theorem we have $\Sigma D_\alpha \in (s_1, c)$. This implies $\mathcal{E} \subset (s_\alpha)_\Delta \subset c$ and $\mathcal{E} + s_x^{(c)} = \mathcal{E} + c = c$. So we obtain $cl^c(e) \subset \mathcal{S}(\mathcal{E}, c)$ and we conclude $\mathcal{S}(\mathcal{E}, c) = cl^c(e)$. This completes the proof.

Corollary 13. The perturbed equations $(s_r^0)_{\Delta} + s_x^{(c)} = c, (s_r^{(c)})_{\Delta} + s_x^{(c)} = c$ and $(s_r)_{\Delta} + s_x^{(c)} = c$ satisfy $\mathcal{S}((s_r^0)_{\Delta}, c) = \mathcal{S}((s_r^{(c)})_{\Delta}, c) = \mathcal{S}((s_r)_{\Delta}, c)$ and $\mathcal{S}((s_r)_{\Delta}, c) = \begin{cases} cl^c(e) & \text{if } r < 1, \\ \varnothing & \text{if } r \ge 1. \end{cases}$

Proof. We have $\mathcal{S}((s_r)_{\Delta}, c) = cl^c(e)$ if r < 1 by Theorem 5, where $\alpha = (r^n)_{n \geq 1} \in cs$. Then we have $(E_r)_{\Delta} \nsubseteq c$ for all $r \geq 1$ and $E \in \{c_0, c, \ell_{\infty}\}$. Indeed, the condition $(E_r)_{\Delta} \subset c$ should imply $\Sigma D_r \in (c_0, c)$ and r < 1. This completes the proof.

Corollary 14. The perturbed (SSE) defined by $(W_r)_{\Delta} + s_x^{(c)} = c$ and $(W_r^0)_{\Delta} + s_x^{(c)} = c$ satisfy the identities $\mathcal{S}((W_r)_{\Delta}, c) = \mathcal{S}((W_r^0)_{\Delta}, c) = \mathcal{S}((w_r^0)_{\Delta}, c)$ where $\mathcal{S}((s_r)_{\Delta}, c)$ is determined in Corollary 13.

Proof. We have $(W_r)_{\Delta} = (w_{\infty})_{D_{1/r}\Delta}$ and since $w_{\infty} \subset s_{(n)_{n\geq 1}}$ we obtain $(W_r)_{\Delta} \subset (s_{(nr^n)_{n\geq 1}})_{\Delta}$, then we apply Theorem 5 with $\alpha = (nr^n)_{n\geq 1} \in cs$. In the same way we have $(W_r^0)_{\Delta} \subset (W_r)_{\Delta} \subset (s_{(nr^n)_{n\geq 1}})_{\Delta}$. Then we have $(E_r)_{\Delta} \not\subseteq c$ for all $r \geq 1$ and $E \in \{w_0, w_{\infty}\}$. Indeed, the condition $(E_r)_{\Delta} \subset c$ should imply $\Sigma D_r \in (w_0, c)$ and $\Sigma D_r \in (c_0, c)$ since $w_0 \supset c_0$ and as above we obtain r < 1. This concludes the proof.

8. Application to the solvability of the (SSE) of the form $(\ell_r^p)_{\Delta} + F_x = F$

In this part we apply the results stated in the previous sections and we extend the results stated in [10] where we studied the (SSE) of the form $(E_r)_{\Delta} + F_x = F_u$ with r, u > 0 and where E, F are any of the sets c_0, c , or ℓ_{∞} and the (SSE) $(W_r^0)_{\Delta} + s_x^{(c)} = s_b^{(c)}$. Then we study the (SSE) $(\ell_r^p)_{\Delta} + F_x = F$ where F is any of the sets c_0, c , or ℓ_{∞} and $p \ge 1$. In the next result we use the characterization of (ℓ^p, F) where $F = c_0, c$, or ℓ_{∞} , see for instance ([18], Theorem 1.37, p. 161).

Proposition 3. Let $p \ge 1$ and r > 0, and let \mathcal{S}_p^0 be the set of all positive sequences x such that $(\ell_r^p)_{\Delta} + s_x^0 = c_0$. Then $\mathcal{S}_p^0 = \emptyset$.

Proof. The entries of the triangle ΣD_r are defined by $(\Sigma D_r)_{nk} = r^k$ for $k \leq n$. Then we have $\lim_{n\to\infty} (\Sigma D_r)_{nk} \neq 0$ for all k, which implies $\Sigma D_r \notin (\ell^p, c_0)$ and $(\ell^p_r)_\Delta \nsubseteq c_0$. We conclude $S_p^0 = \emptyset$.

We also obtain the next result.

