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1. Introduction

In 2002, generalized topological spaces introduced and developed by A.
Csaszar [1]. A generalized topology (briefly a GT ) µ on a nonempty set
X is a collection of subsets of X such that ∅ ∈ µ and µ is closed under
arbitrary unions. The pair (X,µ) is called a generalized topological space
(briefly a GTS). Elements of µ are called µ-open sets and a complement of
a µ-open set is called a µ-closed set. The union of all µ-open subsets of a
subset S of (X,µ) is called the µ-interior of S [2] and denoted by iµ(S). The
intersection of µ-closed sets containing S is called the µ-closure of S [2] and
denoted by cµ(S). A subset S of a space (X,µ) is called µ-regular closed
(shortly µr-closed) [3] if S = cµ(iµ(S)). If X�S is µ-regular closed then S
is called as µ-regular open (shortly µr-open).

A GTS (X,µ) is called strong if X ∈ µ and a quasi-topological space
if µ is closed under finite intersections. (X,µ) is said to be extremally
disconnected (briefly EDC) if the µ-closure of every µ-open set is µ-open.

Generalized closed sets introduced by N. Levine [6] in 1970. This notion
has been studied and developed in many papers and plays a significant role
in General Topology. The purpose of this paper is to introduce new types
of continuous functions using this concept.

2. Preliminaries

Definition 1. A subset A of a GTS (X,µ) is said to be µ-semi-open
[1] (respectively µ-preopen [1], and µ-δ-open) if A ⊂ cµ(iµ(A)) (respectively
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A ⊂ iµ(cµ(A)), and A is the union of µr-open sets). The complements of
the above sets are called respective closed ones.

Definition 2. Let A be a subset of GTS (X,µ). Then, A is called
µg-closed [9] if cµ(A) ⊂ U whenever A ⊂ U and U is µ-open. It is
known that every µ-closed set in a GTS (X,µ) is µg-closed,but reverse
implication is not true in general.The complement of a µg-closed set is
called µg-open. The union of all µg-open subsets of a subset A of (X,µ)
is called the µg-interior of A and denoted by intµg(A). The intersection of
all µg-closed sets containing a subset A is called the µg-closure of A and
denoted by clµg(A). If A is µg-closed, then A = clµg(A). The converse does
not hold in general.

The family of all µg-open (respectively µg-closed, µ-closed) sets of (X,µ)
is denoted by GO(µ) (respectively GC(µ), C(µ). The family of all µg-open
(respectively µg-closed, µ-closed) sets containing a point x ∈ X is denoted
by GO(µ, x) (respectively GC(µ, x), C(µ, x).

Definition 3. A function f : (X,µ) → (Y, λ), where (X,µ) and (Y, λ)
are two GTS’s, is called:

(a) (µg, λ)-continuous [12] if f−1(V ) is µg-closed in (X,µ) for each λ-closed
set V in (Y, λ),

(b) (µg, λg)-irresolute [12] ( (µ, λ)-irresolute function) if f−1(V ) is µg-closed
(µ-closed) in (X,µ) for each λg-closed (λ-closed set) V in (Y, λ),

(c) contra (µ, λ)-continuous [7] if f−1(V ) is µ-closed in (X,µ) for each
λ-open set V in (Y, λ),

(d) contra (µg, λ)-continuous f−1(V ) is µg-closed in (X,µ) for each λ-open
set V in (Y, λ),

(e) (µ, λ)-closed if f(F ) is λ-closed in (Y, λ) for each µ-closed set F in
(X,µ) .

Remark 1. Assume that f : (X,µ)→ (Y, λ) is contra (µg, λ)-continuous.
Since ∅ ∈ λ and f is contra (µg, λ)-continuous, f−1(∅) = ∅ is µg-closed
and this implies that ∅ is µ-closed, because it is true that ∅ ⊂ ∅ ∈ µ and
clµ (∅) ⊂ ∅ (⊂ clµ (∅)). So, if f : (X,µ)→ (Y, λ) is contra (µg, λ)-continuous,
then (X,µ) is a strong GTS. Same is true for if f : (X,µ)→ (Y, λ) is contra
(µ, λ)-continuous.

The concept of contra (µg, λ)-continuous functions is a generalization of
Contra sg-Continuous Maps [8].

