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Abstract. In this paper we study radius of convexity of sections
of a class of univalent close-to-convex functions on D = {z ∈ C :
|z| < 1}. For functions in this class, coefficient bounds, an integral
representation and radius of convexity of nth sections have been
obtained.
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1. Introduction

Let A be the set of all analytic functions of the form f(z) = z+
∞∑
k=2

akz
k

in the unit disc D and let S denote the class of all univalent (one-to-one
and analytic) functions f ∈ A. Let C, S∗ and K denote the subclasses of S
that are convex, starlike with respect to origin and close-to-convex functions

respectively. It is well known that C ⊂ S∗ ⊂ K ⊂ S. Let Sn(f) = z+
n∑
k=2

akz
k

be the nth section of f .
In [8], Szego proved that every section Sn(f) of f ∈ S is univalent in the

disk |z| < 1
4 and 1

4 is the best possible as S2(k(z)) = z + 2z2 is univalent in

|z| < 1
4 , where k(z) =

z

(1− z)2
is Koebe function, extremal function of the

class S.
Various problems about sections have been solved for subclasses C, S∗, K

in [1], [3], [4], [6]. In [2], MacGregor considered the class R = {f ∈ A :
Re (f ′(z)) > 0, z ∈ D} and proved that every section Sn(f) of f ∈ R is

univalent in |z| < 1

2
and

1

2
is the best constant. In [5], Ponnusamy et.al.

considered the class F =

{
f ∈ A

/
Re

(
1 +

zf ′′(z)

f ′(z)

)
> −1

2
, z ∈ D \ {0}

}
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and proved that every section of a function f ∈ F is convex in the disc

|z| < 1

6
. The radius

1

6
cannot be replaced by a larger one. In this paper, we

consider the class

Fα =

{
f ∈ A

/
Re

(
1 +

zf ′′(z)

f ′(z)

)
> −α

2
, 0 ≤ α ≤ 1, z ∈ D \ {0}

}
and find coefficient bound, distortion theorem and radius of convexity of
sections of functions in this class.

In Theorem 1, though the result in (a) below had been proved in [7] for
a wider range, we prove it here for the sake of completeness of this paper.

2. Main theorems

Coefficient bound and distortion theorem

Theorem 1. If f(z) = z +
∞∑
n=2

anz
n belongs to Fα, 0 ≤ α ≤ 1, then we

have

(a) |an| ≤
Γ(n+ 1 + α)

n!Γ(2 + α)
for n ≥ 2, equality holds for the extremal func-

tion of the class Fα, which is given by fα =
1

1 + α

(
1

(1− z)1+α
− 1

)
;

(b)
∣∣∣zf ′′(z)
f ′(z)

∣∣∣ < (2 + α)r

1− r
for |z| = r;

(c)
1

(1 + r)2+α
< |f ′(z)| < 1

(1− r)2+α
.

Proof. As f ∈ Fα, we can write 1 +
zf ′′(z)

f ′(z)
+
α

2
= (1 +

α

2
)P (z), where

P (z) = 1 +
∞∑
n=1

pnz
n is such that Re (P (z)) > 0 having |pn| ≤ 2, n ≥ 1. Also,

2 + α

2
+
zf ′′(z)

f ′(z)
=

2 + α

2
(P (z))

∞∑
2
n(n− 1)anz

n−1

1 +
∞∑
2
nanzn−1

=
2 + α

2

( ∞∑
n=1

pnz
n

)

∞∑
1

n(n+ 1)an+1z
n =

2 + α

2

(
1 +

∞∑
1

(n+ 1)an+1z
n

)( ∞∑
n=1

pnz
n

)
.

Equating coefficient of z we have as |p1| < 2,

1.2|a2| =
2 + α

2
|p1| < (2 + α); (i.e) |a2| <

2 + α

2
.
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For n ≥ 2 we have

n(n+ 1)|an+1| ≤
2 + α

2

(
|pn|+

n−1∑
k=1

(k + 1)|ak+1||pn−k|

)

< (2 + α)

n∑
k=1

k|ak|.

We claim that for n ≥ 2,

n(n+ 1)|an+1| ≤ (2 + α)

n∑
k=1

k|ak| ≤
(2 + α)(3 + α)...(n+ 1 + α)

(n− 1)!
.

