DE GRUYTER

Nr 59

2017 DOI:10.1515/fascmath-2017-0022

Uğur Şengül and Seda Nur Dündar

CONTRA $(\mu g, \lambda)$ -CONTINUOUS FUNCTIONS

ABSTRACT. In this paper we introduce and study some properties of contra $(\mu g, \lambda)$ -continuous functions. We obtain some characterizations and several properties of such functions.

KEY WORDS: contra ($\mu g, \lambda$)-continuous, μg -closed set, generalized topological space

AMS Mathematics Subject Classification: 54C10, 54C08, 54D10.

1. Introduction

In 2002, generalized topological spaces introduced and developed by A. Csaszar [1]. A generalized topology (briefly a GT) μ on a nonempty set X is a collection of subsets of X such that $\emptyset \in \mu$ and μ is closed under arbitrary unions. The pair (X, μ) is called a generalized topological space (briefly a GTS). Elements of μ are called μ -open sets and a complement of a μ -open set is called a μ -closed set. The union of all μ -open subsets of a subset S of (X, μ) is called the μ -interior of S [2] and denoted by $i_{\mu}(S)$. The intersection of μ -closed sets containing S is called the μ -regular closed (shortly μr -closed) [3] if $S = c_{\mu}(i_{\mu}(S))$. If $X \setminus S$ is μ -regular closed then S is called as μ -regular open (shortly μr -open).

A GTS (X, μ) is called strong if $X \in \mu$ and a quasi-topological space if μ is closed under finite intersections. (X, μ) is said to be extremally disconnected (briefly *EDC*) if the μ -closure of every μ -open set is μ -open.

Generalized closed sets introduced by N. Levine [6] in 1970. This notion has been studied and developed in many papers and plays a significant role in General Topology. The purpose of this paper is to introduce new types of continuous functions using this concept.

2. Preliminaries

Definition 1. A subset A of a GTS (X, μ) is said to be μ -semi-open [1] (respectively μ -preopen [1], and μ - δ -open) if $A \subset c_{\mu}(i_{\mu}(A))$ (respectively

U

 $A \subset i_{\mu}(c_{\mu}(A))$, and A is the union of μ r-open sets). The complements of the above sets are called respective closed ones.

Definition 2. Let A be a subset of GTS (X,μ) . Then, A is called μg -closed [9] if $c_{\mu}(A) \subset U$ whenever $A \subset U$ and U is μ -open. It is known that every μ -closed set in a GTS (X,μ) is μg -closed, but reverse implication is not true in general. The complement of a μg -closed set is called μg -open. The union of all μg -open subsets of a subset A of (X,μ) is called the μg -interior of A and denoted by $int_{\mu g}(A)$. The intersection of all μg -closed sets containing a subset A is called the μg -closure of A and denoted by $cl_{\mu g}(A)$. If A is μg -closed, then $A = cl_{\mu g}(A)$. The converse does not hold in general.

The family of all μg -open (respectively μg -closed, μ -closed) sets of (X, μ) is denoted by $GO(\mu)$ (respectively $GC(\mu)$, $C(\mu)$. The family of all μg -open (respectively μg -closed, μ -closed) sets containing a point $x \in X$ is denoted by $GO(\mu, x)$ (respectively $GC(\mu, x)$, $C(\mu, x)$.

Definition 3. A function $f : (X, \mu) \to (Y, \lambda)$, where (X, μ) and (Y, λ) are two GTS's, is called:

- (a) $(\mu g, \lambda)$ -continuous [12] if $f^{-1}(V)$ is μg -closed in (X, μ) for each λ -closed set V in (Y, λ) ,
- (b) $(\mu g, \lambda g)$ -irresolute [12] $((\mu, \lambda)$ -irresolute function) if $f^{-1}(V)$ is μg -closed $(\mu$ -closed) in (X, μ) for each λg -closed $(\lambda$ -closed set) V in (Y, λ) ,
- (c) contra (μ, λ) -continuous [7] if $f^{-1}(V)$ is μ -closed in (X, μ) for each λ -open set V in (Y, λ) ,
- (d) contra $(\mu g, \lambda)$ -continuous $f^{-1}(V)$ is μg -closed in (X, μ) for each λ -open set V in (Y, λ) ,
- (e) (μ, λ) -closed if f(F) is λ -closed in (Y, λ) for each μ -closed set F in (X, μ) .

Remark 1. Assume that $f : (X, \mu) \to (Y, \lambda)$ is contra $(\mu g, \lambda)$ -continuous. Since $\emptyset \in \lambda$ and f is contra $(\mu g, \lambda)$ -continuous, $f^{-1}(\emptyset) = \emptyset$ is μg -closed and this implies that \emptyset is μ -closed, because it is true that $\emptyset \subset \emptyset \in \mu$ and $cl_{\mu}(\emptyset) \subset \emptyset (\subset cl_{\mu}(\emptyset))$. So, if $f : (X, \mu) \to (Y, \lambda)$ is contra $(\mu g, \lambda)$ -continuous, then (X, μ) is a strong GTS. Same is true for if $f : (X, \mu) \to (Y, \lambda)$ is contra (μ, λ) -continuous.

