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APPROXIMATION BY MAX-PRODUCT OPERATORS

Abstract. Here we study the approximation of functions by
a great variety of Max-Product operators under differentiabil-
ity. These are positive sublinear operators. Our study is based
on our general results about positive sublinear operators. We
produce Jackson type inequalities under initial conditions. So
our approach is quantitative by producing inequalities with their
right hand sides involving the modulus of continuity of a high or-
der derivative of the function under approximation. We improve
known related results which do not use smoothness of functions..
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1. Introduction

The main motivation here comes from the monograph by B. Bede,
L. Coroianu and S. Gal [3], 2016.

We mention the interpolation Hermite-Fejer polynomials on Chebyshev
knots of the first kind (see [3], p. 4): Let f : [−1, 1] → R and based on

the knots xN,k = cos
(
(2(N−k)+1)

2(N+1) π
)
∈ (−1, 1), k ∈ {0, ..., N}, −1 < xN,0 <

xN,1 < ... < xN,N < 1, which are the roots of the first kind Chebyshev
polynomial TN+1 (x) = cos ((N + 1) arccosx), we define (see Fejér [4])

(1) H2N+1 (f) (x) =
N∑
k=0

hN,k (x) f (xN,k) ,

where

(2) hN,k (x) = (1− x · xN,k)
(

TN+1 (x)

(N + 1) (x− xN,k)

)2

,

the fundamental interpolation polynomials.
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DenotingAN+1 (f) = ‖H2N+1 − f‖∞, Fejer [4] proved that lim
N→∞

AN+1 (f)

= 0, for all f ∈ C ([−1, 1]).

Popoviciu ([6]) also proved that AN+1 (f) = O
(
ω1

(
f, 1√

N+1

))
, and

Moldovan ([5]) improved it to

AN+1 (f) = O

(
ω1

(
f,

ln (N + 1)

N + 1

))
.

Here ω1 (f, δ) = sup
x,y∈[−1,1]:
|x−y|≤δ

|f (x)− f (y)|, δ > 0, is the first modulus of con-

tinuity.
The Max-product interpolation Hermite-Fejér operators on Chebyshev

knots of the first kind (see p. 12 of [3]) are defined by

(3) H
(M)
2N+1 (f) (x) =

∨N
k=0 hN,k (x) f (xN,k)∨N

k=0 hN,k (x)
, ∀ N ∈ N,

where f : [−1, 1]→ R+ is continuous.
By [3], p. 286 we get that∣∣∣H(M)

2N+1 (f) (x)− f (x)
∣∣∣(4)

≤ 14ω1

(
f,

1

N + 1

)
, ∀ N ∈ N, any x ∈ [−1, 1] .

Call

EN (x) := H
(M)
2N+1 (|· − x|) (x)(5)

=

∨N
k=0 hN,k (x) |xN,k − x|∨N

k=0 hN,k (x)
, x ∈ [−1, 1] .

Then by [3], p. 287 we obtain that

(6) EN (x) ≤ 2π

N + 1
, ∀ x ∈ [−1, 1] , N ∈ N.

For m ∈ N, we get

H
(M)
2N+1 (|· − x|m) (x) =

∨N
k=0 hN,k (x) |xN,k − x|m∨N

k=0 hN,k (x)
(7)

=

∨N
k=0 hN,k (x) |xN,k − x| |xN,k − x|m−1∨N

k=0 hN,k (x)

≤ 2m−1
∨N
k=0 hN,k (x) |xN,k − x|∨N

k=0 hN,k (x)

≤ 2mπ

N + 1
∀ x ∈ [−1, 1] , N ∈ N.



Approximation by max-product operators 7

Hence it holds

(8) H
(M)
2N+1 (|· − x|m) (x) ≤ 2mπ

N + 1
, ∀ x ∈ [−1, 1] , m ∈ N, ∀ N ∈ N.

Clearly it holds

(9) H
(M)
2N+1 (|· − x|m) (x) > 0,

∀ x ∈ [−1, 1] : x 6= xN,k, ∀ N ∈ N, any k ∈ {0, 1, ..., N}; any m ∈ N.
Furthermore we have

H
(M)
2N+1 (1) (x) = 1, ∀ x ∈ [−1, 1] ,

and H
(M)
2N+1 maps continuous functions to continuous functions over [−1, 1]

and for any x ∈ R we have
∨N
k=0 hN,k (x) > 0.

We also have hN,k (xN,k) = 1, and hN,k (xN,j) = 0, if k 6= j, furthermore

it holds H
(M)
2N+1 (f) (xN,j) = f (xN,j), for all j ∈ {0, ..., N}, see [3], p. 282.

In this work we will improve (4) by assuming differentiability of f . Sim-
ilar improvements, using the differentiability of f , will be presented for
Max-product Lagrange interpolation operators, Max-product truncated sam-
pling operators and Max-product Neural network operators.

2. Main results

Let I ⊂ R be a bounded or unbounded interval, n ∈ N, and

CBn
+ (I) =

{
f : I → R+ : f (i) is continuous and bounded on I,(10)

for both i = 0, n} .

We define for

(11) f ∈ CB+ (I) = {f : I → R+ : f is continuous and bounded on I} ,

the first modulus of continuity

(12) ω1 (f, δ) = sup
x,y∈I:
|x−y|≤δ

|f (x)− f (y)| ,

where 0 < δ ≤ diameter (I).
Call C+ (I) = {f : I → R+ : f is continuous on I} .
Let LN : C+ (I) → CB+ (I), n,N ∈ N be a sequence of operators satis-

fying the following properties (see also [3], p. 17):
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(i) (positive homogeneous)

(13) LN (αf) = αLN (f) , ∀ α ≥ 0, f ∈ C+ (I) ,

(ii) (Monotonicity)

(14) if f, g ∈ C+ (I) satisfy f ≤ g, then LN (f) ≤ LN (g) , ∀ N ∈ N,

and
(iii) (Subadditivity)

(15) LN (f + g) ≤ LN (f) + LN (g) , ∀ f, g ∈ C+ (I) .

