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Abstract. In this paper we investigate the space of regulated
functions on a compact interval [0, 1]. When equipped with the
topology of uniform convergence this space is isometrically iso-
morphic to some space of continuous functions. We study some
of its properties, including the characterization of the dual space,
weak and strong compactness properties of sets. Finally, we inves-
tigate some compact and weakly compact operators on the space
of regulated functions. The paper is complemented by an exis-
tence result for the Hammerstein-Stieltjes integral equation with
regulated solutions.

Key words: regulated functions, discontinuous functions, com-
pactness.

AMS Mathematics Subject Classification: 26A39, 46E40, 54C65,

54C35.

1. Introduction

In some differential and integral problems only discontinuous functions
are expected to be their solutions (such as impulsive problems or measure
perturbed problems, cf. [9, 38]). It is evident, that impulsive problems can-
not be solved in the space of continuous functions. Moreover, it is known
that solutions of problems described in terms of Stieltjes-type integrals need
not be continuous. The class of regulated functions is often used to study
problems of this kind. Otherwise, some extra assumptions are imposed to
solve the problem in narrower space, i.e. solutions have some extra proper-
ties.

The space of regulated functions consists of functions having finite one-side
limits at every point (i.e. with discontinuities of the first kind) and therefore
it contains the space of continuous functions. In fact, a function is regulated
if and only if it is a uniform limit of step functions ([12, (7.6.1)]. It is
worthwhile to note that a function of bounded variation is regulated, while
regulated functions are not necessarily of bounded variation. Our research
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allows to study, by unified manner, both cases mentioned above (i.e. con-
tinuous and BV solutions) and to extend earlier results to a wider space.
In this paper we will investigate the space of regulated functions on a finite
interval and some of its subspaces.

Non-separable Banach spaces cannot be embedded isometrically in the
separable space C([0, 1]), but for every Banach space X one can find a
compact Hausdorff space S and an isometric linear embedding j of X into
the space C(S) of scalar continuous functions on S.

In the present paper, we will investigate the space G([0, 1], X) of vector-
valued regulated functions as an interesting example of non-separable Ba-
nach spaces. We indicate an isometric isomorphism between the space of
vector-valued regulated functions and a non-metrizable space of continuous
functions on a compact Hausdorff space (the Alexandroff arrow space, see
[22], for instance). Note that if X is a Banach algebra, then the space of
vector-valued regulated functions is a Banach algebra too and related prop-
erties were investigated in [16]. Here we concentrate on the compactness
properties of subsets of G([0, 1], X) and on operators acting on this space.

Afterwards, we will apply the result about the existence of an isomor-
phism between spaces of regulated and continuous functions. By proving
some results so far known only for spaces of continuous functions, we obtain
new properties of the space of regulated functions including the characteri-
zation of its dual and some new results about weak and strong compactness
of its subsets. The entire discussion will explain why the space of regulated
functions has so many properties similar to that of the space of continuous
functions. It means that several proofs for differential or integral problems
having continuous solutions can be easily extended to the case of regulated
ones.

Finally, we study some properties of operators acting on the space of
regulated functions, as well as, with values in this space. The above men-
tioned results allows us to treat the considered operators in a similar manner
as in a classical theory for C(I,X) and are then applied in a proof of an
existence theorem for the Hammerstein integral equation of Stieltjes-type
(with regulated solutions).

2. Regulated functions seen as continuous ones

Let (X, ‖ · ‖) be a Banach space and denote by Br(x) the open ball in X
centered at x with a radius r (and Br will denote the ball with its center at
the origin θ). A function f : [0, 1]→ X is said to be regulated if there exist
the limits f(t+) and f(s−) for any point t ∈ [0, 1) and s ∈ (0, 1]. Their
name was introduced by Dieudonné (see [12, Section VII.6]).
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Lemma 1 ([21], Chapter 1, Corollary 3.2, Theorem 3.5). The set of dis-
continuities of a regulated function is at most countable. Regulated functions
are bounded and the space G([0, 1], X) of regulated functions defined on [0, 1]
with values in a Banach space X is a Banach space too, endowed with the
topology of uniform convergence, i.e. with the norm ‖f‖∞ = supt∈[0,1]‖f(t)‖.