The concept of contra $(\mu g, \lambda)$ -continuous functions is a generalization of Contra sg-Continuous Maps [8].

Definition 4. A GTS (X, μ) is called:

(a) μ -Urysohn if for each pair of distinct points x and y in X, there exist μ -open sets U and V such that $x \in U$, $y \in V$ and $c_{\mu}(U) \cap c_{\mu}(V) = \emptyset$.

- (b) μ - $T_{\frac{1}{2}}$ -space [9] if each μ g-closed subset of (X, μ) is μ -closed,
- (c) μg -connected [12] if X cannot be written as a disjoint union of two nonempty μg -open sets,
- (d) weakly μ -Hausdorff (see [13]) if each element of X is an intersection of μr -closed sets.

Definition 5 ([9]). Let A be a subset of a GTS (X, μ) . The set $\cap \{U \in \mu : A \subset U\}$ is called the μ -kernel of A and denoted by μ -ker(A).

The following Lemma due to D. Jayanthi stated without proof in [5], we give the proofs for the sake of completeness.

Lemma 1 ([5]). Let (X, μ) be a GTS and $A, B \subseteq X$. The following properties hold:

- (a) μ -ker $(A) \supset A$ and if $A \in \mu$ then $A = \mu$ -ker(A)
- (b) If $A \subset B$, then μ -ker $(A) \subset \mu$ -ker(B).
- (c) $x \in \mu$ -ker(A) iff $A \cap F \neq \emptyset$ for any μ -closed set F containing x,

Proof. (a) Let $\mathcal{U}_A = \{O : A \subset O \in \mu\}$ be the family of all μ -open sets containing A. Then we have μ -ker $(A) = \bigcap \mathcal{U}_A \supset A$. If $A \in \mu$, then $A \in \mathcal{U}_A$ and $\bigcap \mathcal{U}_A \subset A$ gives $A = \bigcap \mathcal{U}_A = \mu$ -ker(A).

(b) Let $A \subseteq B$, consider $\mathcal{U}_A = \{U : A \subseteq U \in \mu\}$ and $\mathcal{U}_B = \{U : B \subseteq U \in \mu\}$. Then for $U \in \mathcal{U}_B$, it is true that $A \subseteq B \subseteq U \in \mathcal{U}_B$, that is $U \in \mathcal{U}_A$ and $\mathcal{U}_B \subseteq \mathcal{U}_A$ and this implies $[(\mathcal{U}_A - \mathcal{U}_B) \cup \mathcal{U}_B] = \mathcal{U}_A$, so we have

$$\mu\operatorname{-ker}(A) = \bigcap \mathcal{U}_A$$
$$= \left(\bigcap (\mathcal{U}_A - \mathcal{U}_B)\right) \cap \left(\bigcap \mathcal{U}_B\right)$$
$$\subset \bigcap \mathcal{U}_B$$
$$= \mu\operatorname{-ker}(B).$$

(c) Let $x \in \mu$ -ker(A) and suppose that $A \cap F = \emptyset$ for some μ -closed set F containing x. Then $A \subset X - F \in \mu$, and $x \notin X - F$ but we have

$$x \in \mu$$
-ker $(A) \subset \mu$ -ker $(X - F) = X - F$

which is a contradiction.

Conversely, assume that $A \cap F \neq \emptyset$ for any μ -closed set F containing x, but $x \notin \mu$ -ker(A). Then, there exists a μ -open set V such that $A \subset V$ and $x \notin V$. Thus we have $x \in X - V (\subset X - A)$ and X - V is μ -closed. But this implies $(X - V) \cap A \subset (X - A) \cap A = \emptyset$ that is $(X - V) \cap A = \emptyset$, but this contradicts with the hypothesis.

3. Characterizations of contra $(\mu g, \lambda)$ -continuous functions

Remark 2. From the definitions we have stated above, we observe that in a $GTS(X,\mu)$, every contra (μ, λ) -continuous function is contra $(\mu g, \lambda)$ -continuous. However the converse does not hold in general.

Example 1. Let \mathbb{R} be the set of real numbers, $\mu = \{\mathbb{R}, \emptyset, \mathbb{R} \setminus \{0\}, \mathbb{R} \setminus \{-1, 1\}\}$ and $\lambda = \{\emptyset, \{1\}, \mathbb{R}\}$. Let $f : (\mathbb{R}, \mu) \to (\mathbb{R}, \lambda)$ be the identity function. Then f is contra $(\mu g, \lambda)$ -continuous but not contra (μ, λ) -continuous.