Definition 4. A GTS (X,µ) is called:

(a) µ-Urysohn if for each pair of distinct points x and y in X, there exist
µ-open sets U and V such that x ∈ U , y ∈ V and cµ(U) ∩ cµ(V ) = ∅.
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(b) µ-T 1
2
-space [9] if each µg-closed subset of (X,µ) is µ-closed,

(c) µg-connected [12] if X cannot be written as a disjoint union of two
nonempty µg-open sets,

(d) weakly µ-Hausdorff (see [13]) if each element of X is an intersection of
µr-closed sets.

Definition 5 ([9]). Let A be a subset of a GTS (X,µ). The set ∩{U ∈
µ : A ⊂ U} is called the µ-kernel of A and denoted by µ-ker(A).

The following Lemma due to D. Jayanthi stated without proof in [5], we
give the proofs for the sake of completeness.

Lemma 1 ([5]). Let (X,µ) be a GTS and A,B ⊆ X. The following
properties hold:

(a) µ-ker(A) ⊃ A and if A ∈ µ then A = µ-ker(A)
(b) If A ⊂ B, then µ-ker(A) ⊂ µ-ker(B).
(c) x ∈ µ-ker(A) iff A ∩ F 6= ∅ for any µ-closed set F containing x,

Proof. (a) Let UA={O : A ⊂ O ∈ µ} be the family of all µ-open sets
containing A. Then we have µ-ker(A) =

⋂
UA ⊃ A. If A ∈ µ, then A ∈ UA

and
⋂
UA ⊂ A gives A =

⋂
UA=µ-ker(A).

(b) Let A ⊆ B, consider UA = {U : A ⊆ U ∈ µ} and UB = {U : B ⊆ U ∈
µ}. Then for U ∈ UB, it is true that A ⊆ B ⊆ U ∈ UB , that is U ∈ UA and
UB ⊆ UA and this implies [(UA − UB) ∪ UB] = UA, so we have

µ- ker(A) =
⋂
UA

=
(⋂

(UA − UB)
)
∩
(⋂
UB
)

⊂
⋂
UB

= µ- ker(B).

(c) Let x ∈ µ-ker(A) and suppose that A ∩ F = ∅ for some µ-closed set
F containing x. Then A ⊂ X − F ∈ µ, and x /∈ X − F but we have

x ∈ µ- ker(A) ⊂ µ- ker(X − F ) = X − F

which is a contradiction.
Conversely, assume that A ∩ F 6= ∅ for any µ-closed set F containing x,

but x /∈ µ-ker(A). Then, there exists a µ-open set V such that A ⊂ V and
x /∈ V . Thus we have x ∈ X − V (⊂ X −A) and X − V is µ-closed. But
this implies (X − V ) ∩ A ⊂ (X −A) ∩ A = ∅ that is (X − V ) ∩ A = ∅, but
this contradicts with the hypothesis. �
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3. Characterizations of contra (µg, λ)-continuous
functions

Remark 2. From the definitions we have stated above, we observe
that in a GTS (X,µ), every contra (µ, λ)-continuous function is contra
(µg, λ)-continuous. However the converse does not hold in general.

Example 1. Let R be the set of real numbers, µ = {R, ∅,R�{0},
R�{−1, 1}} and λ = {∅, {1},R}. Let f : (R, µ) → (R, λ) be the identity
function. Then f is contra (µg, λ)-continuous but not contra (µ, λ)-continuous.

Proposition 1. Let f : (X,µ) → (Y, λ) be a function. Suppose that
(X,µ) is µ-T 1

2
-space. Then the following properties are equivalent:

(i) f is contra (µg, λ)-continuous,
(ii) f is contra (µ, λ)-continuous.

Proof. This is clear. �

Theorem 1. Suppose that GC(µ) is closed under arbitrary intersections.
Then the following are equivalent for a function f : (X,µ)→ (Y, λ) :

(a) f is contra (µg, λ)-continuous,
(b) The inverse image of each λ-closed set in (Y, λ) is µg-open.
(c) For each x ∈ X and each λ-closed set B containing f(x), there exists a

µg-open set A in X such that x ∈ A and f(A) ⊂ B,
(d) f(clµg(A)) ⊂ λ-ker(f(A)) for every subset A of X,
(e) clµg(f

−1(B)) ⊂ f−1(λ-ker(B)) for every subset B of Y .

Proof. (a) =⇒ (b): Let G be a λ-closed set in Y. Then Y \G is λ-open
and by (a), f−1(Y \G) = X \f−1(G) is µg-closed. Thus f−1(G) is µg-open.