We call LN positive sublinear operators.
In particular we will study the restrictions LN |CBn+(I) : CBn

+ (I) →
CB+ (I) .

The operators H
(M)
2N+1 are positive sublinear operators. From [1] we will

be using the following result:

Theorem 1 ([1]). Let (LN )N∈N be a sequence of positive sublinear op-
erators from C+ (I) into CB+ (I), and f ∈ CBn

+ (I), where n ∈ N and
I ⊂ R a bounded or unbounded interval. Assume LN (1) = 1, ∀ N ∈ N, and
f (i) (x) = 0, i = 1, ..., n, for a fixed x ∈ I, and δ > 0. Then

|LN (f) (x)− f (x)|(16)

≤
ω1

(
f (n), δ

)
n!

LN (|· − x|n) (x) +
LN

(
|· − x|n+1

)
(x)

(n+ 1) δ

 ,
∀ N ∈ N.

We give

Theorem 2. Let f ∈ Cn ([−1, 1] ,R+), with f (i) (x) = 0, i = 1, ..., n ∈ N,
for some fixed x ∈ [−1, 1], N ∈ N. Then∣∣∣H(M)

2N+1 (f) (x)− f (x)
∣∣∣(17)

≤ 1

n!
ω1

(
f (n), 2 n+1

√
π

N + 1

)[
2nπ

N + 1
+

2n

(n+ 1)

(
n+1

√
π

N + 1

)n]
.

When x = xN,k, the left hand side of (17) is zero.

Proof. Here we are using (8) and (16), namely we have

(18) H
(M)
2N+1 (|· − x|m) (x) ≤ 2mπ

N + 1
, ∀ x ∈ [−1, 1] , m ∈ N, ∀ N ∈ N.



Approximation by max-product operators 9

and ∣∣∣H(M)
2N+1 (f) (x)− f (x)

∣∣∣(19)

≤
ω1

(
f (n), δ

)
n!

[
2nπ

N + 1
+

1

(n+ 1) δ

(
2n+1π

N + 1

)]
,

δ > 0.
Then choose

(20) δ := 2 n+1

√
π

N + 1
,

we get

(21) δn+1 = 2n+1 π

N + 1
,

and

∣∣∣H(M)
2N+1 (f) (x)− f (x)

∣∣∣ ≤ ω1

(
f (n), 2 n+1

√
π

N+1

)
n!

[
2nπ

N + 1
+

1

(n+ 1)
δn
]

(22)

=
1

n!
ω1

(
f (n), 2 n+1

√
π

N + 1

)[
2nπ

N + 1
+

1

(n+ 1)
2n
(

n+1

√
π

N + 1

)n]
,

proving the claim. �

It follows the n = 1 case.

Corollary 1. Let f ∈ C1 ([−1, 1] ,R+), with f ′ (x) = 0, for some fixed
x ∈ [−1, 1], N ∈ N. Then∣∣∣H(M)

2N+1 (f) (x)− f (x)
∣∣∣(23)

≤ ω1

(
f ′, 2

√
π

N + 1

)[
2π

N + 1
+

√
π

N + 1

]
.

From (17) and/or (23), as N →∞, we get that H
(M)
2N+1 (f) (x)→ f (x).

Proof. By (17). �

We make

Remark 1. We compare (23) to (4). We prove that (23) gives a sharper
estimate and speed than (4). We observe that

(24)
2
√
π√

N + 1

(
2π

N + 1
+

√
π√

N + 1

)
≤ 14

N + 1
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⇔

(25)
1√
N + 1

≤ 7− π
2π
√
π
,

true for large enough N ∈ N.

We also make

Remark 2. Here we compare (17) to (4). We prove that (17) gives a
better estimate and speed than (4). We see that

(26)
2 n+1
√
π

n! n+1
√
N + 1

[
2nπ

N + 1
+

2n

(n+ 1)

(
n+1
√
π

n+1
√
N + 1

)n]
≤ 14

N + 1
,

⇔

(27)
1

n+1
√
N + 1

≤
(

7− 2nπ

(n+ 1)!

)
n!

2nπ n+1
√
π
,

true for large enough N ∈ N.
About notice that 7− 2nπ

(n+1)! > 0.

We continue with

Remark 3. Here we deal with Lagrange interpolation polynomials on
Chebyshev knots of second kind plus the endpoints ±1 (see [3], p. 5). These
polynomials are linear operators attached to f : [−1, 1] → R and to the

knots xN,k = cos
((

N−k
N−1

)
π
)
∈ [−1, 1], k = 1, ..., N, N ∈ N, which are the

roots of ωN (x) = sin (N − 1) t sin t, x = cos t. Notice that xN,1 = −1 and
xN,N = 1. Their formula is given by ([3], p. 377)

(28) LN (f) (x) =
N∑
k=1

lN,k (x) f (xN,k) ,

where

(29) lN,k (x) =
(−1)k−1 ωN (x)

(1 + δk,1 + δk,N ) (N − 1) (x− xN,k)
,

N ≥ 2, k = 1, ..., N , and ωN (x) =
∏N
k=1 (x− xN,k) and δi,j denotes the

Kronecher’s symbol, that is δi,j = 1, if i = j, and δi,j = 0, if i 6= j. Then
(see [3], p. 5)

(30) ‖LN (f)− f‖∞,[−1,1] ≤ cω1

(
f,

1

N

)
lnN.
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The Max-product Lagrange interpolation operators on Chebyshev knots of
second kind, plus the endpoints ±1, are defined by ([3], p. 12)

(31) L
(M)
N (f) (x) =

∨N
k=1 lN,k (x) f (xN,k)∨N

k=1 lN,k (x)
, x ∈ [−1, 1] ,

where f : [−1, 1]→ R+ is continuous.