Proposition 1. Let $f : (X, \mu) \to (Y, \lambda)$ be a function. Suppose that (X, μ) is $\mu - T_{\frac{1}{2}}$ -space. Then the following properties are equivalent:

(i) f is contra $(\mu g, \lambda)$ -continuous,

(*ii*) f is contra (μ, λ) -continuous.

Proof. This is clear.

Theorem 1. Suppose that $GC(\mu)$ is closed under arbitrary intersections. Then the following are equivalent for a function $f: (X, \mu) \to (Y, \lambda)$:

- (a) f is contra $(\mu g, \lambda)$ -continuous,
- (b) The inverse image of each λ -closed set in (Y, λ) is μg -open.
- (c) For each $x \in X$ and each λ -closed set B containing f(x), there exists a μg -open set A in X such that $x \in A$ and $f(A) \subset B$,
- (d) $f(cl_{\mu q}(A)) \subset \lambda \operatorname{-ker}(f(A))$ for every subset A of X,

(e) $cl_{\mu q}(f^{-1}(B)) \subset f^{-1}(\lambda \operatorname{-ker}(B))$ for every subset B of Y.

Proof. (a) \implies (b): Let G be a λ -closed set in Y. Then $Y \setminus G$ is λ -open and by (a), $f^{-1}(Y \setminus G) = X \setminus f^{-1}(G)$ is μg -closed. Thus $f^{-1}(G)$ is μg -open. (b) \implies (a): Let $U \in \lambda$. Then $Y \setminus U$ is λ -closed and by (b), $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$ is μg -open, thus $f^{-1}(U)$ is μg -closed. Hence, f is contra ($\mu q, \lambda$)-continuous.

(a) \implies (c): Let $x \in X$ and B be a λ -closed set with $f(x) \in B$. By (a), it follows that $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$ is μg -closed and so $f^{-1}(B)$ is μg -open. Take $A = f^{-1}(B)$. We obtain that $x \in A$ and $f(A) \subset B$.

(c) \implies (b): Let B be a λ -closed set with $x \in f^{-1}(B)$. Since $f(x) \in B$, by (c) there exists a μg -open set A containing x such that $f(A) \subset B$. It follows that $x \in A \subset f^{-1}(B)$. Hence, $f^{-1}(B)$ is μg -open.

(b) \implies (d): Let A be any subset of X and $y \notin \lambda$ -ker(f(A)). Then by Lemma 1, there exists a λ -closed set F containing y such that $f(A) \cap F = \emptyset$. Hence, we have $A \cap f^{-1}(F) = \emptyset$ and $cl_{\mu g}(A) \cap f^{-1}(F) = \emptyset$. Thus we obtain, $f(cl_{\mu g}(A)) \cap F = \emptyset$ and $y \notin f(cl_{\mu g}(A))$. Therefore, $f(cl_{\mu g}(A)) \subset \lambda$ -ker(f(A)). $(d) \implies (e)$: Let B be any subset of Y. By (d) we have

$$f(cl_{\mu g}(f^{-1}(B))) \subset \lambda \operatorname{-ker}(f(f^{-1}(B))) \subset \lambda \operatorname{-ker}(B).$$

and this implies

$$cl_{\mu g}(f^{-1}(B)) \subset f^{-1}(f(cl_{\mu g}(f^{-1}(B))))) \subset f^{-1}(\lambda - \ker(B))$$

Then we have the result $cl_{\mu g}(f^{-1}(B)) \subset f^{-1}(\lambda \operatorname{-ker}(B)).$

(e) \implies (a): Let $B \in \lambda$, then by (e), $cl_{\mu g}(f^{-1}(B)) \subset f^{-1}(\lambda \operatorname{-ker}(B)) = f^{-1}(B)$ and $cl_{\mu g}(f^{-1}(B)) = f^{-1}(B)$. Since $GC(\mu)$ is closed under arbitrary intersections, $f^{-1}(B)$ is μg -closed in (X, μ) .

Notation 1. Let (X, μ) and (Y, κ) be generalized topological spaces, and let $\mathcal{U} = \{U \times V : U \in \mu, V \in \kappa\}$. It is known that \mathcal{U} generates a generalized topology $\nu = \mu \times \kappa$ on $X \times Y$, called the generalized product topology ([4], [11]) on $X \times Y$, that is, $\nu = \{$ all possible unions of members of $\mathcal{U}\}$

Theorem 2. Let $f : (X, \mu) \to (Y, \lambda)$ be a function and $g : (X, \mu) \to (X \times Y, \nu)$ be the graph function of f, defined by g(x) = (x, f(x)) for every $x \in X$. If g is contra $(\mu g, \nu)$ -continuous, then f is $(\mu g, \lambda)$ -continuous.

Proof. Let U be any λ -open set in (Y, λ) . By remark 1, (X, μ) is strong GTS, hence $X \times U$ is a ν -open set in $X \times Y$. It follows that $f^{-1}(U) = g^{-1}(X \times U)$ is μg -closed. Thus, f is contra $(\mu g, \lambda)$ -continuous.