(b) =⇒ (a): Let U ∈ λ. Then Y \ U is λ-closed and by (b), f−1(Y \
U) = X \ f−1(U) is µg-open, thus f−1(U) is µg-closed. Hence, f is contra
(µg, λ)-continuous.

(a) =⇒ (c): Let x ∈ X and B be a λ-closed set with f(x) ∈ B. By
(a), it follows that f−1(Y \B) = X \ f−1(B) is µg-closed and so f−1(B) is
µg-open. Take A = f−1(B). We obtain that x ∈ A and f(A) ⊂ B.

(c) =⇒ (b): Let B be a λ-closed set with x ∈ f−1(B). Since f(x) ∈ B,
by (c) there exists a µg-open set A containing x such that f(A) ⊂ B. It
follows that x ∈ A ⊂ f−1(B). Hence, f−1(B) is µg-open.

(b) =⇒ (d): Let A be any subset of X and y /∈ λ-ker(f(A)). Then by
Lemma 1, there exists a λ-closed set F containing y such that f(A)∩F = ∅.
Hence, we have A ∩ f−1(F ) = ∅ and clµg(A) ∩ f−1(F ) = ∅. Thus we
obtain, f(clµg(A)) ∩ F = ∅ and y /∈ f(clµg(A)). Therefore, f(clµg(A)) ⊂
λ-ker(f(A)).
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(d) =⇒ (e): Let B be any subset of Y . By (d) we have

f(clµg(f
−1(B))) ⊂ λ- ker(f(f−1(B))) ⊂ λ- ker(B).

and this implies

clµg(f
−1(B)) ⊂ f−1

(
f(clµg(f

−1(B)))
)
⊂ f−1 (λ- ker(B))

Then we have the result clµg(f
−1(B)) ⊂ f−1(λ-ker(B)).

(e) =⇒ (a): Let B ∈ λ, then by (e), clµg(f
−1(B)) ⊂ f−1(λ-ker(B)) =

f−1(B) and clµg(f
−1(B)) = f−1(B). Since GC(µ) is closed under arbitrary

intersections, f−1(B) is µg-closed in (X,µ). �

Notation 1. Let (X,µ) and (Y, κ) be generalized topological spaces, and
let U = {U × V : U ∈ µ, V ∈ κ}. It is known that U generates a generalized
topology ν = µ × κ on X × Y , called the generalized product topology ([4],
[11]) on X × Y , that is, ν = { all possible unions of members of U}

Theorem 2. Let f : (X,µ) → (Y, λ) be a function and g : (X,µ) →
(X × Y, ν) be the graph function of f , defined by g(x) = (x, f(x)) for every
x ∈ X. If g is contra (µg, ν)-continuous, then f is (µg, λ)-continuous.

Proof. Let U be any λ-open set in (Y, λ). By remark 1, (X,µ) is strong
GTS, hence X × U is a ν-open set in X × Y . It follows that f−1(U) =
g−1(X × U) is µg-closed. Thus, f is contra (µg, λ)-continuous. �

Definition 6. For a function f : (X,µ)→ (Y, λ), the subset {(x, f(x)) :
x ∈ X} ⊂ X × Y is called the graph of f and is denoted by G(f).

Definition 7. Let (X,µ) and (Y, λ) are two GTS’s, consider ν as gen-
eralized product space of the µ and λ on X × Y . The graph G(f) of a
function f : (X,µ) → (Y, λ) is said to be contra νg-closed graph if for each
(x, y) ∈ (X×Y )\G(f), there exists a µg-open set U in X containing x and
a λ-closed set V in Y containing y such that (U × V ) ∩G(f) = ∅.

Proposition 2. The following properties are equivalent for the graph
G(f) of a function f : (X,µ)→ (Y, λ) :

(a) G(f) is contra νg-closed graph,
(b) For each (x, y) ∈ (X × Y ) \ G(f), there exists a µg-open set U in X

containing x and a λ-closed set V in Y containing y such that f(U)∩
V = ∅.

Proof. (a) =⇒ (b): Let (x, y) ∈ (X × Y ) \ G(f). By (a), there exists
a µg-open set U in X containing x and a λ-closed set in Y containing y
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such that (U × V ) ∩ G(f) = ∅. Since (x, y) /∈ G(f), x ∈ U , y ∈ V we have
f(x) 6= y and therefore f(U) ∩ V = ∅.

