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MEROMORPHIC SOLUTIONS OF LINEAR

DIFFERENCE EQUATIONS WITH

POLYNOMIAL COEFFICIENTS∗

Abstract. We study the growth of the transcendental meromor-
phic solution f(z) of the linear difference equation:

n∑
j=0

pj(z)f(z + j) = q(z),

where q(z), p0(z), . . ., pn(z) (n ≥ 1) are polynomials such that
p0(z)pn(z) 6≡ 0, and obtain some necessary conditions guarantee-
ing that the order of f(z) satisfies σ(f) ≥ 1 using a difference
analogue of the Wiman-Valiron theory. Moreover, we give the
form of f(z) with two Borel exceptional values when two of p0(z),
. . ., pn(z) have the maximal degrees.
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1. Introduction and main results

Let f(z) be a meromorphic function in the whole complex plane C, we
shall use the standard notations of Nevanlinna’s theory (see, e.g., [9, 15]),
such as the characteristic function T (r, f). Moreover, we will use the no-
tation S(r, f) to denote any quantity that satisfies S(r, f) = o(1)T (r, f) as
r → ∞ outside of a possible exceptional set of finite logarithmic measure.
And we will use the notation σ(f) to denote the order of growth of f(z)
and the notations λ(f) and λ(1/f) to denote the exponent of convergence
of the zeros and poles of f(z), respectively. We define the difference oper-
ators of f(z) by ∆f(z) = f(z + 1) − f(z) and ∆nf(z) = ∆(∆n−1f(z)) =∑n

i=0(−1)n−i
(
n
i

)
f(z + i), where n (≥ 2) is an integer.
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In 1935, Whittaker [13] proved that the difference equation f(z + 1) =
ψ(z)f(z) admits a meromorphic solution of order σ(f) ≤ σ(ψ) + 1, where
ψ(z) is a finite order entire function. In the 1980s, some mathematicians
(see, e.g. [1, 12, 14]) obtained more existence theorems about the meromor-
phic solutions of difference equations. At the beginning of the 21st century,
Halburd and Korhonen [6] and Chiang and Feng [3] proved a difference
analogue of the logarithmic derivative lemma independently, which provides
an efficient tool to study the properties of complex difference equations.
By using this new result, Chiang and Feng [3] investigated the growth of
meromorphic solutions for higher order linear difference equation

(1)

n∑
j=0

pj(z)f(z + j) = 0,

where pj(z), j = 0, . . . , n (n ≥ 1) are entire functions or polynomials. They
proved the following two theorems.

Theorem 1 (see [3]). Let p0(z), . . ., pn(z) be polynomials such that there
exists an integer l, 0 ≤ l ≤ n, such that

deg(pl) > max
0≤j≤n,j 6=l

{deg(pj)}.

If f(z) is a meromorphic solution of (1), then σ(f) ≥ 1.

Theorem 2 (see [3]). Let p0(z), . . ., pn(z) be entire functions such that
there exists an integer l, 0 ≤ l ≤ n, such that

σ(pl) > max
0≤j≤n,j 6=l

{σ(pj)}.

If f(z) is a meromorphic solution of (1), then σ(f) ≥ σ(pl) + 1.

Remark 1. Laine and Yang [10] completed the proof of Theorem 2
by showing that the conclusion of Theorem 2 still holds if there exists an
integer l, 0 ≤ l ≤ n so that among those having the maximal order σ =
max0≤l≤n σ(pl), exactly pl has its type strictly greater than the others.

By proving Theorem 1 and Theorem 2, Chiang and Feng [3] have shown
that Whittaker’s conclusion σ(f) ≤ σ(ψ) + 1 can be replaced by σ(f) =
σ(ψ) + 1 (see [3, Corollary 9.3]). Some mathematicians(see, e.g., [2, 4, 8,
11, 16]) then made their efforts to improve Theorem 1 by weakening the
conditions. We recall from [4] and [11] the following two results, where λf
denotes max{λ(f), λ(1/f)} for simplicity.
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Theorem 3 (see [4]). Let q0(z), . . ., qn(z) be polynomials such that
q0(z)qn(z) 6≡ 0 and

deg(q0) ≥ max
1≤j≤n

{deg(qj)}.

If f(z) is a transcendental meromorphic solution of the following difference
equation

(2)
n∑
j=0

qj(z)∆
jf(z) = 0,

then σ(f) ≥ 1.

Theorem 4 (see [11]). Let q(z), p0(z), . . ., pn(z) be polynomials such
that p0(z)pn(z) 6≡ 0 and

deg

( n∑
j=0

pj(z)

)
= max

0≤j≤n
{deg(pj)} ≥ 1.

If f(z) is a transcendental meromorphic solution of the following difference
equation

(3)

n∑
j=0

pj(z)f(z + j) = q(z),

then σ(f) ≥ 1. Moreover, if f(z) has finite order, then 1 ≤ σ(f) ≤ 1 + λf .