First we see that L
(M)
N (f) (x) is well defined and continuous for any

x ∈ [−1, 1]. Following [3], p. 289, because
∑N

k=1 lN,k (x) = 1, ∀ x ∈ R, for

any x there exists k ∈ {1, ..., N} : lN,k (x) > 0, hence
∨N
k=1 lN,k (x) > 0. We

have that lN,k (xN,k) = 1, and lN,k (xN,j) = 0, if k 6= j. Furthermore it holds

L
(M)
N (f) (xN,j) = f (xN,j), all j ∈ {1, ..., N} , and L

(M)
N (1) = 1.

Call I+N (x) = {k ∈ {1, ..., N} ; lN,k (x) > 0}, then I+N (x) 6= ∅.
So for f ∈ CB+ ([−1, 1]) we get

(32) L
(M)
N (f) (x) =

∨
k∈I+N (x) lN,k (x) f (xN,k)∨

k∈I+N (x) lN,k (x)
≥ 0.

By [3], p. 295, we have:
Let f ∈ C ([−1, 1] ,R+), N ∈ N, N ≥ 3, N is odd, then

(33)
∣∣∣L(M)
N (f) (x)− f (x)

∣∣∣ ≤ 4ω1

(
f,

1

N − 1

)
, ∀ x ∈ [−1, 1] .

Notice here that |xN,k − x| ≤ 2, ∀ x ∈ [−1, 1] .
By [3], p. 297, we get that

L
(M)
N (|· − x|) (x) =

∨N
k=1 lN,k (x) |xN,k − x|∨N

k=1 lN,k (x)
(34)

=

∨
k∈I+N (x) lN,k (x) |xN,k − x|∨

k∈I+N (x) lN,k (x)
≤ π2

6 (N − 1)
,

N ≥ 3, ∀ x ∈ (−1, 1), N is odd.
We get that (m ∈ N)

(35) L
(M)
N (|· − x|m) (x) =

∨
k∈I+N (x) lN,k (x) |xN,k − x|m∨

k∈I+N (x) lN,k (x)
≤ 2m−1π2

6 (N − 1)
,

N ≥ 3 odd, ∀ x ∈ (−1, 1).

We present
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Theorem 3. Let f ∈ Cn ([−1, 1] ,R+), n ∈ N, x ∈ [−1, 1], f (i) (x) = 0,
i = 1, ..., n. Here N ∈ N, N ≥ 3 is odd. Then∣∣∣L(M)

N (f) (x)− f (x)
∣∣∣(36)

≤
ω1

(
f (n),

(
2nπ2

6(N−1)

) 1
n+1

)
n!

[
2n−1π2

6 (N − 1)
+

1

(n+ 1)

(
2nπ2

6 (N − 1)

) n
n+1

]
.

Proof. When x = ±1, the left hand side of (36) is zero, hence (36) is
trivially true. Let now x ∈ (−1, 1), by Theorem 1 and (16), (35), we obtain∣∣∣L(M)

N (f) (x)− f (x)
∣∣∣(37)

≤
ω1

(
f (n), δ

)
n!

[
2n−1π2

6 (N − 1)
+

1

(n+ 1) δ

2nπ2

6 (N − 1)

]

(setting δ :=
(

2nπ2

6(N−1)

) 1
n+1

, i.e. δn+1 = 2nπ2

6(N−1))

=

ω1

(
f (n),

(
2nπ2

6(N−1)

) 1
n+1

)
n!

[
2n−1π2

6 (N − 1)
+

1

(n+ 1)

(
2nπ2

6 (N − 1)

) n
n+1

]
,

proving the claim. �

The case n = 1 follows:

Corollary 2. Let f ∈ C1 ([−1, 1] ,R+), x ∈ [−1, 1], f ′ (x) = 0. Here
N ∈ N, N ≥ 3 is odd. Then∣∣∣L(M)

N (f) (x)− f (x)
∣∣∣(38)

≤ ω1

(
f ′,

π√
3 (N − 1)

)[
π2

6 (N − 1)
+

π

2
√

3 (N − 1)

]
.

By (36) and/or (38), we get that L
(M)
N (f) (x)→ f (x), as N →∞.

We make

Remark 4. Here we compare (38) to (33), and we prove that (38) gives
better estimates and speeds than (33). We observe that

(39)
π√

3 (N − 1)

[
π2

6 (N − 1)
+

π

2
√

3 (N − 1)

]
≤ 4

N − 1
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⇔

(40)
1√

3 (N − 1)
≤ 24− π2

π3
,

true for large enough N ≥ 3 odd.

Remark 5. Here we compare (36) to (33), and we prove that (36) gives
better estimates and speeds that (33). We see that

1

n!

(
2nπ2

6 (N − 1)

) 1
n+1

[
2n−1π2

6 (N − 1)
+

1

(n+ 1)

(
2nπ2

6 (N − 1)

) n
n+1

]
(41)

≤ 4

N − 1
⇔

(42)
1

N − 1
≤ 3

2n−1π2

(
24 (n+ 1)!− 2nπ2

(n+ 1) 2n−1π2

)n+1

,

true for large enough N (odd) ≥ 3.

We continue with

Remark 6. From [3], p. 297, we have: Let f ∈ C ([−1, 1] ,R+), N ≥ 4,
N ∈ N, N even. Then

(43)
∣∣∣L(M)
N (f) (x)− f (x)

∣∣∣ ≤ 28ω1

(
f,

1

N − 1

)
, ∀ x ∈ [−1, 1] .

From [3], p. 298, we get

(44) L
(M)
N (|· − x|) (x) ≤ 4π2

3 (N − 1)
=

22π2

3 (N − 1)
, ∀ x ∈ (−1, 1) .

Hence (m ∈ N)

(45) L
(M)
N (|· − x|m) (x) ≤ 2m+1π2

3 (N − 1)
, ∀ x ∈ (−1, 1) .