(b) =⇒ (a): Let (x, y) ∈ (X ×Y ) \G(f). By (b), there exists a µg-open
set U in X containing x and a λ-closed set V in Y containing y such that
f(U) ∩ V = ∅. Hence, (x, y) ∈ (U × V ) ⊂ (X × Y ) \G(f). �

Theorem 3. If f : (X,µ)→ (Y, λ) is contra (µg, λ)-continuous function
and (Y, λ) is λ-Urysohn, then G(f) is contra νg-closed.

Proof. Let (x, y) ∈ (X×Y )\G(f). It follows that f(x) 6= y. Since (Y, λ)
is λ-Urysohn, there exist λ-open sets B and C such that f(x) ∈ B, y ∈ C
and cλ(B) ∩ cλ(C) = ∅. Since f is contra (µg, λ)-continuous, there exists
a µg-open set A in X containing x such that f(A) ⊂ cλ(B). Therefore,
f(A) ∩ cλ(C) = ∅ and G(f) is contra νg-closed graph in X × Y . �

Theorem 4. Let {(Xi, µi) : i ∈ I} be any family of strong GTS’s. If
f : (X,µ) → (ΠXi, ν) is contra (µg, ν)-continuous, then pi ◦ f : (X,µ) →
(Xi, µi) is contra (µg, µi)-continuous for each i ∈ I, where pi is the projec-
tion of (ΠXi, ν) onto (Xi, µi).

Proof. We shall consider a fixed i ∈ I. Suppose Ui is an arbitrary
µi-open set of Xi. Since each (Xi, µi) is strong GTS, pi is (ν, µi)-continuous
by Proposition 2.7 of [4], that is p−1i (Ui) is ν-open in (ΠXi, ν). Since f is con-
tra (µg, ν)-continuous, we have f−1(p−1i (Ui)) = (pi ◦ f)−1(Ui) is µig-closed.
Therefore, pi ◦ f is contra (µg, µi)-continuous. �

Definition 8. A GTS (X,µ) is said to be locally µg-indiscrete if every
µg-open set of (X,µ) is µ-closed.

Theorem 5. If f : (X,µ) → (Y, λ) is contra (µg, λ)-continuous with
(X,µ) is locally µg-indiscrete, then f is contra (µ, λ)-continuous.

Proof. This is clear. �

Theorem 6. Suppose that (X,µ), (Y, λ) are two GTS’s and GO(µ) is
closed under arbitrary unions. If a function f : (X,µ) → (Y, λ) is contra
(µg, λ)-continuous and (Y, λ) is λ-regular, then f is (µg, λ)-continuous.

Proof. Let x be an arbitrary point of (X,µ) and V be a λ-open set of
Y containing f(x). Since (Y, λ) is λ-regular, there exists a λ-open set G in Y
containing f(x) such that cλ(G) ⊂ V . Because f is contra (µg, λ)-continuous,
there exists U ∈ GO(µ) containing x such that f(U) ⊂ cλ(G). Then
f(U) ⊂ cλ(G) ⊂ V . Hence, f is (µg, λ)-continuous. �



Contra (µg, λ)-continuous functions 139

Theorem 7. Let (X,µ) be a µg-connected GTS and (Y, λ) be any GTS.
If there is surjective, contra (µg, λ)-continuous function f : (X,µ)→ (Y, λ),
then (Y, λ) is λ-connected.

Proof. Let f : (X,µ)→ (Y, λ) be a contra (µg, λ)-continuous, surjective
function of a µg-connected space (X,µ) to a GTS (Y, λ). Suppose that
(Y, λ) is λ-disconnected. Let A and B form a disconnection of (Y, λ). Then
A and B are λ-open and Y = A ∪ B where A ∩ B = ∅. Since f is contra
(µg, λ)-continuous and surjective, X = f−1(A)∪ f−1(B) where f−1(A) and
f−1(B) are nonempty µg-closed sets in (X,µ). Also f−1(A) ∩ f−1(B) = ∅,
so f−1(A) and f−1(B) are µg-open. This contradicts with the fact that
(X,µ) is µg-connected. Hence (Y, λ) is λ-connected. �

Theorem 8. Let (X,µ) be µg-connected. Then each contra (µg, λ)-conti-
nuous function of X into a λ-discrete GTS (Y, λ) with at least two points is
a constant function.