The space G([0, 1], X) is not separable, contains as a proper subset the
space of continuous functions and, as claimed in the Introduction, it can
be represented (as an isomorphic copy) as a space of continuous functions
on some Hausdorff compact non-metrizable space K (different than [0, 1] as
G([0, 1], X) is not separable). Put

K = {(t, 0) : 0 < t ≤ 1} ∪ {(t, 1) : 0 ≤ t ≤ 1} ∪ {(t, 2) : 0 ≤ t < 1}

equipped with the order topology given by the lexicographical order (i.e.
(s, i) ≺ (t, j) if either s < t, or s = t and i < j), which is known as the
Alexandroff (or the Alexandroff-Urysohn) arrow space (cf. also [21] for some
isometries of G([0, 1], X) with different spaces). It will be useful to note that
the neighborhoods of the point (t, τ) are generated by

V ′b (t, 0) = {(s, r) : b < s < t, r = 0, 1, 2} ∪ {(t, 0)}
V ′c (t, 2) = {(s, r) : t < s < c, r = 0, 1, 2} ∪ {(t, 2)}
V ′d(t, 1) = {(t, 1)}

for τ = 0, 2 and 1, respectively.
We are able to prove the following result given in [25, Proposition 3.5]

for real-valued functions (without proof), cf. also [10] for basic ideas:

Theorem 1. The Banach spaces G([0, 1], X) and C(K, X) are isometri-
cally isomorphic in the following sense: given functions f ∈ G([0, 1], X), and
κ(f) = g ∈ C(K, X) they correspond to each other, if g(t, r) = lims→t− f(s)
if r = 0 and t ∈ (0, 1], g(t, r) = f(t) if r = 1 and t ∈ [0, 1] and g(t, r) =
lims→t+ f(s) if r = 2 and t ∈ [0, 1).

Proof. Recall that both spaces G([0, 1], X) and C(K, X) are considered
with the uniform topology, i.e. with sup-norm ‖ · ‖∞. It is clear that the
map κ is injective and g(t, r) is well-defined for all (t, r) ∈ K.

Let f ∈ G([0, 1], X). We need to show, that g = κ(f) ∈ C(K, X). Since
a singleton {(t, 1)} is a neighborhood of (t, 1) for 0 ≤ t ≤ 1, κ is continuous
at those points.

Consider now the points of the form (t, 0) and (t, 2) for t ∈ [0, 1]. Then
neighborhoods of a point (t, 0) are generated by the sets of the form V ′ε =
{(s, r) : t < s < t + ε, r = 0, 1, 2} ∪ {(t, 2)}, and neighborhoods of a point
(t, 2) are generated by the sets of the form W ′ε = {(s, r) : t− ε < s < t , r =
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0, 1, 2} ∪ {(t, 0)}. Note that {V ′b (t, 0), V ′c (t, 2), V ′d(t, 1)} is a subbase of the
neighborhood of the point (t, r) ∈ K.

Fix arbitrary point (t, 0) and a neighborhood V ′ε of this point. Put δ = ε.
We need to show, that g−1(V ′ε ) ⊂ (t − δ, t + δ). By the definition of κ
it is clear for the level r = 1. Again by the definition of κ for any point
(t′, 0), t′ ∈ (t − δ, t) there exists an open interval (τ, t′) ⊂ (t − δ, t) such
that for any s from this interval g(s, 1) ∈ V ′ε , so g(s, 0) ∈ V ′ε . Similarly,
for any point (t′, 2) ∈ V ′ε there exists an open interval (t′, t′′) ⊂ (t − δ, t)
such that for any s from this interval g(s, 1) ∈ V ′ε and then g(s, 2) ∈ V ′ε .
Finally, g−1(V ′ε ) ⊂ (t− δ, t+ δ). Thus, the continuity of g at (t, 0) is just a
consequence of the definition of κ and the existence of the finite left limit of
f at t. For a neighborhood W ′ε we have analogous property and hence the
continuity of g at (t, 2) is related to the existence of right limits of f at t.
Thus, κ maps G([0, 1], X) into C(K, X).

Take a continuous function g on K. Put f(t) = g(t, 1). We need to show
that f is regulated. But it is a simple consequence of the choice of the
topology on K and the form of neighborhoods of points in this space.

Finally, we need to show that ‖κ(f)‖∞ = ‖f‖∞ for any f ∈ G([0, 1], X).
It is quite standard, but in view of the definition of the arrow space we will
do a sketch here. Since f(t) = κ(f)(t, 1) = g(t, 1), ‖f‖∞ ≤ ‖κ(f)‖∞.