Theorem 3 improves Theorem 1 because we can use the relation g(z+l) =∑l
j=0

(
l
j

)
∆jg(z), l = 0, . . . , n to rewrite (1) as the form of (2) and it follows

that the only coefficient with the maximal degree in Theorem 1 implies q0(z)
satisfies the condition of Theorem 3. Now we use the same relation to rewrite
(3) as

(4)

n∑
j=0

qj(z)∆
jf(z) = q(z),

where q(z), q0(z), . . ., qn(z) are polynomials such that q0(z)qn(z) 6≡ 0. We
study the growth of transcendental meromorphic solution f(z) of (4) and
give two conditions ensuring that f(z) has order of growth no less than 1.
We prove the following Theorem 5.

Theorem 5. Let q(z), q0(z), . . ., qn(z) be polynomials such that q0(z)qn(z)
6≡ 0 and

(5) deg(q0) ≥ max
1≤j≤n

{deg(qj)},
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or

(6) deg(q1) ≥ max
0≤j≤n,j 6=1

{deg(qj)}.

If f(z) is a transcendental meromorphic solution of (4), then σ(f) ≥ 1.

From the processing of rewriting (3) to (4), we easily see that q1(z) in
(4) corresponds to

∑n
j=0 jpj(z), where pj , j = 0, . . . , n are the coefficients

of (3). Therefore, we have the following corollary from Theorem 5.

Corollary 1. Let p0(z), . . ., pn(z) be polynomials such that p0(z)pn(z)
6≡ 0 and

deg

( n∑
j=0

jpj(z)

)
= d = max

0≤j≤n
{deg(pj)} ≥ 1.

If f(z) is a transcendental meromorphic solution of (3), then σ(f) ≥ 1.

Example 1. Ishizaki and Yanagihara [7] proved that the following linear
difference equation

(6z2 + 19z + 15)∆3f(z) + (z + 3)∆2f(z)−∆f(z)− f(z) = 0

admits an entire function with order 1/3. This example shows that none of
the two conditions in Theorem 5 can be ignored.

In the rest of this paper, we give another result on the growth of tran-
scendental meromorphic solution of (3) and present the form of f(z) which
has two Borel exceptional values in the case that two of the coefficients of
(3) have the maximal degrees. We prove the following Theorem 6.

Theorem 6. Let q(z), p0(z), . . . , pn(z) be polynomials such that p0(z)pn(z)
6≡ 0 and l and s (0 ≤ l, s ≤ n) be two distinct integers such that pl and ps
satisfy

deg(pl) = deg(ps) > max
0≤j≤n,j 6=l,s

{deg(pj)}.

If f(z) is a transcendental meromorphic solution of (3), then σ(f) ≥ 1.
Moreover, if f(z) is of finite order and has two Borel exceptional values α
(6=∞) and β (6= α), then we have

(i) if β =∞, then q(z)− α
∑n

j=0 pj(z) ≡ 0 and f(z) = h(z)eaz+b + α;

(ii) if β 6=∞, then q(z) = α
∑n

j=0 pj(z) ≡ 0 and f(z) = β−α
1−h(z)eaz+b + α,

where a ( 6= 0) and b are two constants and h(z) is a nonzero rational func-
tion.

Example 2. If f(z) is a period 1 function, that is, h(z) is a nonzero
constant and a = 2kiπ, k ∈ Z \ {0}, then it is easy to see that f(z) always
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satisfies equation (3) when q(z) ≡ 0 and
∑n

j=0 pj(z) ≡ 0. Therefore, both
the two cases of Theorem 6 can occur. In the non-periodic case, for example,
the function f(z) = ze2iπz has two Borel exceptional values 0 and ∞ and
satisfies the following difference equation

(z + 2)f(z + 2)− (z + 4)f(z + 1) + f(z) = 0.

2. Some lemmas

Let f(z) =
∑∞

n=0 anz
n be an entire function, we denote the maximum

modulus of f(z) on r > 0 by M(r, f) = max|z|=r |f(z)| and the central index
of f(z) by ν(r, f), which is defined as the greatest exponent of the maximal
term of f(z). The following Lemma 1 obtained recently can be regarded as
a difference analogue of the classical Wiman-Valiron theory (see, e.g. [9]).

Lemma 1 (see [5]). Let f be a transcendental entire function of order
σ(f) = σ < 1, let 0 < ε < min{1/8, 1− σ} and z be such that |z| = r, where

|f(z)| > M(r, f)ν(r, f)−1/8+ε

holds. Then for each positive integer k, there exists a set E ⊂ (1,∞) that
has finite logarithmic measure, such that for all r 6∈ [0, 1] ∪ E,

∆kf(z)

f(z)
=

(
ν(r, f)

z

)k
(1 +Rk(z)),

where Rk(z) = O(ν(r, f)−κ+ε) and κ = min{1/8, 1− σ}.