We present

Theorem 4. Let f ∈ Cn ([−1, 1] ,R+), n ∈ N, x ∈ [−1, 1], f (i) (x) = 0,
i = 1, ..., n. Here N ∈ N, N ≥ 4, N is even. Then∣∣∣L(M)

N (f) (x)− f (x)
∣∣∣(46)

≤
ω1

(
f (n),

(
2n+2π2

3(N−1)

) 1
n+1

)
n!

[
2n+1π2

3 (N − 1)
+

1

(n+ 1)

(
2n+2π2

3 (N − 1)

) n
n+1

]
.
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Proof. When x = ±1, the left hand side of (46) is zero, thus (46) is
trivially true.

Let now x ∈ (−1, 1), by Theorem 1 and (16), (45), we obtain∣∣∣L(M)
N (f) (x)− f (x)

∣∣∣(47)

≤
ω1

(
f (n), δ

)
n!

[
2n+1π2

3 (N − 1)
+

1

(n+ 1) δ

2n+2π2

3 (N − 1)

]

(setting δ :=
(

2n+2π2

3(N−1)

) 1
n+1

, i.e. δn+1 = 2n+2π2

3(N−1))

=

ω1

(
f (n),

(
2n+2π2

3(N−1)

) 1
n+1

)
n!

[
2n+1π2

3 (N − 1)
+

1

(n+ 1)

(
2n+2π2

3 (N − 1)

) n
n+1

]
,

proving the claim. �

The case n = 1 follows:

Corollary 3. Let f ∈ C1 ([−1, 1] ,R+), x ∈ [−1, 1], f ′ (x) = 0. Here
N ∈ N, N ≥ 4, N is even. Then∣∣∣L(M)

N (f) (x)− f (x)
∣∣∣(48)

≤ ω1

(
f ′,

2π
√

2√
3 (N − 1)

)[
4π2

3 (N − 1)
+

π
√

2√
3 (N − 1)

]
.

By (46) and/or (48), we get that L
(M)
N (f) (x)→ f (x), as N →∞.

We make

Remark 7. Here we compare (48) to (43). We prove that (48) gives
better estimates and speeds that (43). Indeed we have

(49)
2π
√

2√
3 (N − 1)

[
4π2

3 (N − 1)
+

π
√

2√
3 (N − 1)

]
≤ 28

N − 1

⇔

(50)
1

N − 1
≤ 3

8π2

(
42− 2π2

2π2

)2

,

true for large enough N ≥ 4, even.

We make
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Remark 8. Here we compare (46) to (43). We prove that (46) gives
better estimates and speeds that (43). We observe that

1

n!

(
2n+2π2

3 (N − 1)

) 1
n+1

[
2n+1π2

3 (N − 1)
+

1

(n+ 1)

(
2n+2π2

3 (N − 1)

) n
n+1

]
(51)

≤ 28

N − 1

⇔

(52)
1

N − 1
≤
(

3

2n+2π2

)[
42 (n+ 1)!− 2n+1π2

(n+ 1) 2nπ2

]n+1

,

true for large enough N ≥ 4. N even.

We continue with

Remark 9. The sampling truncated linear operators (see [3], p. 7) are
defined by

(53) WN (f) (x) =

N∑
k=0

sin (Nx− kπ)

Nx− kπ
f

(
kπ

N

)
, ∀ x ∈ [0, π] ,

and

(54) TN (f) (x) =
N∑
k=0

sin2 (Nx− kπ)

(Nx− kπ)2
f

(
kπ

N

)
,

∀ x ∈ [0, π]; f ∈ C ([0, π] ,R) and they are used as approximators.
Here we deal with the Max-product truncated sampling operators (see

[3], p. 13) defined by

(55) W
(M)
N (f) (x) =

∨N
k=0

sin(Nx−kπ)
Nx−kπ f

(
kπ
N

)∨N
k=0

sin(Nx−kπ)
Nx−kπ

, x ∈ [0, π] ,

f : [0, π]→ R+, continuous, and

(56) T
(M)
N (f) (x) =

∨N
k=0

sin2(Nx−kπ)
(Nx−kπ)2 f

(
kπ
N

)
∨N
k=0

sin2(Nx−kπ)
(Nx−kπ)2

, x ∈ [0, π] ,

f : [0, π]→ R+, continuous.

Following [3], p. 343, and making the convention sin(0)
0 = 1 and denoting

sN,k (x) = sin(Nx−kπ)
Nx−kπ , we get that sN,k

(
kπ
N

)
= 1, and sN,k

(
jπ
N

)
= 0, if

k 6= j, furthermore W
(M)
N (f)

(
jπ
N

)
= f

(
jπ
N

)
, for all j ∈ {0, ..., N} .
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Clearly W
(M)
N (f) is a well-defined function for all x ∈ [0, π], and it is

continuous on [0, π], also W
(M)
N (1) = 1.

By [3], p. 344, W
(M)
N are positive sublinear operators.

Call I+N (x) = {k ∈ {0, 1, ..., N} ; sN,k (x) > 0}, and set xN,k := kπ
N , k ∈

{0, 1, ..., N}.
We see that

(57) W
(M)
N (f) (x) =

∨
k∈I+N (x) sN,k (x) f (xN,k)∨

k∈I+N (x) sN,k (x)
.

We call

FN (x) := W
(M)
N (|· − x|) (x) =

∨N
k=0 sN,k (x) |xN,k − x|∨N

k=0 sN,k (x)
(58)

=

∨
k∈I+N (x) sN,k (x) |xN,k − x|∨

k∈I+N (x) sN,k (x)
.

By Theorem 8.2.8 ([3], p. 345) we get: Let f ∈ C ([0, π] ,R+). Then

(59)
∣∣∣W (M)

N (f) (x)− f (x)
∣∣∣ ≤ 4ω1

(
f,

1

N

)
[0,π]

, ∀ N ∈ N, x ∈ [0, π] .