Definition 6. For a function $f : (X, \mu) \to (Y, \lambda)$, the subset $\{(x, f(x)) : x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G(f).

Definition 7. Let (X, μ) and (Y, λ) are two GTS's, consider ν as generalized product space of the μ and λ on $X \times Y$. The graph G(f) of a function $f : (X, \mu) \to (Y, \lambda)$ is said to be contra νg -closed graph if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exists a μg -open set U in X containing x and a λ -closed set V in Y containing y such that $(U \times V) \cap G(f) = \emptyset$.

Proposition 2. The following properties are equivalent for the graph G(f) of a function $f : (X, \mu) \to (Y, \lambda)$:

- (a) G(f) is contra νg -closed graph,
- (b) For each $(x, y) \in (X \times Y) \setminus G(f)$, there exists a μg -open set U in X containing x and a λ -closed set V in Y containing y such that $f(U) \cap V = \emptyset$.

Proof. (a) \implies (b): Let $(x, y) \in (X \times Y) \setminus G(f)$. By (a), there exists a μg -open set U in X containing x and a λ -closed set in Y containing y

such that $(U \times V) \cap G(f) = \emptyset$. Since $(x, y) \notin G(f), x \in U, y \in V$ we have $f(x) \neq y$ and therefore $f(U) \cap V = \emptyset$.

(b) \implies (a): Let $(x, y) \in (X \times Y) \setminus G(f)$. By (b), there exists a μg -open set U in X containing x and a λ -closed set V in Y containing y such that $f(U) \cap V = \emptyset$. Hence, $(x, y) \in (U \times V) \subset (X \times Y) \setminus G(f)$.

Theorem 3. If $f : (X, \mu) \to (Y, \lambda)$ is contra $(\mu g, \lambda)$ -continuous function and (Y, λ) is λ -Urysohn, then G(f) is contra νg -closed.

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$. It follows that $f(x) \neq y$. Since (Y, λ) is λ -Urysohn, there exist λ -open sets B and C such that $f(x) \in B$, $y \in C$ and $c_{\lambda}(B) \cap c_{\lambda}(C) = \emptyset$. Since f is contra $(\mu g, \lambda)$ -continuous, there exists a μg -open set A in X containing x such that $f(A) \subset c_{\lambda}(B)$. Therefore, $f(A) \cap c_{\lambda}(C) = \emptyset$ and G(f) is contra νg -closed graph in $X \times Y$.

Theorem 4. Let $\{(X_i, \mu_i) : i \in I\}$ be any family of strong GTS's. If $f: (X, \mu) \to (\Pi X_i, \nu)$ is contra $(\mu g, \nu)$ -continuous, then $p_i \circ f: (X, \mu) \to (X_i, \mu_i)$ is contra $(\mu g, \mu_i)$ -continuous for each $i \in I$, where p_i is the projection of $(\Pi X_i, \nu)$ onto (X_i, μ_i) .

Proof. We shall consider a fixed $i \in I$. Suppose U_i is an arbitrary μ_i -open set of X_i . Since each (X_i, μ_i) is strong GTS, p_i is (ν, μ_i) -continuous by Proposition 2.7 of [4], that is $p_i^{-1}(U_i)$ is ν -open in $(\Pi X_i, \nu)$. Since f is contra $(\mu g, \nu)$ -continuous, we have $f^{-1}(p_i^{-1}(U_i)) = (p_i \circ f)^{-1}(U_i)$ is $\mu_i g$ -closed. Therefore, $p_i \circ f$ is contra $(\mu g, \mu_i)$ -continuous.

Definition 8. A GTS (X, μ) is said to be locally μg -indiscrete if every μg -open set of (X, μ) is μ -closed.

Theorem 5. If $f : (X, \mu) \to (Y, \lambda)$ is contra $(\mu g, \lambda)$ -continuous with (X, μ) is locally μg -indiscrete, then f is contra (μ, λ) -continuous.

Proof. This is clear.

Theorem 6. Suppose that (X, μ) , (Y, λ) are two GTS's and $GO(\mu)$ is closed under arbitrary unions. If a function $f : (X, \mu) \to (Y, \lambda)$ is contra $(\mu g, \lambda)$ -continuous and (Y, λ) is λ -regular, then f is $(\mu g, \lambda)$ -continuous.

Proof. Let x be an arbitrary point of (X, μ) and V be a λ -open set of Y containing f(x). Since (Y, λ) is λ -regular, there exists a λ -open set G in Y containing f(x) such that $c_{\lambda}(G) \subset V$. Because f is contra $(\mu g, \lambda)$ -continuous, there exists $U \in GO(\mu)$ containing x such that $f(U) \subset c_{\lambda}(G)$. Then $f(U) \subset c_{\lambda}(G) \subset V$. Hence, f is $(\mu g, \lambda)$ -continuous.