Fix arbitrary ε > 0. By the continuity of g, for any (t, 0) there exists a
point s < t such that (s, 1) ∈ V ′ε and ‖g(t, 0) − g(s, 1)‖ < ε. It means that
‖g(t, 0)‖ ≤ ‖g(s, 1)‖+ε and finally ‖g(t, 0)‖ ≤ ‖f(s)‖+ε ≤ ‖f‖∞+ε. Since ε
is arbitrary, ‖g(t, 0)‖ ≤ ‖f‖∞. Similarly we can show that ‖g(t, 2)‖ ≤ ‖f‖∞.
Thus

‖κ(f)‖∞ = sup
(t,r)∈K

‖g(t, r)‖ = ‖f‖∞.

The operator κ is linear and bounded, so we are done. �

As we proved that the set {(t, 1) : t ∈ [0, 1]} is dense in K, the proof of
the isometry property can be also carried out using density argument.

If X = R the space G([0, 1],R) = G([0, 1]) is also a Banach algebra [4]
(with pointwise multiplication, cf. also the case when X is a Banach algebra
[15]). As a consequence of the above result we get (see also [15, Theorem
1], [16, Theorem 2.3] or [4]):

Corollary 1. If X is a commutative Banach algebra, then G([0, 1], X)
is also a commutative Banach algebra and is isometrically isomorphic to
C(K, X) as Banach algebras.

Note that the space of vector-valued regulated functions seen as a Banach
algebra, as well as, some linear integral functionals onG([0, 1], X) are studied
in details in [16]. We will extend the earlier results for spaces X being not
necessarily that Banach algebras.
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3. Compactness in G([0, 1], X)

The classical Ascoli theorem characterizes the compactness of subsets of
the space of continuous functions via the notion of equi-continuity. Simi-
larly, as proved by [17], compactness in the space of regulated functions is
characterized (Proposition 1 below) by the concept of equi-regularity. Let us
recall the notion and a very useful characterization of equi-regularity proved
in [17] for X = Rd.

Definition 1. A set A ⊂ G([0, 1], X) is said to be equi-regulated at the
point t0 ∈ [0, 1] if for every ε > 0 we have

i) if t0 ∈ (0, 1] there exists δ > 0 such that for all f ∈ A and any
t0 − δ < s < t0, ‖f(s)− f(t0−)‖ < ε;
ii) if t0 ∈ [0, 1) there exists δ > 0 such that for all f ∈ A and any

t0 < τ < t0 + δ, ‖f(τ)− f(t0+)‖ < ε.
Also, A is called equi-regulated if it has this property at all points in [0, 1].

Proposition 1. For any A ⊂ G([0, 1], X) the following statements are
equivalent:
i) A ⊂ G([0, 1], X) is relatively compact;
ii) A is equi-regulated and, for every t ∈ [0, 1], A(t) = {f(t) : f ∈ A} is
relatively compact in X.

At this point, having in mind Theorem 1, it is clear that the above
proposition can be interpreted as a particular case of the Ascoli theorem
and this clarifies the use of equi-regularity condition in earlier papers (e.g.
[31]).

Theorem 2. A subset A ⊂ G([0, 1], X) is equi-regulated if and only if
κ(A) ⊂ C(K, X) is equicontinuous in C(K, X).

Proof. (⇒) The set A is equi-regulated, so for any ε > 0 there exists
δ > 0 such that for any point t0 > 0 such that t0 − δ < s < t0: ‖f(s) −
f(t0−)‖ < ε/2 for any f ∈ A . By using this condition we are able to prove
equicontinuity of κ(A) at any point on the “bottom” level, i.e. in (t0, 0).
Take an arbitrary f ∈ A.

Recall that any neighborhood of the point (t0, 0) (t0 > 0) is generated
by sets of the form V ′δ (t0, 0) = {(s, r) : t0 − δ < s < t0, r = 0, 1, 2} ∪
{(t0, 0)}. Thus, for any neighborhood of the point κ(f)(t0, 0) in X (a
ball Bε(κ(f)(t0, 0))) we need to find a neighborhood V ′(t0, 0) such that
κ(f)(V ′(t0, 0)) ⊂ Bε(κ(f)(t0, 0)). Since f(t0−) = κ(f)(t0, 0) and f(s) =
κ(f)(s, 1), directly from the definition of equi-regularity we get δ > 0 such
that κ(f)(s, 1) ⊂ Bε/2(f(t0)) for any s ∈ (t0 − δ, t0).