We have that ([3], p. 346)

(60) FN (x) ≤ π

2N
.

Notice also |xN,k − x| ≤ π, ∀ x ∈ [0, π] .
Therefore (m ∈ N) it holds

(61) W
(M)
N (|· − x|m) (x) ≤ πm−1π

2N
=
πm

2N
.

We present

Theorem 5. Let f ∈ Cn ([0, π] ,R+), x ∈ [0, π] fixed, f (i) (x) = 0,
i = 1, ..., n. Then

(62)
∣∣∣W (M)

N (f) (x)− f (x)
∣∣∣ ≤ ω1

(
f (n),

(
πn+1

2N

) 1
n+1

)
n!

 πn
2N

+

(
πn+1

2N

) n
n+1

n+ 1



(63) =
1

n!
ω1

(
f (n),

π
n+1
√

2N

)[
πn

2N
+

1

n+ 1

(
π

n+1
√

2N

)n]
.



Approximation by max-product operators 17

Proof. Using Theorem 1, (16) and (61), we get

(64)
∣∣∣W (M)

N (f) (x)− f (x)
∣∣∣ ≤ ω1

(
f (n), δ

)
n!

[
πn

2N
+

1

(n+ 1) δ

(
πn+1

2N

)]
(choosing δ :=

(
πn+1

2N

) 1
n+1

, i.e. δn+1 = πn+1

2N )

=
1

n!
ω1

(
f (n),

(
πn+1

2N

) 1
n+1

)[
πn

2N
+

1

(n+ 1)

(
πn+1

2N

) n
n+1

]
,

proving the claim. �

The case n = 1 follows:

Corollary 4. Let f ∈ C1 ([0, π] ,R+), x ∈ [0, π] fixed, f ′ (x) = 0. Then

(65)
∣∣∣W (M)

N (f) (x)− f (x)
∣∣∣ ≤ ω1

(
f ′,

π√
2N

)[
π

2N
+

π

2
√

2N

]
.

By (62)-(63) and/or (65), we get that W
(M)
N (f) (x)→ f (x), as N → +∞.

We make

Remark 10. Here we compare (65) to (59) and we prove that (65) gives
better estimates and speeds that (59). Indeed we have

(66)
π√
2N

(
π

2N
+

π

2
√

2N

)
≤ 4

N

⇔

(67)
1√
2N
≤ 16− π2

2π2
,

true for large enough N ∈ N.

We also make

Remark 11. Here we compare (62)-(63) to (59), and we prove that
(62)-(63) gives better estimates and speeds that (59). We observe that

(68)
1

n!

(
πn+1

2N

) 1
n+1

 πn
2N

+

(
πn+1

2N

) n
n+1

(n+ 1)

 ≤ 4

N

⇔

(69)
1

n+1
√

2N
≤ 8 (n+ 1)!− πn+1

(n+ 1)πn+1
,

true for large enough N ∈ N.
Notice here that 8 (n+ 1)!− πn+1 > 0, ∀ n ∈ N.
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We continue with

Remark 12. Here we study TN (f) (x), see (54).
By Theorem 8.2.13, [3], p. 352, we get: Let f ∈ C ([0, π] ,R+), then

(70)
∣∣∣T (M)
N (f) (x)− f (x)

∣∣∣ ≤ 4ω1

(
f,

1

N

)
[0,π]

, ∀ N ∈ N, x ∈ [0, π] .

By [3], p. 352, we get

(71) T
(M)
N (|· − x|) (x) ≤ π

2N
,

hence (m ∈ N) we find

(72) T
(M)
N (|· − x|m) (x) ≤ πm

2N
.

Here again xN,k = kπ
N , k ∈ {0, 1, ..., N} .

The operators T
(M)
N are positive sublinear operators, mapping C ([0, π] ,R+)

into itself, and T
(M)
N (1) = 1. So we can apply again Theorem 1. We obtain

the same results as before with W
(M)
N , we state them:

Theorem 6. Let f ∈ C1 ([0, π] ,R+), x ∈ [0, π] fixed, f ′ (x) = 0. Then

(73)
∣∣∣T (M)
N (f) (x)− f (x)

∣∣∣ ≤ ω1

(
f ′,

π√
2N

)[
π

2N
+

π

2
√

2N

]
, ∀ N ∈ N.

Theorem 7. Let f ∈ Cn ([0, π] ,R+), x ∈ [0, π] fixed, f (i) (x) = 0,
i = 1, ..., n. Then∣∣∣T (M)

N (f) (x)− f (x)
∣∣∣(74)

≤
ω1

(
f (n), π

n+1√2N

)
n!

 πn
2N

+

(
π

n+1√2N

)n
n+ 1

 , ∀ N ∈ N.

Clearly (73), (74) can perform better than (70), the same study as for W
(M)
N .

Furthermore we derive T
(M)
N (f) (x)→ f (x), as N → +∞.

We continue with

Remark 13. Let b : R→ R+ be a centered (it takes a global maximum
at 0) bell-shaped function, with compact support [−T, T ], T > 0 (that is

b (x) > 0 for all x ∈ (−T, T )) and I =
∫ T
−T b (x) dx > 0.
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The Cardaliaguet-Euvrard neural network operators are defined by (see
[2])

(75) CN,α (f) (x) =
N2∑

k=−N2

f
(
k
N

)
IN1−α b

(
N1−α

(
x− k

N

))
,

0 < α < 1, N ∈ N and f : R → R is continuous and bounded or uniformly
continuous on R.
CB (R) denotes the continuous and bounded function on R, and

CB+ (R) = {f : R→ [0,∞); f ∈ CB (R)} .