Theorem 7. Let (X, μ) be a μg -connected GTS and (Y, λ) be any GTS. If there is surjective, contra $(\mu g, \lambda)$ -continuous function $f : (X, \mu) \to (Y, \lambda)$, then (Y, λ) is λ -connected.

Proof. Let $f: (X, \mu) \to (Y, \lambda)$ be a contra $(\mu g, \lambda)$ -continuous, surjective function of a μg -connected space (X, μ) to a $GTS(Y, \lambda)$. Suppose that (Y, λ) is λ -disconnected. Let A and B form a disconnection of (Y, λ) . Then A and B are λ -open and $Y = A \cup B$ where $A \cap B = \emptyset$. Since f is contra $(\mu g, \lambda)$ -continuous and surjective, $X = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty μg -closed sets in (X, μ) . Also $f^{-1}(A) \cap f^{-1}(B) = \emptyset$, so $f^{-1}(A)$ and $f^{-1}(B)$ are μg -open. This contradicts with the fact that (X, μ) is μg -connected. Hence (Y, λ) is λ -connected.

Theorem 8. Let (X, μ) be μg -connected. Then each contra $(\mu g, \lambda)$ -continuous function of X into a λ -discrete GTS (Y, λ) with at least two points is a constant function.

Proof. Let $f: (X, \mu) \to (Y, \lambda)$ be a contra $(\mu g, \lambda)$ -continuous function and (X, μ) be a μg -connected GTS. Then (X, μ) is covered by μg -open and μg -closed covering $\{f^{-1}(\{y\}): y \in Y\}$. By assumption, $f^{-1}(\{y\}) = \emptyset$ or Xfor each $y \in Y$. If $f^{-1}(\{y\}) = \emptyset$ for all $y \in Y$, then it fails to be a function. Then there exists only one point $y \in Y$ such that $f^{-1}(\{y\}) \neq \emptyset$ and hence $f^{-1}(\{y\}) = X$ which shows that f is a constant function.

Theorem 9. If f is a contra $(\mu g, \lambda)$ -continuous function from a μg -connected GTS (X, μ) onto a GTS (Y, λ) , then Y is not a λ -discrete space.

Proof. Suppose that (Y, λ) is λ -discrete. Let A be a proper nonempty λ -open and λ -closed subset of (Y, λ) . Then $f^{-1}(A)$ is a proper nonempty μg -open subset of (X, μ) , which is a contradiction with the fact that (X, μ) is μg -connected.

Definition 9. A GTS (X, μ) is said to be μg -normal (resp. μ -normal [10]) if each pair of nonempty μ -closed sets can be separated by disjoint μg -open (resp. μ -open) sets.

Theorem 10. If $f : (X, \mu) \to (Y, \lambda)$ is a contra $(\mu g, \lambda)$ -continuous, (μ, λ) -closed, injection and (Y, λ) is λ -normal, then (X, μ) is μg -normal.

Proof. Let F_1 , F_2 be disjoint μ -closed subsets of (X, μ) . Since f is (μ, λ) -closed and injective, $f(F_1)$ and $f(F_2)$ are disjoint λ -closed subset of (Y, λ) . $f(F_1)$ and $f(F_2)$ are separated by disjoint λ -open sets V_1, V_2 , respectively, because (Y, λ) is λ -normal. Hence, $F_i \subset f^{-1}(V_i)$ and $f^{-1}(V_i)$ is μg -open in (X, μ) for i = 1, 2 and $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$. Thus, (X, μ) is μg -normal.

4. Composition properties

Remark 3. Let $f : (X, \mu) \to (Y, \lambda)$ be contra $(\mu g, \lambda)$ -continuous and $g : (Y, \lambda) \to (Z, \nu)$ be contra $(\lambda g, \nu)$ -continuous. Then, the composition $g \circ f : (X, \mu) \to (Z, \nu)$ need not be contra $(\mu g, \nu)$ -continuous.

Example 2. Let \mathbb{R} be the set of real numbers, $\mu = \{\emptyset, \mathbb{R} \setminus \{-1\}, \mathbb{R} \setminus \{1\}, \mathbb{R} \setminus \{-1, 1\}, \mathbb{R}\}, \lambda = \{\emptyset, \mathbb{R} \setminus \{0\}, \mathbb{R} \setminus \{0, 1\}, \mathbb{R}\}$ and $\nu = \{\emptyset, \mathbb{R} \setminus \{-1, 1\}, \mathbb{R}\}$. Then the identity function $f : (\mathbb{R}, \mu) \to (\mathbb{R}, \lambda)$ is contra $(\mu g, \lambda)$ -continuous and the identity function $g : (\mathbb{R}, \lambda) \to (\mathbb{R}, \nu)$ is contra $(\lambda g, \nu)$ -continuous. But the composition $g \circ f : (\mathbb{R}, \mu) \to (\mathbb{R}, \nu)$ is not contra $(\mu g, \nu)$ -continuous.