Let us check now the points (s, 0) ∈ V ′δ (t0, 0). By the definition of κ for a
point (s, 0) ∈ K there exists an interval (s′, s) such that ‖f(τ)−f(s−)‖ < ε/2
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for τ ∈ (s′, s) (left limits of f). Then ‖κ(f)(s, 0)− κ(f)(t0, 1)‖ = ‖f(s−)−
f(t0)‖ ≤ ‖f(τ) − f(s−)‖ + ‖f(τ) − f(t0)‖ ≤ ε for τ ∈ (s′, s) ⊂ (t0 − δ, t0).
Thus, κ(f)(s, 0) ⊂ Bε(f(t0)) for any f ∈ A.

Similar calculation holds true for all points (t, 2). We need only to use
the fact that for any ε > 0 there exists δ > 0 such that for any point t such
that t0 < s < t0 + δ: ‖f(s) − f(t0+)‖ < ε/2 and the remaining part of the
proof will be the same.

Finally, we need to investigate the points in K of the form (t0, 1). Recall
that the singletons are also the neighborhoods for that points. It means that
κ(f){(t0, 1)} ⊂ Br(f(t0)) and the equicontinuity of κ(f) holds true for any
f ∈ A.

We obtained that κ(f)(V ′(t0, 0)) ⊂ Bε(f)(t0), so κ(A) is equicontinuous
in C(K, X).

(⇐) Assume now, that B is an equicontinuous set. We need to show,
that the set A such that κ(A) = B is equi-regulated.

As in a previous part we will investigate equicontinuity at every levels
r = 0, 1, 2 separately. For r = 1 we have only the information, that a
function is everywhere defined. Since the set is equicontinuous at the points
(t, 0) it means that for any ε > 0 there exists a neighborhood V ′δ of the
point (t, 0) ∈ K such that κ(f)(V ′δ ) ⊂ Bε(κ(f)(t, 0)) for any f ∈ A. But
V ′δ contains the set (t − δ, t) × {1}. It means that for any s ∈ (t − δ, t)
κ(f)(s, 1) ∈ Bε(κ(f)(t, 0). Thus, ‖f(s) − f(t−)‖ < ε for any t − δ < s < t.
It is just the condition (i) from Definition 1.

The case of r = 2 with analogical proof allows us to check the condition
(ii) from the definition of equi-regularity, so we omit the details. �

As an immediate consequence of the above Theorem and Theorem 1
we get a new equivalent condition for Proposition 1. Although the space
G([0, 1], X) consists not only of continuous functions we are ready to use the
Ascoli Theorem in C(K, X) due to the following theorem (cf. [17, Proposi-
tion 2.3])

Theorem 3. A subset A ⊂ G([0, 1], X) is relatively compact if and only
if κ(A) ⊂ C(K, X) is relatively compact in C(K, X).

As the compact Hausdorff space K is not metrizable, we get a special case
of the above theorem (cf. also Theorem 2), which implies also Proposition 1:

Corollary 2. A subset κ(A) ⊂ C(K, X) is relatively compact in C(K, X)
in the topology induced by the supremum norm ‖ · ‖∞ if and only if it is
equicontinuous and has relatively compact sections κ(A)(t, r) for all (t, r) ∈K.
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4. Weak compactness in G([0, 1], X)

We are also interested in providing a characterization of weak compact-
ness in the space of regulated functions. To this aim, we need some auxiliary
results. The problem how to describe the topological dual for the space of
regulated functions is important and has a few solutions based on different
approaches. To the best of our knowledge, the first paper was published
in 1934 by Kaltenborn [23]. We present here a useful theorem about weak
convergence in G([0, 1], X) and we collect some important results.

Denote by Bo(K) the σ-algebra of all Borel measurable subsets of K and
by cabv(Ω, X)) [rcabv(Ω, X)] the space of all [regular] countably additive
vector-valued Borel measures with scalar bounded variation on a compact
Hausdorff space Ω with values in a Banach space X. To indicate a choice of a
Borel σ-algebra considered on Ω we will sometimes write rcabv(Bo(Ω), X)).