The corresponding max-product Cardaliaguet-Euvrard neural network op-
erators will be given by

(76) C
(M)
N,α (f) (x) =

∨N2

k=−N2 b
(
N1−α (x− k

N

))
f
(
k
N

)∨N2

k=−N2 b
(
N1−α

(
x− k

N

)) ,

f ∈ R, f ∈ CB+ (R), see also [2].
Next we follow [2].
For any x ∈ R, denoting

JT,N (x) =

{
k ∈ Z; −N2 ≤ k ≤ N2, N1−α

(
x− k

N

)
∈ (−T, T )

}
,

we can write

(77) C
(M)
N,α (f) (x) =

∨
k∈JT,N (x) b

(
N1−α (x− k

N

))
f
(
k
N

)∨
k∈JT,N (x) b

(
N1−α

(
x− k

N

)) ,

x ∈ R, N > max
{
T + |x| , T−

1
α

}
, where JT,N (x) 6= ∅. Indeed, we have∨

k∈JT,N (x) b
(
N1−α (x− k

N

))
> 0, ∀ x ∈ R and N > max

{
T + |x| , T−

1
α

}
.

We have that C
(M)
N,α (1) (x) = 1, ∀ x ∈ R and N > max

{
T + |x| , T−

1
α

}
.

See in [2] there: Lemma 2.1, Corollary 2.2 and Remarks.
We need

Theorem 8 ([2]). Let b (x) be a centered bell-shaped function, continuous

and with compact support [−T, T ], T > 0, 0 < α < 1 and C
(M)
N,α be defined

as in (76).

(i) If |f (x)| ≤ c for all x ∈ R then
∣∣∣C(M)

N,α (f) (x)
∣∣∣ ≤ c, for all x ∈ R

and N > max
{
T + |x| , T−

1
α

}
and C

(M)
N,α (f) (x) is continuous at any point

x ∈ R, for all N > max
{
T + |x| , T−

1
α

}
;
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(ii) If f, g ∈ CB+ (R) satisfy f (x) ≤ g (x) for all x ∈ R, then C
(M)
N,α (f) (x) ≤

C
(M)
N,α (g) (x) for all x ∈ R and N > max

{
T + |x| , T−

1
α

}
;

(iii) C
(M)
N,α (f + g) (x) ≤ C(M)

N,α (f) (x)+C
(M)
N,α (g) (x) for all f, g ∈ CB+ (R),

x ∈ R and N > max
{
T + |x| , T−

1
α

}
;

(iv) For all f, g ∈ CB+ (R), x ∈ R and N > max
{
T + |x| , T−

1
α

}
, we

have ∣∣∣C(M)
N,α (f) (x)− C(M)

N,α (g) (x)
∣∣∣ ≤ C(M)

N,α (|f − g|) (x) ;

(v) C
(M)
N,α is positive homogeneous, that is C

(M)
N,α (λf) (x) = λC

(M)
N,α (f) (x)

for all λ ≥ 0, x ∈ R, N > max
{
T + |x| , T−

1
α

}
and f ∈ CB+ (R).

We make

Remark 14. We have

EN,α (x) := C
(M)
N,α (|· − x|) (x)(78)

=

∨
k∈JT,N (x) b

(
N1−α (x− k

N

)) ∣∣x− k
N

∣∣∨
k∈JT,N (x) b

(
N1−α

(
x− k

N

)) ,

∀ x ∈ R, and N > max
{
T + |x| , T−

1
α

}
.

By (77), C
(M)
N,α satisfies

C
(M)
N,α (f ∨ g) (x) = C

(M)
N,α (f) (x) ∨ C(M)

N,α (g) (x) ,

∀ f, g ∈ CB+ (R), x ∈ R, N > max
{
T + |x| , T−

1
α

}
.

Notice that

(79)
∨

k∈JT,N (x)

b

(
N1−α

(
x− k

N

))
=

N2∨
k=−N2

b

(
N1−α

(
x− k

N

))
.

By [2], Lemma 3.1 there, we have: Let b (x) be a centered bell-shaped func-
tion, continuous and with compact support [−T, T ], T > 0 and 0 < α < 1.

Then for any j ∈ Z with −N2 ≤ j ≤ N2, all x ∈
[
j
N ,

j+1
N

]
and N >

max
{
T + |x| , T−

1
α

}
, we have

N2∨
k=−N2

b

(
N1−α

(
x− k

N

))
(80)

= max

{
b

(
N1−α

(
x− j

N

))
, b

(
N1−α

(
x− j + 1

N

))}
> 0.
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Lemma 3.1 ([2]), is valid only for all x ∈ [−N,N ] .

We mention from [2] the following:

Theorem 9 ([2]). Let b (x) be a centered bell-shaped function, continuous
and with compact support [−T, T ], T > 0 and 0 < α < 1. In addition,
suppose that the following requirements are fulfilled:

(i) There exist 0 < m1 ≤ M1 < ∞ such that m1 (T − x) ≤ b (x) ≤
M1 (T − x), ∀ x ∈ [0, T ] ;

(ii) There exist 0 < m2 ≤ M2 < ∞ such that m2 (x+ T ) ≤ b (x) ≤
M2 (x+ T ), ∀ x ∈ [−T, 0].

Then for all f ∈ CB+ (R), x ∈ R and for all N ∈ N satisying N >

max
{
T + |x| ,

(
2
T

) 1
α

}
, we have the estimate

(81)
∣∣∣C(M)

N,α (f) (x)− f (x)
∣∣∣ ≤ cω1

(
f,Nα−1)

R ,

where

c := 2

(
max

{
TM2

2m2
,
TM1

2m1

}
+ 1

)
,

and

ω1 (f, δ)R := sup
x,y∈R:
|x−y|≤δ

|f (x)− f (y)| .

We make

Remark 15. In [2], was proved that

EN,α (x) ≤ max

{
TM2

2m2
,
TM1

2m1

}
Nα−1,(82)

∀ N > max

{
T + |x| ,

(
2

T

) 1
α

}
.

