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ABSTRACT. In this paper we study radius of convexity of sections
of a class of univalent close-to-convex functions on D = {z € C :
|z| < 1}. For functions in this class, coefficient bounds, an integral
representation and radius of convexity of nt" sections have been
obtained.
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1. Introduction

[e.@]
Let A be the set of all analytic functions of the form f(z) = z+ 3. ap2"
k=2
in the unit disc D and let S denote the class of all univalent (one-to-one
and analytic) functions f € A. Let C, §* and K denote the subclasses of S

that are convex, starlike with respect to origin and close-to-convex functions
n

respectively. It is well known that C C S* C K C S. Let S, (f) = 2+ > ap2”
k=2
be the n'" section of f.
In [8], Szego proved that every section S,,(f) of f € S is univalent in the

disk |2| < 1 and 1 is the best possible as S3(k(z)) = z + 222 is univalent in

z
(1-2)?
class S.
Various problems about sections have been solved for subclasses C, &*, K
in [1], [3], [4], [6]. In [2], MacGregor considered the class R = {f € A :
Re(f'(z)) > 0, z € D} and proved that every section S,(f) of f € R is

1
univalent in |z| < 5 and 5 is the best constant. In [5], Ponnusamy et.al.

2| < %, where k(z) = is Koebe function, extremal function of the

considered the class F = {f € A/Re (1 + Zﬁ;i?) > —%, zeD\ {0}}
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and proved that every section of a function f € F is convex in the disc

1 1
|z| < =. The radius 5 cannot be replaced by a larger one. In this paper, we

consider the class
zf"(2)

]—"a:{feA/Re<1+ e ) >—%, 0<a<l, zEID)\{O}}

and find coefficient bound, distortion theorem and radius of convexity of
sections of functions in this class.

In Theorem 1, though the result in (a) below had been proved in [7] for
a wider range, we prove it here for the sake of completeness of this paper.

2. Main theorems

Coefficient bound and distortion theorem

[e.e]
Theorem 1. If f(z) = z+ ) anz™ belongs to Fo, 0 < o < 1, then we

n=2
have T(n+1+a) |
(a) lan| < T Ta) for n > 2, equality holds for the extremal func-
tion of the class Fo,, which is given by fo = 7 —11—04 <(1 — lz)1+a — 1> ;
@ [ < B o
(c) [T <|f(2)] < (1_1)%0{
2f"(2)

Proof. As f € F,, we can write 1 + + % =(1+ g)P(z), where

f'(2) 2
P(z) =1+ ) pnpz" is such that Re (P(z)) > 0 having |p,| < 2,n > 1. Also,
n=1

2+a  zf'z)  2+a
S FORE L)

f'(z)
- -1
;n(n — 1Dayz" Coia (& )
0 -9 anz
14> napzn—t n=1
2
Z n(n+ 1)ap12" = 5 <1 + Z(n + l)an+1z”> <Z pnzn> .
1 1 n=1

Equating coefficient of z we have as |p1] < 2,

2+« . 2+«
1.2]ag| = ?]pl\ < (24 a); (ie) |az| < 5
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For n > 2 we have

24+« n—1
n(n+1)]ant| < 5 (Pn +) (k+ 1)!ak+1|lpnk\>
k=1

< (240a)) klag.
k=1

We claim that for n > 2,

2+a)B3+a)...(n+1+«)
(n—1)!

n(n+ Dlani] < 2+a) Y Kl <
k=1

For n = 2,
2
2.3las| < (24+0) ) Kl < 2+ )3+ a)
k=1
2+a) 3+«
o < GFAEED)

Now assume that for n = m, the following is true.

2+a)B3+a)..(m+1+a)
(m—1)! '

m
m(m+ Do ] < (2+0) Y Klax| <
k=1

Next we consider n =m + 1,

m+1
(m+1)(m+2)|amte| < (24 @) Z kla]
k=1

= 2+ a) > Ky + @2+ a)(m + Dlans
k=1
2+ a)3+a)...(m+2+a)

m!

24+ a)B3+ a)...(m+2+«)

Therefore, |am42| < . This bound is sharp as

(m+2)!
1 1 . .
fo = 1+ <(1 —z)ita - 1) € Fu. To Prove (b), we know by definition of
Zf//(z) 1+(1+OZ)Z Zf”(z) (2+a)z B
Fa, 1+ 702) < 1 for f € F,. Therefore, ) =

2f"(z) ‘ 2+ a)r
f'(2)

ha(z), where < denotes subordination. Hence . From

1—r
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= ho(t) " .
the above, it is clear that f'(z) <ed t = A=z
holds. |

and hence (c)

Theorem 2. For f € ]:a, if f(2) = sn(z) + on(2), where s,(z) =

Z 4+ Z arz® and 0, (2) = Z arz®, then for |z| = r we have
— k=n+1
T n+1
0! (2)] < (n+34+ ) r 7
I'2+a)(n+1)! (1 — r)nt3ta
'n+4+ ) rrt2
1/
2o < TG Taym e D1 @ = e
Fk+1+a) .