Theorem 6. Let r, u > 0 and let $p \ge 1$. Then we have:

i) Let p > 1. Then the set $S_p^F = S((\ell_r^p)_{\Delta}, F)$ of all positive sequences x such that $(\ell_r^p)_{\Delta} + F_x = F$ where F is either of the sets c, or ℓ_{∞} is determined by

$$\mathcal{S}_{p}^{F} = \begin{cases} cl^{F}\left(e\right) & \text{if } r < 1, \\ \varnothing & \text{if } r \geq 1. \end{cases}$$

ii) a) The set $S_1^{\infty} = S\left(\left(\ell_r^1\right)_{\Delta}, \ell_{\infty}\right)$ of all positive sequences x such that $\left(\ell_r^1\right)_{\Delta} + s_x = s_1$ is determined by

$$\mathcal{S}_1^{\infty} = \begin{cases} cl^{\infty} \left(e \right) & \text{if } r \leq 1, \\ \varnothing & \text{if } r > 1. \end{cases}$$

b) The set $S_1^c = S\left(\left(\ell_r^1\right)_{\Delta}, c\right)$ satisfies the identity $S_1^c = cl^c(e)$ for r < 1and $S_1^c = \emptyset$ for r > 1.

Proof. i) Case F = c. Let $x \in \mathcal{S}_p^c$. Then we have

(8)
$$(\ell_r^p)_\Delta \subset c$$

and

$$(9) x \in c$$

We have (8) if and only if $\Sigma D_r \in (\ell^p, c)$ and by the characterization of (ℓ^p, c) it can easily be shown that the condition in (8) is equivalent to

(10)
$$\sup_{n \ge 1} \sum_{k=1}^{n} r^{kq} < \infty \quad \text{with} \quad q = p/(p-1).$$

So we have $S_p^c \neq \emptyset$ implies r < 1 and $S_p^c = \emptyset$ if $r \ge 1$. Then for r < 1 we have $(\ell_r^p)_\Delta \subset (s_r)_\Delta$ with $(r^n)_{n\ge 1} \in cs$ and we conclude by Theorem 5 that $S_p^c = cl^c(e)$.

Case $F = \ell_{\infty}$. Let $x \in \mathcal{S}_p^{\infty}$. Then we have

(11)
$$(\ell_r^p)_\Delta \subset \ell_\infty$$

(12)
$$x \in \ell_{\infty}$$

and

(13)
$$\ell_{\infty} \subset (\ell_r^p)_{\Delta} + s_x.$$

As we have seen above the condition in (11) is equivalent to $\Sigma D_r \in (\ell^p, \ell_\infty)$ and to (10). So we have r < 1. Then by Theorem 2 with $\mathcal{E} = (\ell^p_r)_\Delta \subset c$ and by (12) the condition in (13) implies $x \in cl^{\infty}(e)$. So we have shown $S_p^{\infty} \subset cl^{\infty}(e)$ for r < 1. Conversely, let r < 1 and $x \in cl^{\infty}(e)$. Then we have $s_x = \ell_{\infty}$ and $(\ell_r^p)_{\Delta} \subset \ell_{\infty}$ which imply $(\ell_r^p)_{\Delta} + s_x = (\ell_r^p)_{\Delta} + \ell_{\infty} = \ell_{\infty}$. So we have $cl^{\infty}(e) \subset S_p^{\infty}$. This concludes the proof of i).

ii) *a*) Let $x \in S_1^{\infty}$. Then the conditions in (11), (12) and (13) hold with p = 1. The condition in (11) with p = 1 is equivalent to $\Sigma D_r \in (\ell^1, \ell_{\infty})$ and to $(r^n)_{n\geq 1} \in \ell_{\infty}$. So we have $S_1^{\infty} \neq \emptyset$ if $r \leq 1$. For r < 1, by Theorem 2 where $\mathcal{E} = (\ell_r^1)_{\Delta} \subset (s_{\alpha})_{\Delta}$ for $\alpha = (r^n)_{n\geq 1} \in c_0$ the inclusion in (13) with p = 1 implies $x \in \overline{s_1}$ and since (12) holds we conclude $S_1^{\infty} \subset cl^{\infty}(e)$. By similar arguments as those used above we obtain $cl^{\infty}(e) \subset S_1^{\infty}$ for r < 1 and we conclude $S_1^{\infty} = cl^{\infty}(e)$.