That is

C
(M)
N,α (|· − x|) (x) ≤ max

{
TM2

2m2
,
TM1

2m1

}
Nα−1,(83)

∀N > max

{
T + |x| ,

(
2

T

) 1
α

}
.

From (78) we have that
∣∣x− k

N

∣∣ ≤ T
N1−α .
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Hence (m ∈ N) (∀ x ∈ R and N > max
{
T + |x| ,

(
2
T

) 1
α

}
)

C
(M)
N,α (|· − x|m) (x) =

∨
k∈JT,N (x) b

(
N1−α (x− k

N

)) ∣∣x− k
N

∣∣m∨
k∈JT,N (x) b

(
N1−α

(
x− k

N

))(84)

≤
(

T

N1−α

)m−1
max

{
TM2

2m2
,
TM1

2m1

}
Nα−1,

∀N > max

{
T + |x| ,

(
2

T

) 1
α

}
.

Then (m ∈ N) it holds

C
(M)
N,α (|· − x|m) (x) ≤ Tm−1 max

{
TM2

2m2
,
TM1

2m1

}
1

Nm(1−α) ,(85)

∀N > max

{
T + |x| ,

(
2

T

) 1
α

}
.

Call

(86) λ := max

{
TM2

2m2
,
TM1

2m1

}
> 0.

Consequently (m ∈ N) we derive

(87) C
(M)
N,α (|· − x|m) (x) ≤ λTm−1

Nm(1−α) , ∀ N > max

{
T + |x| ,

(
2

T

) 1
α

}
.

We need

Theorem 10. Let b (x) be a centered bell-shaped function, continuous

and with compact support [−T, T ], T > 0, 0 < α < 1 and C
(M)
N,α be defined

as in (76).
Let f ∈ CBn

+ (R), n ∈ N. Let x ∈ R : f (i) (x) = 0, i = 1, ..., n, and δ > 0.
Then ∣∣∣C(M)

N,α (f) (x)− f (x)
∣∣∣(88)

≤
ω1

(
f (n), δ

)
R

n!

C(M)
N,α (|· − x|n) (x) +

C
(M)
N,α

(
|· − x|n+1

)
(x)

(n+ 1) δ

 ,
∀ N ∈ N : N > max

{
T + |x| , T−

1
α

}
.
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Proof. By [1], we get that

(89) |f (x)− f (y)| ≤
ω1

(
f (n), δ

)
R

n!

[
|x− y|n +

|x− y|n+1

(n+ 1) δ

]
,

∀ y ∈ R, δ > 0. Using Theorem 8 and C
(M)
N,α (1) = 1, we get∣∣∣C(M)

N,α (f) (x)− f (x)
∣∣∣ ≤ C(M)

N,α (|f (·)− f (x)|) (x)(90)

≤
ω1

(
f (n), δ

)
R

n!

C(M)
N,α (|· − x|n) (x) +

C
(M)
N,α

(
|· − x|n+1

)
(x)

(n+ 1) δ

 ,
∀ N ∈ N : N > max

{
T + |x| , T−

1
α

}
. �

We give

Theorem 11. Same assumptions as in Theorem 9. Let f ∈ CBn
+ (R),

n ∈ N, x ∈ R : f (i) (x) = 0, i = 1, ..., n. Then

∣∣∣C(M)
N,α (f) (x)− f (x)

∣∣∣ ≤ ω1

(
f (n),

(
λTn

N(n+1)(1−α)

) 1
n+1

)
R

n!
(91)

×

[
λTn−1

Nn(1−α) +
1

(n+ 1)

(
λTn

N (n+1)(1−α)

) n
n+1

]
,

∀ N > max
{
T + |x| ,

(
2
T

) 1
α

}
.

Proof. We use (88) and we choose

(92) δ :=

(
λTn

N (n+1)(1−α)

) 1
n+1

,

i.e. δn+1 = λTn

N(n+1)(1−α) . Hence

∣∣∣C(M)
N,α (f) (x)− f (x)

∣∣∣ ((87), (88))≤ 1

n!
ω1

(
f (n),

(
λTn

N (n+1)(1−α)

) 1
n+1

)
R

(93)

×
[
λTn−1

Nn(1−α) +
1

(n+ 1) δ

λTn

N (n+1)(1−α)

]
=

1

n!
ω1

(
f (n),

(
λTn

N (n+1)(1−α)

) 1
n+1

)
R

×

[
λTn−1

Nn(1−α) +
1

(n+ 1)

(
λTn

N (n+1)(1−α)

) n
n+1

]
,
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∀ N > max
{
T + |x| ,

(
2
T

) 1
α

}
, proving the claim. �

It follows the case n = 1.

Corollary 5. Same assumptions as in Theorem 9. Let f ∈ CB1
+ (R),

x ∈ R : f ′ (x) = 0. Then∣∣∣C(M)
N,α (f) (x)− f (x)

∣∣∣(94)

≤ ω1

(
f ′,

√
λT

N2(1−α)

)
R

[
λ

N1−α +
1

2

√
λT

N2(1−α)

]
,

∀ N > max
{
T + |x| ,

(
2
T

) 1
α

}
.

By (91) and/or (94) we get that C
(M)
N,α (f) (x)→ f (x), as N → +∞.

We make

Remark 16. We prove that (94) performs better than (81).
Indeed we have that

(95)

√
λT

N2(1−α)

[
λ

N1−α +
1

2

√
λT

N2(1−α)

]
≤ 2 (λ+ 1)

N1−α ,

⇔

(96)
1

N (1−α) ≤
2 (λ+ 1)

λ
(√

λT + T
2

) ,
true ∀ N > max

{
T + |x| ,

(
2
T

) 1
α

}
, large enough.

We also make

Remark 17. We prove that (91) performs better than (81). We observe
that

1

n!