Lemma 2 (see [9]). If f(z) is an entire function of order σ(f) = σ, then

σ = lim sup
r→∞

log ν(r, f)

log r
.

Lemma 3 (see [3]). Let f(z) be a meromorphic function with order
σ(f) = σ < ∞, and let η be a fixed non-zero complex number. Then for
each ε > 0, we have

T (r, f(z + η)) = T (r, f) +O(rσ−1+ε) +O(log r).

Lemma 4 (see [9]). Let f(z) be a meromorphic function. Then for all
irreducible rational functions in f ,

R(z, f) =
P (z, f)

Q(z, f)
=

∑p
i ai(z)f

i∑q
j bj(z)f

j
,

such that the meromorphic coefficients ai(z), bj(z) satisfy T (r, ai(z)) =
S(r, f), i = 0, 1, . . . , p and T (r, bi(z)) = S(r, f), i = 0, 1, . . . , q, we have

T (r,R(z, f)) = max{p, q}T (r, f) + S(r, f).
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3. Proof of Theorem 5

Proof. On the contrary, we suppose that σ(f) = σ < 1. From the
proof of Theorem 4 in [11], we know that f(z) has only finitely many poles.
Therefore, there exists a rational function S(z) such that F (z) = f(z)−S(z)
is transcendental entire. Substituting f(z) = F (z) + S(z) into (4), we get

(7)
n∑
j=0

qj(z)∆
jF (z) = Q(z),

where Q(z) = q(z)−
∑n

j=0 qj(z)∆
jS(z) is a rational function. Since F (z) is

transcendental, we may choose an infinite sequence zk such that |zk| = rk
and |F (zk)| = M(rk, F ). Let 0 < ε < κ = min{1/8, 1 − σ}. By Lemma 1,
we have

(8)
∆jF (zk)

F (zk)
=

(
ν(rk, F )

zk

)j
(1 + o(1))

holds for all j = 1, . . . , n. Dividing q0(z)F (z) on both sides of (7) and
substituting (8) into the resulting equation gives

(9)
n∑
j=1

qj(zk)

q0(zk)

(
ν(rk, F )

zk

)j
(1 + o(1)) + 1 =

Q(zk)

q0(zk)F (zk)
.

By the condition (5) and the fact that F (z) is transcendental, we have

Q(zk)

q0(zk)F (zk)
= o(1),

qj(zk)

q0(zk)
= O(1)

for j = 1, . . . , n as |zk| = rk →∞. Moreover, from Lemma 2, we know that
ν(rk,F )
rk

= o(1) as |zk| = rk → ∞. Hence (9) is a contradiction when we let
|zk| = rk →∞. This implies that σ(f) ≥ 1 when equation (5) holds.

Consider the case that (6) holds. From the above reasoning we see that
deg(q0) < deg(q1) since we have assumed σ(f) = σ < 1. By dividing
q1(z)F (z) on both sides of (7) and substituting (8) into the resulting equa-
tion, we get

n∑
j=2

qj(zk)

q1(zk)

(
ν(rk, F )

zk

)j
(1 + o(1))(10)

+
ν(rk, F )

zk
(1 + o(1)) +

q0(z)

q1(zk)
=

Q(zk)

q1(zk)F (zk)
,

From (6) and the fact that F (z) is transcendental, we have

Q(zk)

q1(zk)F (zk)
= o(1),

qj(zk)

q1(zk)
= O(1),

q0(zk)

q1(zk)
= o(1)
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for j = 2, . . . , n as |zk| = rk →∞. Note that ν(rk,F )
rk

= o(1) as |zk| = rk →∞
by Lemma 2. These results lead (10) to the following

ν(rk, F )

rk
≤ K

n∑
j=2

(
ν(rk, F )

rk

)j
≤ nK

(
ν(rk, F )

rk

)2

,

where K is some positive value, which implies that σ(f) = σ(F ) ≥ 1 by
Lemma 2, a contradiction to our assumption. So we must have σ(f) ≥ 1
when equation (6) holds. This completes the proof. �

4. Proof of Theorem 6

Proof. (i) We first prove that σ(f) ≥ 1. Let al and as be, respectively,
the leading coefficients of pl(z) and ps(z) with degree d ≥ 1. If σ(f) < 1,
then from Theorem 4 and Corollary 1, we know that deg(pl(z) + ps(z)) ≤
d− 1 and deg(lpl(z) + sps(z)) ≤ d− 1, which implies that al + as = 0 and
lal + sas = 0. It follows that al = as = 0, which contradicts the fact that
pl(z) and ps(z) both have the maximal degrees. Hence σ(f) ≥ 1.