Case r = 1. We write ℓ^1 for the set ℓ^1_1 and we denote by bv the set ℓ^1_{Δ} of bounded variation. Now we let $x \in \mathcal{S}(bv, s_1)$. Then we successively have $bv \subset \ell_{\infty}$, since $\Sigma \in (\ell^1, \ell_{\infty})$, $x \in \ell_{\infty}$ and $\ell_{\infty} \subset bv + s_x$. Since we have $\Sigma \in (\ell^1, c)$ we obtain $bv \subset c$ and by Theorem 2 the statement $\ell_{\infty} \subset bv + s_x$ implies $x \in \overline{s_1}$. So we have $\mathcal{S}(bv, s_1) \subset cl^{\infty}(e)$. Conversely, assume $x \in cl^{\infty}(e)$. Then we have $s_x = s_1$ and since $bv \subset \ell_{\infty}$ we obtain $bv + s_x = bv + s_1 = s_1$ and $x \in \mathcal{S}(bv, s_1)$. We conclude $\mathcal{S}(bv, s_1) = cl^{\infty}(e)$.

b) Let $x \in S_1^c$ and let $r \neq 1$. Then the conditions in (8), (9) hold with p = 1 and the condition in (8) is equivalent to $\Sigma D_r \in (\ell^1, c)$ and to $(r^n)_{n\geq 1} \in c$. So we have r < 1. As we have seen in i) we conclude by Theorem 5 that $S_1^c = cl^c(e)$.

References

- DE MALAFOSSE B., On some BK space, Int. J. Math. and Math. Sc., 28(2003), 1783-1801.
- [2] DE MALAFOSSE B., Sum of sequence spaces and matrix transformations, Acta Math. Hung., 113(3)(2006), 289-313.
- [3] DE MALAFOSSE B., Applications of the summability theory to the solvability of certain sequence spaces equations with operators of the form B(r, s), *Commun. Math. Anal.*, 13(1)(2012), 35-53.
- [4] DE MALAFOSSE B., Application of the infinite matrix theory to the solvability of certain sequence spaces equations with operators, *Mat. Vesnik*, 54(1)(2012), 39-52.
- [5] DE MALAFOSSE B., Solvability of certain sequence spaces inclusion equations with operators, *Demonstratio Math.*, 46(2)(2013), 299-314.
- [6] DE MALAFOSSE B., Solvability of sequence spaces equations using entire and analytic sequences and applications, J. Ind. Math. Soc., 81 N° 1-2, (2014), 97-114.
- [7] DE MALAFOSSE B., On sequence spaces equations of the form $E_T + F_x = F_b$ for some triangle T, Jordan J. Math. Stat., 8(1)(2015) 79-105.

- [8] DE MALAFOSSE B., Application of the infinite matrix theory to the solvability of sequence spaces inclusion equations with operators, *Ukrainian Math. J.*, (under press).
- [9] DE MALAFOSSE B., On new classes of sequence spaces inclusion equations involving the sets c_0 , c, ℓ_p , $(1 \le p \le \infty)$, w_0 and w_{∞} , J. Ind. Math. Soc., 84(3-4)(2017), 211-224.
- [10] DE MALAFOSSE B., New results on the sequence spaces equations using the operator of the first difference, Acta Math. Univ. Comen., 86 n°2 (2017), 227-242.
- [11] DE MALAFOSSE B., MALKOWSKY E., Matrix transformations between sets of the form W_{ξ} and operators generators of analytic semigroups, Jordan J. Math. Stat., 1(1)(2008), 51-67.
- [12] DE MALAFOSSE B., MALKOWSKY E., On the solvability of certain (SSIE) with operators of the form B(r, s), Math. J. Okayama. Univ., 56(2014), 179-198.
- [13] DE MALAFOSSE B., MALKOWSKY E., On sequence spaces equations using spaces of strongly bounded and summable sequences by the Cesàro method, *Antartica J. Math.*, 10(6)(2013), 589-609.
- [14] DE MALAFOSSE, B., RAKOČEVIĆ V., Calculations in new sequence spaces and application to statistical convergence, *Cubo A*, 12(3)(2010), 117-132.
- [15] DE MALAFOSSE B., RAKOČEVIĆ V., Matrix transformations and sequence spaces equations, Banach J. Math. Anal., 7(2) (2013), 1-14.
- [16] FARÉS A., DE MALAFOSSE B., Sequence spaces equations and application to matrix transformations, Int. Math. Forum 3, (2008) n°19, 911-927.
- [17] MALKOWSKY E., The continuous duals of the spaces $c_0(\Lambda)$ and $c(\Lambda)$ for exponentially bounded sequences Λ , Acta Sci. Math. (Szeged), 61(1995), 241-250.
- [18] MALKOWSKY E., RAKOČEVIĆ V., An introduction into the theory of sequence spaces and measure of noncompactness, *Zbornik radova, Matematički Institut* SANU, 9(17)(2000), 143-243.
- [19] MADDOX I.J., Infinite matrices of operators, Springer-Verlag, Berlin, Heidelberg and New York, 1980.
- [20] WILANSKY A., Summability through Functional Analysis, North-Holland Mathematics Studies, 85(1984).

Bruno de Malafosse Université du Havre, France *e-mail:* bdemalaf@wanadoo.fr

Received on 01.05.2017 and, in revised form, on 08.11.2017.