For n = 2,

2.3|a3| ≤ (2 + α)
2∑

k=1

k|ak| < (2 + α)(3 + α)

|a3| ≤
(2 + α)(3 + α)

3!
.

Now assume that for n = m, the following is true.

m(m+ 1)|am+1| ≤ (2 + α)

m∑
k=1

k|ak| ≤
(2 + α)(3 + α)...(m+ 1 + α)

(m− 1)!
.

Next we consider n = m+ 1,

(m+ 1)(m+ 2)|am+2| ≤ (2 + α)
m+1∑
k=1

k|ak|

= (2 + α)

m∑
k=1

k|ak|+ (2 + α)(m+ 1)|am+1|

=
(2 + α)(3 + α)...(m+ 2 + α)

m!
.

Therefore, |am+2| ≤
(2 + α)(3 + α)...(m+ 2 + α)

(m+ 2)!
. This bound is sharp as

fα =
1

1 + α

(
1

(1− z)1+α
− 1

)
∈ Fα. To Prove (b), we know by definition of

Fα, 1+
zf ′′(z)

f ′(z)
≺ 1 + (1 + α)z

1− z
for f ∈ Fα. Therefore,

zf ′′(z)

f ′(z)
≺ (2 + α)z

1− z
=

hα(z), where ≺ denotes subordination. Hence
∣∣∣zf ′′(z)
f ′(z)

∣∣∣ < (2 + α)r

1− r
. From
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the above, it is clear that f ′(z) ≺ e
z∫
0

hα(t)

t
dt

=
1

(1− z)2+α
and hence (c)

holds. �

Theorem 2. For f ∈ Fα, if f(z) = sn(z) + σn(z), where sn(z) =

z +
n∑
k=2

akz
k and σn(z) =

∞∑
k=n+1

akz
k, then for |z| = r we have

|σ′n(z)| < Γ(n+ 3 + α)

Γ(2 + α)(n+ 1)!

rn+1

(1− r)n+3+α
,

|zσ′′n(z)| < Γ(n+ 4 + α)

Γ(2 + α)(n+ 1)!

rn+2

(1− r)n+4+α
.

Proof. Consider |σn(z)| ≤
∞∑
n+1
|ak||z|k <

∞∑
n+1

Γ(k + 1 + α)

Γ(2 + α)k!
rk = σn0(r),

where σn0(r) is the remainder, after n terms, of the extremal function

f0(r) =
1

1 + α

( 1

(1− r)1+α
− 1
)
.

By Integral form of remainder of a Taylor series, we get

|σn0(r)| =
∣∣∣ r∫
0

f
(n+1)
0 (t)(r − t)n

n!
dt
∣∣∣

<

r∫
0

∣∣∣Γ(n+ 2 + α)

Γ(2 + α)n!

(r − t)n

(1− t)n+2+α

∣∣∣dt
<

Γ(n+ 2 + α)

Γ(2 + α)n!(1− r)n+2+α

r∫
0

(r − t)ndt as 0 < t < r

=
Γ(n+ 2 + α)

Γ(2 + α)(n+ 1)!

rn+1

(1− r)n+2+α
.

Hence

|σn(z)| ≤ Γ(n+ 2 + α)

Γ(2 + α)(n+ 1)!

rn+1

(1− r)n+2+α
∀z ∈ D.

Similarly for all z ∈ D we can obtain,

|σ′n(z)| ≤ Γ(n+ 3 + α)

Γ(2 + α)(n+ 1)!

rn+1

(1− r)n+3+α

|zσ′′n(z)| ≤ Γ(n+ 4 + α)

Γ(2 + α)(n+ 1)!

rn+2

(1− r)n+4+α
.

�
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Theorem 3 (Integral representation of the class). If f ∈ Fα, then the
integral representation of f(z) is of the form

f ′(z) =
e
[(2+α)/2]

z∫
0

[P (t)/t]dt

z(2+α)/2
,

for some P (z) with Re (P (z)) > 0 and vice versa.

Proof. As f ∈ Fα, we have 1 +
zf ′′(z)

f ′(z)
+
α

2
= (1 +

α

2
)P (z), where P (z)

is such that Re (P (z)) > 0. Therefore, we have

1 +
zf ′′(z)

f ′(z)
= (1 +

α

2
)P (z)− α

2
;

(i.e) z
d

dz
log(zf ′(z)) =

2 + α

2
P (z)− α

2
;

d

dz
log(zf ′(z)) =

2 + α

2

P (z)

z
− α

2z
.