(ii) When f(z) has two Borel exceptional values, we discuss the following
two cases:

Case 1. β = ∞. By Hadamard’s theory, f(z) assumes the form: f(z) =
h(z)eg(z) + α, where g(z) is a polynomial with deg(g(z)) = σ(f) = k ≥ 1
and h(z) satisfies λh = σ(h) < σ(f) = k. Substituting this equation into (3)
and extracting eg(z) on the left-hand side of the resulting equation gives

(11) eg(z)

 n∑
j=0

pj(z)H(z + j)

 = q(z)− α
n∑
j=0

pj(z),

where H(z + j) = h(z + j)eg(z+j)−g(z), j = 0, . . . , n. Denote g(z) = bkz
k +

bk−1z
k−1 + . . .+ b0, where bk (6= 0), . . ., b0 are constants. Then we have

g(z + j)− g(z) = bkkjz
k−1 + gj(z), j = 1, . . . , n,

where gj(z) ≡ 0 when k = 1 or gj(z) are polynomials with degree deg(gj(z)) ≤
k − 2 when k ≥ 2. From Lemma 3, we know that σ(H(z + j)) < k
for j = 0, . . . , n. If q(z) − α

∑n
j=0 pj(z) 6≡ 0, then by Lemma 4, we get

from (11) that T (r, eg(z)) = S(r, eg(z)), which is impossible. Therefore,
q(z)− α

∑n
j=0 pj(z) ≡ 0 and it follows that

(12)
n∑
j=0

pj(z)e
g(z+j)−g(z)h(z + j) = 0.
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If k ≥ 2, then from the definition of the type τ(f) (see, e.g., [15]) for an entire
function f(z) with order 0 < σ(f) <∞, we easily get τ(pj(z)e

g(z+j)−g(z)) =
kj|bk| for j = 1, . . . , n. Obviously, kn|bk| > . . . > k|bk|. However, from
Remark 1 we know that σ(h) ≥ k, a contradiction to that σ(h) < k. Hence
k = 1 and so λh < σ(f) = 1. Note that now pl(z) and ps(z) still have the
maximal degrees since eg(z+j)−g(z), j = 1, . . . , n are all nonzero constants.
If h(z) is transcendental, then from the first part, we get λh = σ(h) ≥ 1, a
contradiction again. So h(z) must be rational and hence f(z) assumes the
form: f(z) = h(z)eaz+b+α, where a (6= 0) and b are two constants and h(z)
is a rational function.

Case 2. β 6=∞. In this case, f(z) satisfies the equation

f(z)− β
f(z)− α

= h(z)eg(z),

where g(z) and h(z) are defined as above. It follows that f(z) = β−α
1−h(z)eg(z)

+ α and substituting this equation into (3) yields

(13)
n∑
j=0

pj(z)

1− h(z + j)eg(z+j)
=
q(z)− α

∑n
j=0 pj(z)

β − α
.

For simplicity, denote the polynomial on the right-hand side of (13) by A(z).
By multiplying

∏n
j=0(1−H(z + j)eg(z)) on both sides of (13), we get

(14) B1(z)e
(n−1)g(z)+ . . .+Bn−1(z)e

g(z)+Bn = A(z)
n∏
j=0

(1−H(z+j)eg(z)),

where B1, . . ., Bn are meromorphic functions with order less than k. More-
over,

Bn−1(z) =

n∑
j=0

[
pj(z)

(
H(z + j)−

n∑
i=0

H(z + i)

)]
, Bn(z) =

n∑
j=0

pj(z).

If A(z) 6≡ 0, then the right-hand side of (14) is a polynomial in eg(z) with
coefficients of order less than k. By Lemma 4, we get from (14) that
nT (r, eg(z)) ≤ (n− 1)T (r, eg(z)) +S(r, eg(z)), which is impossible. Therefore,
A(z) ≡ 0. Now we have

(15) B1(z)e
(n−1)g(z) + . . .+Bn−1(z)e

g(z) +Bn = 0.
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Since (15) is a polynomial in eg(z) of degree n with coefficients of order less
than k, we conclude from Lemma 4 that B1(z) ≡ . . . ≡ Bn(z) ≡ 0. In
particular,

Bn−1(z) =

n∑
j=0

pj(z)H(z + j)−

 n∑
j=0

pj(z)

( n∑
i=0

H(z + i)

)

=
n∑
i=0

pj(z)H(z + j) ≡ 0,

which is the equation (12) since H(z+j) = h(z+j)eg(z+j)−g(z), j = 0, . . . , n.
This implies that σ(f) = 1 and h(z) is a rational function and so f(z)
assumes the form: f(z) = β−α

1−h(z)eaz+b + α, where a (6= 0) and b are two

constants and h(z) is a rational function. This completes the proof. �
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