Proof. Let f : (X,µ) → (Y, λ) be a contra (µg, λ)-continuous function
and (X,µ) be a µg-connected GTS. Then (X,µ) is covered by µg-open and
µg-closed covering {f−1({y}) : y ∈ Y }. By assumption, f−1({y}) = ∅ or X
for each y ∈ Y . If f−1({y}) = ∅ for all y ∈ Y, then it fails to be a function.
Then there exists only one point y ∈ Y such that f−1({y}) 6= ∅ and hence
f−1({y}) = X which shows that f is a constant function. �

Theorem 9. If f is a contra (µg, λ)-continuous function from a µg-conne-
cted GTS (X,µ) onto a GTS (Y, λ), then Y is not a λ-discrete space.

Proof. Suppose that (Y, λ) is λ-discrete. Let A be a proper nonempty
λ-open and λ-closed subset of (Y, λ). Then f−1(A) is a proper nonempty
µg-open subset of (X,µ), which is a contradiction with the fact that (X,µ)
is µg-connected. �

Definition 9. A GTS (X,µ) is said to be µg-normal (resp. µ-normal
[10]) if each pair of nonempty µ-closed sets can be separated by disjoint
µg-open (resp. µ-open ) sets.

Theorem 10. If f : (X,µ) → (Y, λ) is a contra (µg, λ)-continuous,
(µ, λ)-closed, injection and (Y, λ) is λ-normal, then (X,µ) is µg-normal.

Proof. Let F1, F2 be disjoint µ-closed subsets of (X,µ). Since f is
(µ, λ)-closed and injective, f(F1) and f(F2) are disjoint λ-closed subset of
(Y, λ). f(F1) and f(F2) are separated by disjoint λ-open sets V1, V2, re-
spectively, because (Y, λ) is λ-normal. Hence, Fi ⊂ f−1(Vi) and f−1(Vi) is
µg-open in (X,µ) for i = 1, 2 and f−1(V1) ∩ f−1(V2) = ∅. Thus, (X,µ) is
µg-normal. �
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4. Composition properties

Remark 3. Let f : (X,µ) → (Y, λ) be contra (µg, λ)-continuous and
g : (Y, λ) → (Z, ν) be contra (λg, ν)-continuous. Then, the composition
g ◦ f : (X,µ)→ (Z, ν) need not be contra (µg, ν)-continuous.

Example 2. Let R be the set of real numbers, µ = {∅,R�{−1}, R�{1},
R�{−1, 1}, R}, λ = {∅, R�{0}, R�{0, 1}, R} and ν = {∅, R�{−1, 1}, R}.
Then the identity function f : (R, µ) → (R, λ) is contra (µg, λ)-continuous
and the identity function g : (R, λ) → (R, ν) is contra (λg, ν)-continuous.
But the composition g ◦ f : (R, µ)→ (R, ν) is not contra (µg, ν)-continuous.

Theorem 11. Let (X,µ), (Z, ν) be two GTS’s and (Y, λ) be a λ-T 1
2
-space.

Let f : (X,µ) → (Y, λ) be (µ, λ)-irresolute function and g : (Y, λ) →
(Z, ν) be contra (λg, ν)-continuous. Then g ◦ f : (X,µ) → (Z, ν) is contra
(µg, ν)-continuous.

Proof. Let F be any ν-open subset of (Z, ν). Since g is contra (λg, ν)-con-
tinuous, f−1(F ) is λg-closed in (Y, λ). But (Y, λ) is λ-T 1

2
-space, so f−1(F ) is

λ-closed. Since f is (µ, λ)-irresolute, f−1(g−1(F )) = (g◦f)−1(F ) is µ-closed.
Since every µ-closed set in a GTS (X,µ) is µg-closed, g ◦f : (X,µ)→ (Z, ν)
is contra (µg, ν)-continuous. �

Theorem 12. Let f : (X,µ) → (Y, λ) be (µg, λg)-irresolute function
and g : (Y, λ) → (Z, ν) be contra (λg, ν)-continuous function. Then g ◦ f :
(X,µ)→ (Z, ν) is contra (µg, ν)-continuous.

Proof. Let F be a ν-open set in (Z, ν). Then g−1(F ) is λg-closed in
(Y, λ), because g is contra (λg, ν)-continuous. Since f is (µg, λg)-irresolute,
f−1(g−1(F )) = (g ◦ f)−1(F ) is µg-closed. Thus, g ◦ f : (X,µ) → (Z, ν) is
contra (µg, ν)-continuous. �

Corollary 1. Let f : (X,µ) → (Y, λ) be (µg, λg)-irresolute and g :
(Y, λ)→ (Z, ν) be contra (λ, ν)-continuous function. Then g ◦ f : (X,µ)→
(Z, ν) is contra (µg, ν)-continuous.