Integrating we get,

log(zf ′(z)) =
2 + α

2

z∫
0

P (t)

t
dt−

z∫
0

αdt

2t

=
2 + α

2

z∫
0

P (t)

t
dt− α

2
log(z).

Taking exponentiation we obtain,

zf ′(z) = z−α/2e

2 + α

2

z∫
0

P (t)

t
dt
,

f ′(z) =
e
[(2+α)/2]

z∫
0

[P (t)/t]dt

z(2+α)/2
.

Hence the proof and converse can be proved by retracing the above steps. �

Theorem 4. For f ∈ Fα, if f(z) = sn(z) + σn(z), where sn(z) =

z +
n∑
k=2

akz
k and σn(z) =

∞∑
k=n+1

akz
k, then every section sn(z) of functions

in this class is convex in the disk |z| < 1

2(2 + α)
and this radius cannot be

replaced by larger one.
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Proof. Consider Re

(
1 +

zs′′2(z)

s′2(z)

)
= 1 +

2a2z

1 + 2a2z
. Then by Theorem 1,

we have |a2| <
2 + α

2
and hence Re

(
1 +

zs′′2(z)

s′2(z)

)
> 1− 2|a2||z|

1− 2|a2||z|
≥ 1−

(2 + α)|z|
1− (2 + α)|z|

; Re

(
1 +

zs′′2(z)

s′2(z)

)
>

1− 2(2 + α)|z|
1− (2 + α)|z|

= 0 at |z| =
1

2(2 + α)
.

By Maximum Principle for harmonic functions, we have Re

(
1 +

zs′′2(z)

s′2(z)

)
>0

for |z| ≤ 1

2(2 + α)
. Now for n > 2, we obtain

Re

(
1 +

zs′′n(z)

s′n(z)

)
> 1−

∣∣∣zf ′′(z)
f ′(z)

∣∣∣−
∣∣∣zf ′′(z)
f ′(z)

∣∣∣|σ′n(z)|+ |zσ′′n(z)|

|f ′(z)| − |σ′n(z)|
.

Then by Theorem 2, we have

> 1− (2 + α)r

1− r

−

rn+2Γ(n+ 3 + α)

(1− r)n+4+αΓ(2 + α)(n+ 1)!
[2 + α+ n+ 3 + α](Γ(2 + α)(n+ 1)!(1− r)n+3+α − (1 + r)2+αΓ(n+ 3 + α)rn+1

(1 + r)2+αΓ(2 + α)(n+ 1)!(1− r)n+3+α

) .

Re

(
1 +

zs′′n(z)

s′n(z)

)
>

1− (3 + α)r

1− r

− rn+2A0(1 + r)2+α[n+ 5 + 2α]

(1− r)((1− r)n+3+α −A0(1 + r)2+αrn+1)
,

where A0 =
Γ(n+ 3 + α)

Γ(2 + α)(n+ 1)!
. Then Re

(
1 +

zs′′n(z)

s′n(z)

)
> 0 provided

1− (3 + α)r

1− r
>

rn+2A0(1 + r)2+α[n+ 5 + 2α]

(1− r)((1− r)n+3+α − (1 + r)2+αA0rn+1)
.

Therefore, we have to prove

rn+2A0(1 + r)2+α[n+ 5 + 2α] < [1− (3 + α)r]((1− r)n+3+α

− (1 + r)2+αA0r
n+1)

rn+1A0(1 + r)2+α[1 + (n+ 2 + α)r] < [1− (3 + α)r](1− r)n+3+α.

On |z| = 1

2(2 + α)
, above inequality becomes

A0(5 + 2α)2+α[n+ 6 + 3α] < (1 + α)(3 + 2α)n+3+α
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which is true for all n ≥ 3 and 0 ≤ α ≤ 1. By Maximum Principle for har-

monic functions, we have Re

(
1 +

zs′′n(z)

s′n(z)

)
> 0 in the disk |z| ≤ 1

2(2 + α)
.

Hence the radius of convexity of sections of f ∈ Fα is |z| = 1

2(2 + α)
. �
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