(
λTn

N (n+1)(1−α)

) 1
n+1

[
λTn−1

Nn(1−α) +
1

(n+ 1)

(
λTn

N (n+1)(1−α)

) n
n+1

]
(97)

≤ 2 (λ+ 1)

N1−α

⇔

(98)
1

Nn(1−α) ≤
2 (λ+ 1)[

λ
n+1√

λT
n2+n−1
n+1

n! + λTn

(n+1)!

] ,
true ∀ N > max

{
T + |x| ,

(
2
T

) 1
α

}
, large enough.
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Here using Theorem 1 we extend the domain of the application results of
[1].

Remark 18. We start with the Max-product Bernstein operators ([3],
p. 10)

(99) B
(M)
N (f) (x) =

∨N
k=0 pN,k (x) f

(
k
N

)∨N
k=0 pN,k (x)

, ∀ N ∈ N,

pN,k (x) =

(
N
k

)
xk (1− x)N−1, x ∈ [0, 1] ,

∨
stands for maximum, and

f ∈ C+ ([0, 1]) = {f : [0, 1]→ R+ is continuous}.
From [1] we get

(100) B
(M)
N (|· − x|m) (x) ≤ 6√

N + 1
, ∀ x ∈ [0, 1] , m,N ∈ N.

Denote by

Cn+ ([0, 1]) = {f : [0, 1]→ R+, n-times continuously differentiable} , n ∈ N.

We give

Theorem 12. Let f ∈ Cn+ ([0, 1]), a fixed x ∈ [0, 1] such that f (i) (x) = 0,
i = 1, ..., n. Then

∣∣∣B(M)
N (f) (x)− f (x)

∣∣∣ ≤ ω1

(
f (n),

(
6√
N+1

) 1
n+1

)
n!

(101)

×

[
6√
N + 1

+
1

(n+ 1)

(
6√
N + 1

) n
n+1

]
, ∀ N ∈ N.

We get B
(M)
N (f) (x)→ f (x), as N →∞.

Proof. Use of (16) for δ =
(

6√
N+1

) 1
n+1

. �

We continue with

Remark 19. Here we focus on the truncated Favard-Szász-Mirakjan
operators

(102) K
(M)
N (f) (x) =

∨N
k=0 sN,k (x) f

(
k
N

)∨N
k=0 sN,k (x)

, x ∈ [0, 1] ,

N ∈ N, f ∈ C+ ([0, 1]), sN,k (x) = (Nx)k

k! , see [3], p. 11.
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From [1] we get

(103) K
(M)
N (|· − x|m) (x) ≤ 3√

N
, ∀ x ∈ [0, 1] , N ∈ N, m ∈ N.

We give

Theorem 13. Let f ∈ Cn+ ([0, 1]), x fixed in [0, 1] such that f (i) (x) = 0,
i = 1, ..., n. Then

∣∣∣K(M)
N (f) (x)− f (x)

∣∣∣ ≤ ω1

(
f (n),

(
3√
N

) 1
n+1

)
n!

(104)

×

[
3√
N

+
1

(n+ 1)

(
3√
N

) n
n+1

]
, ∀ N ∈ N.

Proof. Use of (16) for δ =
(

3√
N

) 1
n+1

. �

We make

Remark 20. Next we study the truncated Max-product Baskakov op-
erators (see [3], p. 11)

(105) U
(M)
N (f) (x) =

∨N
k=0 bN,k (x) f

(
k
N

)∨N
k=0 bN,k (x)

,

x ∈ [0, 1], f ∈ C+ ([0, 1]), N ∈ N, where

bN,k (x) =

(
N + k − 1

k

)
xk

(1 + x)N+k
.

We give

Theorem 14. Let f ∈ Cn+ ([0, 1]), x ∈ [0, 1] fixed, such that f (i) (x) = 0,
i = 1, ..., n, n ∈ N. Then

∣∣∣U (M)
N (f) (x)− f (x)

∣∣∣ ≤ ω1

(
f (n),

(
2
√
3(
√
2+2)√

N+1

) 1
n+1

)
n!

(106)

×

2
√

3
(√

2 + 2
)

√
N + 1

+
1

(n+ 1)

(
2
√

3
(√

2 + 2
)

√
N + 1

) n
n+1

 ,
∀ N ∈ N− {1}.



Approximation by max-product operators 27

Proof. Use of (16) for δ =

(
2
√
3(
√
2+2)√

N+1

) 1
n+1

, we use that (see [1])

(107)
(
U

(M)
N (|· − x|m)

)
(x) ≤

2
√

3
(√

2 + 2
)

√
N + 1

, N ≥ 2, N ∈ N.

�

We make

Remark 21. Here we study Max-product Meyer-Köning and Zeller op-
erators (see [3], p. 11) defined by

(108) Z
(M)
N (f) (x) =

∨∞
k=0 sN,k (x) f

(
k

N+k

)
∨∞
k=0 sN,k (x)

, ∀ N ∈ N, f ∈ C+ ([0, 1]) ,

sN,k (x) =

(
N + k
k

)
xk, x ∈ [0, 1].

From [1] we get

(109) Z
(M)
N (|· − x|m) (x) ≤

8
(
1 +
√

5
)

3

√
x (1− x)√

N
=: ρ (x) ,

∀ x ∈ [0, 1], N ≥ 4, ∀ m ∈ N.

We finish with

Theorem 15. Let f ∈ Cn+ ([0, 1]), n ∈ N, x ∈ [0, 1] , f (i) (x) = 0,
i = 1, ..., n. Then

∣∣∣Z(M)
N (f) (x)− f (x)

∣∣∣ ≤ ω1

(
f (n), (ρ (x))

1
n+1

)
n!

(110)

×

[
ρ (x) +

(ρ (x))
n
n+1

(n+ 1)

]
, ∀ N ≥ 4, N ∈ N.

Proof. Use of (16) with δ = (ρ (x))
1

n+1 . �
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