Definition 10. A function f : (X,µ)→ (Y, λ) is said to be pre-(µg, λg)-
open if the image of every µg-open set is λg-open.

Theorem 13. Let f : (X,µ) → (Y, λ) be surjective, (µg, λg)-irresolute,
pre-(µg, λg)-open function and g : (Y, λ) → (Z, ν) be any function. Then
g◦f : (X,µ)→ (Z, ν) is contra (µg, ν)-continuous if g is contra (λg, ν)-conti-
nuous.

Proof. Let g : (Y, λ) → (Z, ν) be a contra (λg, ν)-continuous function
and F be a ν-open subset of (Z, ν). Since g is contra (λg, ν)-continuous,
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g−1(F ) is λg-closed. But f−1(g−1(F )) = (g ◦ f)−1(F ) is µg-closed be-
cause f is (µg, λg)-irresolute. Thus, g ◦ f : (X,µ) → (Z, ν) is contra
(µg, ν)-continuous.

Conversely, let g ◦ f : (X,µ) → (Z, ν) be contra (µg, ν)-continuous and
let F be a ν-closed subset of (Z, ν). Then, (g ◦ f)−1(F ) is a µg-open. Since
f is pre-(µg, λg)-open and surjective, f(f−1(g−1(F ))) = g−1(F ) is λg-open.
Hence, g : (Y, λ)→ (Z, ν) is contra (λg, ν)-continuous. �

Theorem 14. If f : (X,µ) → (Y, λ) is (µg, λg)-irresolute function
with (Y, λ) as locally λg-indiscrete space and g : (Y, λ) → (Z, ν) is contra
(λg, ν)-continuous function, then g◦f : (X,µ)→ (Z, ν) is (µg, ν)-continuous.

Proof. Let F be a ν-closed subset of (Z, ν). Since, g is contra (λg, ν)-con-
tinuous, g−1(F ) is λg-open in (Y, λ). But (Y, λ) is locally λg-indiscrete, so
g−1(F ) is λg-closed. Since f is (µg, λg)-irresolute, f−1(g−1(F )) = (g ◦
f)−1(F ) is µg-closed. Therefore, g ◦ f is (µg, ν)-continuous. �

5. Some covering and separation properties

Definition 11. A GTS (X,µ) is said to be

(a) µg-compact if every µg-open cover of (X,µ) has a finite subcover,
(b) strongly µ-S-closed if every µ-closed cover of (X,µ) has a finite subcover,
(c) countably µg-compact if every countable cover of (X,µ) by µg-open sets

has a finite subcover,
(d) strongly countably µ-S-closed if every countable cover of (X,µ) by µ-clo-

sed sets has a finite subcover,
(e) µg-Lindelöf if every µg-open cover of (X,µ) has a countable subcover,
(f) strongly µ-S-Lindelöf if every µ-closed cover of (X,µ) has a countable

subcover.

Theorem 15. The surjective contra (µg, λ)-continuous image of a µg-
compact (resp. µg-Lindelöf, countably µg-compact) space is strongly λ-S-clo-
sed (resp. strongly λ-S-Lindelöf, strongly countable λ-S-closed).

Proof. Suppose that f : (X,µ) → (Y, λ) is a contra (µg, λ)-continuous
surjection. Let {Vα : α ∈ ∇} be any λ-closed cover of (Y, λ). Since f is
contra (µg, λ)-continuous, {f−1(Vα) : α ∈ ∇} is a µg-open cover of X and
hence there exists a finite subset ∇0 of ∇ such that X = ∪α∈∇0f

−1(Vα).
Therefore we have, Y = ∪α∈∇0Vα and (Y, λ) is strongly λ-S-closed.

The other proofs can be obtained similarly. �

Definition 12. A GTS (X,µ) is said to be
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(a) µg-closed-compact if every µg-closed cover of (X,µ) has a finite sub-
cover,

(b) countably µg-closed compact if every countable cover of (X,µ) by µg-clo-
sed sets has a finite subcover,

(c) µg-closed-Lindelöf if every µg-closed cover of (X,µ) has a countable
subcover.