Theorem 11. Let $(X, \mu), (Z, \nu)$ be two GTS's and (Y, λ) be a λ - $T_{\frac{1}{2}}$ -space. Let $f : (X, \mu) \to (Y, \lambda)$ be (μ, λ) -irresolute function and $g : (Y, \lambda) \to (Z, \nu)$ be contra $(\lambda g, \nu)$ -continuous. Then $g \circ f : (X, \mu) \to (Z, \nu)$ is contra $(\mu g, \nu)$ -continuous.

Proof. Let *F* be any ν -open subset of (Z, ν) . Since *g* is contra $(\lambda g, \nu)$ -continuous, $f^{-1}(F)$ is λg -closed in (Y, λ) . But (Y, λ) is $\lambda - T_{\frac{1}{2}}$ -space, so $f^{-1}(F)$ is λ -closed. Since *f* is (μ, λ) -irresolute, $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is μ -closed. Since every μ -closed set in a *GTS* (X, μ) is μg -closed, $g \circ f : (X, \mu) \to (Z, \nu)$ is contra $(\mu g, \nu)$ -continuous.

Theorem 12. Let $f : (X, \mu) \to (Y, \lambda)$ be $(\mu g, \lambda g)$ -irresolute function and $g : (Y, \lambda) \to (Z, \nu)$ be contra $(\lambda g, \nu)$ -continuous function. Then $g \circ f : (X, \mu) \to (Z, \nu)$ is contra $(\mu g, \nu)$ -continuous.

Proof. Let F be a ν -open set in (Z, ν) . Then $g^{-1}(F)$ is λg -closed in (Y, λ) , because g is contra $(\lambda g, \nu)$ -continuous. Since f is $(\mu g, \lambda g)$ -irresolute, $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is μg -closed. Thus, $g \circ f : (X, \mu) \to (Z, \nu)$ is contra $(\mu g, \nu)$ -continuous.

Corollary 1. Let $f : (X, \mu) \to (Y, \lambda)$ be $(\mu g, \lambda g)$ -irresolute and $g : (Y, \lambda) \to (Z, \nu)$ be contra (λ, ν) -continuous function. Then $g \circ f : (X, \mu) \to (Z, \nu)$ is contra $(\mu g, \nu)$ -continuous.

Definition 10. A function $f : (X, \mu) \to (Y, \lambda)$ is said to be pre- $(\mu g, \lambda g)$ open if the image of every μg -open set is λg -open.

Theorem 13. Let $f : (X, \mu) \to (Y, \lambda)$ be surjective, $(\mu g, \lambda g)$ -irresolute, pre- $(\mu g, \lambda g)$ -open function and $g : (Y, \lambda) \to (Z, \nu)$ be any function. Then $g \circ f : (X, \mu) \to (Z, \nu)$ is contra $(\mu g, \nu)$ -continuous if g is contra $(\lambda g, \nu)$ -continuous.

Proof. Let $g: (Y, \lambda) \to (Z, \nu)$ be a contra $(\lambda g, \nu)$ -continuous function and F be a ν -open subset of (Z, ν) . Since g is contra $(\lambda g, \nu)$ -continuous, $g^{-1}(F)$ is λg -closed. But $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is μg -closed because f is $(\mu g, \lambda g)$ -irresolute. Thus, $g \circ f : (X, \mu) \to (Z, \nu)$ is contra $(\mu g, \nu)$ -continuous.

Conversely, let $g \circ f : (X, \mu) \to (Z, \nu)$ be contra $(\mu g, \nu)$ -continuous and let F be a ν -closed subset of (Z, ν) . Then, $(g \circ f)^{-1}(F)$ is a μg -open. Since f is pre- $(\mu g, \lambda g)$ -open and surjective, $f(f^{-1}(g^{-1}(F))) = g^{-1}(F)$ is λg -open. Hence, $g : (Y, \lambda) \to (Z, \nu)$ is contra $(\lambda g, \nu)$ -continuous.

Theorem 14. If $f : (X, \mu) \to (Y, \lambda)$ is $(\mu g, \lambda g)$ -irresolute function with (Y, λ) as locally λg -indiscrete space and $g : (Y, \lambda) \to (Z, \nu)$ is contra $(\lambda g, \nu)$ -continuous function, then $g \circ f : (X, \mu) \to (Z, \nu)$ is $(\mu g, \nu)$ -continuous.

Proof. Let *F* be a ν -closed subset of (Z, ν) . Since, *g* is contra $(\lambda g, \nu)$ -continuous, $g^{-1}(F)$ is λg -open in (Y, λ) . But (Y, λ) is locally λg -indiscrete, so $g^{-1}(F)$ is λg -closed. Since *f* is $(\mu g, \lambda g)$ -irresolute, $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is μg -closed. Therefore, $g \circ f$ is $(\mu g, \nu)$ -continuous.