Proof. Consid n < b < T(2+a)k!
r onsider |0, (z)] Z |lak ]|z n%:l (24 a)k! "

where 0,0(r) is the remainder, after n terms, of the extremal function

folr) = 1—|1-a<(1—j”)1+a -1).

By Integral form of remainder of a Taylor series, we get

o (n+1) r— )"
lono(r)| = /fo (t)< ) dt)

= O'n()(r)a

(n+2+a) (r—t)"
dt
< /‘ T2+ a)n! (1 fnreta
Pnt2+a) |
n+2+ao

< —t)"dt 0<t<

[(2+ a)n!(1 — r)nt2+e /(T ) . '

0
_ T(n+2+a) prtl
- T2+ a)(n+1)! (1 —r)nt2ta’
Hence ( ) 1
I'n+24+a«a r’
A D.
lon(2)] < T2+ a)(n+ 1) (1 —r)nt2ta z€
Similarly for all z € D we can obtain,
o ()] < F'n+3+a) pntl
Tn T2+ a)(n+ 1) (1 —r)rtita
20" ()] < F'n+4+a) rnt2
zo!
“I'(24+a)(n+1)! (1 — ryntdta’
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Theorem 3 (Integral representation of the class). If f € F,, then the
integral representation of f(z) is of the form

[(2+0)/2] j[P(t)/t}dt

’ _ €
f (2) - Z(2+O‘)/2 )

for some P(z) with Re (P(z)) > 0 and vice versa.
2f"(2)

Proof. As f € F,, we have 1 + + 2 =(1+ g)P(z), where P(z)

flz) 2 2
is such that Re (P(z)) > 0. Therefore, we have
2f"(2) a o
14+ = (1+=-)P(2) — =;
L = 1+ Hre -5
d 2+« o
i. —1 ! = P(2) — =
() 2 tlog(=f'(2)) = ZE0P() %
d 24+ aP(z) «
Dog(2f'(2)) = E e
Z08(zf () 5, T2,
Integrating we get,
2+a [Pt [ adt
og(er'(2)) = 252 [Dlar— [0
0 0
2+« f P(t) a
== / ; dt 2log(z)
0

[(240)/2] [[P(t)/t)dt
e 0

/ —
fz) = L(21a)/2

Hence the proof and converse can be proved by retracing the above steps. B

Theorem 4. For f € ]-"a, if f(z2) = sp(z) + on(2), where sp(z) =

z+ Z arz® and o, (2) = E arz®, then every section sn(z) of functions
k=2 k=n+1
1
in this class is convex in the disk |z| < ———— and this radius cannot be
22+ )

replaced by larger one.
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1/
2
Proof. Consider Re (1 + ZSZ(Z)) =1+ =% Then by Theorem 1,

sh(2) 1+ 2asz
o 2s)(2) 2asllz|
we have |ag| < and hence Re ( 1+ — l—-——>1-
s5(2) 1 —2lay|[2|
2 Y 1—2(2 1
2Ol (14 240) +allel oo |
1—(2+ )|z sh(z) 1—(2+4+a)lz| 22+ «)
"
By Maximum Principle for harmonic functions, we have Re <1 + 28,2((2))) >0
sh(z

1

for |z| < ———. Now for n > 2, we obtain
22+ «)
Zf”(z) / "
() R ACIRNERAO]
Re |1+ —; >1—|—; ’ — - ;

57.(2) f'(z) 1f'(2)] = lon(2)]

Then by Theorem 2, we have
> 1— M
1—7r
r" 20 (n+ 3 + a)

(1_r)n+4+ar(2+a)(n+1)![2+oz+n+3+oz]

L2+ a)(n+ D1 —r)"H3+te — (1 +7r)2F°T(n 4+ 3 + a)r" !
( (1+7r)2tel(2 4+ a)(n+ 1)Y(1 — r)nt3+a )

s (2) 1—r
?”n+2A0(1 + T’)2+a[n + 5+ 205]
(=) ({1 = r)o¥a = g1 + r)Erapmti)’

e <1+ zsg(z)> L 1-Btar

F'n+34 «) zsp(2) .
here Ay = . Th 1 “ ded
where Ag T2+ a)(n+ 1)l en Re( + o (2) > 0 provide
1-—B+a)r "2 Ag(1 + r)2T[n + 5 + 2a]

1—7r > (1 — ?")((1 _ ,r,)n+3+a _ (1 + 7«)2+QA0T”+1) .
Therefore, we have to prove
7“7L+2A0(1 + r)2+a[n 454+ 20(] < [1 _ (3 + Oé)’l"]((l _ 7n)n—l—?)—f—oz
— (1 47)*T*Agr™h)
P A1+ 7)1 4+ (n+ 24+ a)r] < [1— 3+ a)r](1 —r)vH3te,

On |z| = , above inequality becomes

_
22+ )
Ag(5 +20)* [ 4+ 6 + 3a] < (1 + a)(3 + 2a) T3
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which is true for all n > 3 and 0 < o < 1. By Maximum Principle for har-

28! (2) 1
L in the disk |z| < ———.
s%(z))>0m e dis |Z|_2(2+a)

Hence the radius of convexity of sections of f € F, is |z]| =

monic functions, we have Re (1 +
22+ a)
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