Theorem 16. Surjective, contra (µg, λ)-continuous image of a µg-closed
compact (resp. µg-closed Lindelöf, countably µg-closed compact) space is
λ-compact (resp. λ-Lindelöf, countably λ-compact).

Proof. Suppose that f : (X,µ) → (Y, λ) is a contra (µg, λ)-continuous
surjection. Let {Vα : α ∈ ∇} be any λ-open cover of (Y, λ). Since f is
contra (µg, λ)-continuous, {f−1(Vα) : α ∈ ∇} is a µg-closed cover of (X,µ),
hence there exists a finite subset ∇0 of ∇ such that X = ∪α∈∇0f

−1(Vα).
Therefore we have Y = ∪α∈∇0Vα and Y is λ-compact.The other proofs can
be obtained similarly. �

Definition 13. A GTS (X,µ) is said to be µg-T1 if for each pair of
distinct points x and y in (X,µ), there exist µg-open sets U and V containing
x and y respectively, such that y /∈ U and x /∈ V.

Definition 14. A GTS (X,µ) is said to be µg-T2 if for each pair of
distinct points x and y in (X,µ), there exist disjoint µg-open sets U and V
containing x and y respectively.

Theorem 17. Let (X,µ), (Y, λ) be two GTS’s. If

(a) for each pair of distinct points x and y in (X,µ), there exists a function
f of X on to Y such that f(x) 6= f(y),

(b) (Y, λ) is λ-Urysohn space, and
(c) f is contra (µg, λ)-continuous at x and y.

Then (X,µ) is µg-T2.

Proof. Let x and y be distinct points in (X,µ), from the hypothesis
by (b) there exists a λ-Urysohn space (Y, λ), by (a) there exists a func-
tion f : (X,µ) → (Y, λ) such that f(x) 6= f(y) and by (c). f is contra
(µg, λ)-continuous at x and y. Let v = f(x) and w = f(y), then v 6= w.
Since (Y, λ) is λ-Urysohn, there exists λ-open sets V and W containing
v and w respectively, such that cλ(V ) ∩ cλ(W ) = ∅. Since f is contra
(µg, λ)-continuous at x and y, there exist µg-open sets A and B containing
x and y respectively, such that f(A) ⊂ cλ(V ) and f(B) ⊂ cλ(W ). We have
A ∩B = ∅ since cλ(V ) ∩ cλ(W ) = ∅. Hence, (X,µ) is µg-T2. �
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Theorem 18. If f : (X,µ) → (Y, λ) is a contra (µg, λ)-continuous
injection and (Y, λ) is weakly λ-Hausdorff, then (X,µ) is µg-T1.

Proof. Suppose that (Y, λ) is weakly λ-Hausdorff, then for any pair of
distinct points x and y in (X,µ), there exist λr-closed sets A, B in (Y, λ)
such that f(x) ∈ A, f(x) /∈ B and f(y) ∈ B, f(y) /∈ A. Since f is contra
(µg, λ)-continuous, f−1(A) and f−1(B) are µg-open subsets of (X,µ) such
that x ∈ f−1(A), x /∈ f−1(B) and y ∈ f−1(B), y /∈ f−1(A). Hence, (X,µ)
is µg-T1. �

Theorem 19. Let f : (X,µ)→ (Y, λ) have a contra (µg, λ)-closed graph.
If f is injective, then (X,µ) is µg-T1.

Proof. Let x and y be distinct points in (X,µ). Then we have (x, f(y)) ∈
(X × Y ) \ G(f). Then, there exists a µg-open set U in (X,µ) containing
x and a λ-closed set F containing f(y) such that f(U) ∩ F = ∅. Hence,
U ∩ f−1(F ) = ∅. Therefore, we have y /∈ U . This implies (X,µ) is µg-T1. �

Theorem 20. Let f : (X,µ) → (Y, λ) be a contra (µg, λ)-continuous
injection. If (Y, λ) is ultra λ-Hausdorff, then (X,µ) is µg-T2.

Proof. Let x and y be two distinct points in (X,µ). Then f(x) 6= f(y)
and there exist λ-clopen sets A, B containing f(x), f(y) respectively, such
that A ∩B = ∅. Since f is contra (µg, λ)-continuous, then f−1(A), f−1(B)
are µg-open sets such that f−1(A)∩ f−1(B) = ∅. Hence, (X,µ) is µg-T2. �
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