5. Some covering and separation properties

Definition 11. A GTS (X, μ) is said to be

- (a) μg -compact if every μg -open cover of (X, μ) has a finite subcover,
- (b) strongly μ -S-closed if every μ -closed cover of (X, μ) has a finite subcover,
- (c) countably μg -compact if every countable cover of (X, μ) by μg -open sets has a finite subcover,
- (d) strongly countably μ -S-closed if every countable cover of (X, μ) by μ -closed sets has a finite subcover,
- (e) μg -Lindelöf if every μg -open cover of (X, μ) has a countable subcover,
- (f) strongly μ -S-Lindelöf if every μ -closed cover of (X, μ) has a countable subcover.

Theorem 15. The surjective contra $(\mu g, \lambda)$ -continuous image of a μg compact (resp. μg -Lindelöf, countably μg -compact) space is strongly λ -S-closed (resp. strongly λ -S-Lindelöf, strongly countable λ -S-closed).

Proof. Suppose that $f : (X, \mu) \to (Y, \lambda)$ is a contra $(\mu g, \lambda)$ -continuous surjection. Let $\{V_{\alpha} : \alpha \in \nabla\}$ be any λ -closed cover of (Y, λ) . Since f is contra $(\mu g, \lambda)$ -continuous, $\{f^{-1}(V_{\alpha}) : \alpha \in \nabla\}$ is a μg -open cover of X and hence there exists a finite subset ∇_0 of ∇ such that $X = \bigcup_{\alpha \in \nabla_0} f^{-1}(V_{\alpha})$. Therefore we have, $Y = \bigcup_{\alpha \in \nabla_0} V_{\alpha}$ and (Y, λ) is strongly λ -S-closed.

The other proofs can be obtained similarly.

Definition 12. A GTS (X, μ) is said to be

- (a) μg -closed-compact if every μg -closed cover of (X, μ) has a finite subcover,
- (b) countably μg -closed compact if every countable cover of (X, μ) by μg -closed sets has a finite subcover,
- (c) μg -closed-Lindelöf if every μg -closed cover of (X, μ) has a countable subcover.

Theorem 16. Surjective, contra $(\mu g, \lambda)$ -continuous image of a μg -closed compact (resp. μg -closed Lindelöf, countably μg -closed compact) space is λ -compact (resp. λ -Lindelöf, countably λ -compact).

Proof. Suppose that $f : (X, \mu) \to (Y, \lambda)$ is a contra $(\mu g, \lambda)$ -continuous surjection. Let $\{V_{\alpha} : \alpha \in \nabla\}$ be any λ -open cover of (Y, λ) . Since f is contra $(\mu g, \lambda)$ -continuous, $\{f^{-1}(V_{\alpha}) : \alpha \in \nabla\}$ is a μg -closed cover of (X, μ) , hence there exists a finite subset ∇_0 of ∇ such that $X = \bigcup_{\alpha \in \nabla_0} f^{-1}(V_{\alpha})$. Therefore we have $Y = \bigcup_{\alpha \in \nabla_0} V_{\alpha}$ and Y is λ -compact. The other proofs can be obtained similarly.

Definition 13. A GTS (X, μ) is said to be μg - T_1 if for each pair of distinct points x and y in (X, μ) , there exist μg -open sets U and V containing x and y respectively, such that $y \notin U$ and $x \notin V$.

Definition 14. A GTS (X, μ) is said to be μg - T_2 if for each pair of distinct points x and y in (X, μ) , there exist disjoint μg -open sets U and V containing x and y respectively.

Theorem 17. Let (X, μ) , (Y, λ) be two GTS's. If

- (a) for each pair of distinct points x and y in (X, μ) , there exists a function f of X on to Y such that $f(x) \neq f(y)$,
- (b) (Y, λ) is λ -Urysohn space, and
- (c) f is contra $(\mu g, \lambda)$ -continuous at x and y.

Then (X, μ) is μg - T_2 .

Proof. Let x and y be distinct points in (X, μ) , from the hypothesis by (b) there exists a λ -Urysohn space (Y, λ) , by (a) there exists a function $f: (X, \mu) \to (Y, \lambda)$ such that $f(x) \neq f(y)$ and by (c). f is contra $(\mu g, \lambda)$ -continuous at x and y. Let v = f(x) and w = f(y), then $v \neq w$. Since (Y, λ) is λ -Urysohn, there exists λ -open sets V and W containing v and w respectively, such that $c_{\lambda}(V) \cap c_{\lambda}(W) = \emptyset$. Since f is contra $(\mu g, \lambda)$ -continuous at x and y, there exist μg -open sets A and B containing x and y respectively, such that $f(A) \subset c_{\lambda}(V)$ and $f(B) \subset c_{\lambda}(W)$. We have $A \cap B = \emptyset$ since $c_{\lambda}(V) \cap c_{\lambda}(W) = \emptyset$. Hence, (X, μ) is $\mu g \cdot T_2$. **Theorem 18.** If $f : (X, \mu) \to (Y, \lambda)$ is a contra $(\mu g, \lambda)$ -continuous injection and (Y, λ) is weakly λ -Hausdorff, then (X, μ) is μg -T₁.

Proof. Suppose that (Y, λ) is weakly λ -Hausdorff, then for any pair of distinct points x and y in (X, μ) , there exist λr -closed sets A, B in (Y, λ) such that $f(x) \in A$, $f(x) \notin B$ and $f(y) \in B$, $f(y) \notin A$. Since f is contra $(\mu g, \lambda)$ -continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are μg -open subsets of (X, μ) such that $x \in f^{-1}(A)$, $x \notin f^{-1}(B)$ and $y \in f^{-1}(B)$, $y \notin f^{-1}(A)$. Hence, (X, μ) is μg - T_1 .

Theorem 19. Let $f : (X, \mu) \to (Y, \lambda)$ have a contra $(\mu g, \lambda)$ -closed graph. If f is injective, then (X, μ) is $\mu g \cdot T_1$.

Proof. Let x and y be distinct points in (X, μ) . Then we have $(x, f(y)) \in (X \times Y) \setminus G(f)$. Then, there exists a μg -open set U in (X, μ) containing x and a λ -closed set F containing f(y) such that $f(U) \cap F = \emptyset$. Hence, $U \cap f^{-1}(F) = \emptyset$. Therefore, we have $y \notin U$. This implies (X, μ) is μg -T₁.

Theorem 20. Let $f : (X, \mu) \to (Y, \lambda)$ be a contra $(\mu g, \lambda)$ -continuous injection. If (Y, λ) is ultra λ -Hausdorff, then (X, μ) is μg - T_2 .

Proof. Let x and y be two distinct points in (X, μ) . Then $f(x) \neq f(y)$ and there exist λ -clopen sets A, B containing f(x), f(y) respectively, such that $A \cap B = \emptyset$. Since f is contra $(\mu g, \lambda)$ -continuous, then $f^{-1}(A)$, $f^{-1}(B)$ are μg -open sets such that $f^{-1}(A) \cap f^{-1}(B) = \emptyset$. Hence, (X, μ) is μg -T₂.

References

- CSÁSZÁR A., Generalized topology, generalized continuity, Acta Math. Hung., 96(2002), 351-357. DOI:10.1023/A:1019713018007.
- [2] CSÁSZÁR Á., Generalized open sets in generalized topologies, Acta Math. Hung., 106(2005), 53-66. DOI:10.1007/s10474-005-0005-5.
- [3] Császár Å., δ- and θ-modifications of generalized topologies, Acta Math. Hung., 120(2008), 275-279. DOI:10.1007/s10474-007-7136-9.
- [4] CSÁSZÁR Á., Product of generalized topologies, Acta Math Hung., 123(2009), 127-132. DOI:10.1007/s10474-008-8074-x.
- [5] JAYANTHI D., Contra continuity on generalized topological spaces, Acta Math Hung., 137(2012), 263-271. DOI:10.1007/s10474-012-0211-x.
- [6] LEVINE N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89-96.
- [7] AL-OMARI A., NOIRI T., A unified theory of contra-(μ,λ)-continuous functions in generalized topological spaces, Acta Math. Hung., 135(2012), 31-41. DOI:10.1007/s10474-011-0143-x.
- [8] RAVI O., THIVAGAR M.L., LATHA R., Properties of contra sg-continuous maps, General Mathematics Notes, 4(1)(2011), 70-84.

- [9] ROY B., On generalized R_0 and R_1 spaces, Acta Math. Hung., 127(2010), 291-300. DOI:10.1007/s10474-009-9135-5.
- [10] ROY B., On a type of generalized open sets, Appl. Gen. Topol., 12(2)(2011), 163-173.
- [11] SARSAK M.S., μ-S-closed, Acta Math. Hung., 146(2)(2015), 285-299.
- [12] ŞENGÜL U., DÜNDAR S.N., On some new classes of generalized continuous functions, Int. J. Contemp. Math. Sciences, 11(10)(2016), 471-478, doi.org/10.12988/ijcms.2016.6955.
- [13] SOUNDARARAJAN T., Weakly Hausdorff spaces and the cardinality of topological spaces, In : General topology and its relation to modern analysis and algebra, III Proc. Conf. Kanpur, 1968, Academia, Prague, (1971), 301-306.

Uğur Şengül Department of Mathematics Faculty of Science and Letters Marmara University 34722, Göztepe-İstanbul, Turkey *e-mail:* usengul@marmara.edu.tr

SEDA NUR DÜNDAR INSTITUTE OF PURE AND APPLIED SCIENCES MARMARA UNIVERSITY 34722, GÖZTEPE-İSTANBUL, TURKEY *e-mail:* seda.n.dundar@gmail.com

Received on 17.02.2017 and, in revised form, on 03.11.2017.