It is well-known, that isometric isomorphisms preserve weak compactness.
Either we can use our isomorphism κ and then the Riesz-Singer represen-
tation theorem ([13, Theorem 2] or we can apply [24, Theorem 6.1.5]) by
considering spaces of vector-valued measures or some special function spaces.
As a consequence of our Theorem 1, as well as the Riesz-Singer theorem we
have:

Proposition 2. The dual space of G([0, 1], X) is isometrically isomor-
phic to the space rcabv(Bo(K), X∗) of regular countably additive X∗-valued
Borel vector measures on K with bounded variation.

Unfortunately, it means that we need to investigate Borel σ-algebra and
Borel measures on K. As the space C([0, 1], X) is isometrically embedded
into C(K, X) (r = 1) and for regulated functions we have at most countable
number of discontinuity points, we conclude, that Borel σ-algebra on K
contains a family of sets consisting of the sums of countable sets and images
of Borel sets in [0, 1] through this embedding.

However, it will be easier and more natural to keep the original space,
i.e. [0, 1]. Let us recall that for a given countably additive measure m ∈
cabv([0, 1], X∗) of bounded variation it is easy to define an integral for simple
functions

∑
i xiχAi as the sum

∑
im(Ai)xi. Since m is a measure with

bounded variation the integral can be extended to all X-valued function
being uniform limits of Borel measurable simple functions, so for regulated
functions too. The integral is well-defined for regulated functions from [0, 1]
to X. If we restrict our attention to regular measures we have only one such
a measure defining continuous linear functional over C([0, 1], X).

As claimed above, regulated functions are uniform limits of step func-
tions, then they are Borel measurable and the integrals with respect to
measures described below are well-defined. It is possible to repeat the proof
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of the Riesz-Singer theorem for C([0, 1], X) (cf. [24, Theorem 6.1.5]) for
regulated functions and consequently we have the following ([4, Theorem
13], [8, Theorem 6.1.5] or [6]):

Proposition 3 (cf. [4], Theorem 13, cf. [6]). The dual space of G([0, 1], X)
is isometrically isomorphic to the space rcabv(Bo([0, 1]), X∗) of regular count-
ably additive X∗ valued Borel vector measures on [0, 1] with bounded varia-
tion.

Our results in the previous section allows one to check the (strong) com-
pactness property in the space G([0, 1], X). Following the idea from [13]
(see also [24, Theorem 6.1.6] and [8, Proposition 1.7.1]) we can now also
investigate the weak compactness. We characterize a weak convergence of
bounded sequences in this space as a weak pointwise convergence (as in
C([0, 1], X) in [13]):

Theorem 4. A sequence (fn) of regulated functions fn ∈ G([0, 1], X) is
weakly convergent to f in G([0, 1], X) if and only if it is (norm) bounded
and for any t ∈ [0, 1] a sequence (fn(t)) is weakly convergent to f(t) in X
for each t ∈ [0, 1].

Proof. (⇒) Let (fn) be a sequence weakly convergent in G([0, 1], X) to
a regulated function f . Take a point-functional, i.e. measure of the form
µt,x∗ = δtx

∗. Here t ∈ [0, 1], x∗ ∈ X∗ and δt is a Dirac measure concentrated
at t. Clearly µt,x∗ ∈ (G([0, 1], X))∗.

Thus

lim
n→∞

x∗(fn(t)) = lim
n→∞

∫
[0,1]

fn dµt,x∗ =

∫
[0,1]

f dµt,x∗ = x∗(f(t)).

It means that (fn(t)) is weakly convergent in X for every t ∈ [0, 1].
(⇐) Assume now, that (fn) is bounded in G([0, 1], X) with (fn(t)) being

weakly convergent in X for any t ∈ [0, 1].
Take an arbitrary measure m ∈ rcabv(Bo, X∗). Note that since m is

of bounded variation then it is a regular measure if and only if all scalar
measures mx(A) = m(A)x are regular measures for all x ∈ X ([24, Proposi-
tion 6.1.3]). All of them are also absolutely continuous with respect to the
variation ‖m‖ of the measure m. Without loss of generality we may assume,
that the measure ‖m‖ is complete and by the Radon-Nikodým theorem for
liftings ([8, Theorem 1.5.2]) there exists a weak∗ measurable and bounded
function mh : [0, 1]→ X∗ such that

m(A)x =

∫
A
< x,mh > d‖m‖
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for each Borel measurable set A and all x ∈ X. Thus, for any X-valued sim-
ple function s (Borel measurable) we get

∫
A s(t) dm(t) =

∫
A < s(t),mh(t) >

d‖m‖(t). Since m is a regular measure, m(A) is uniquely determined.
We recall that an arbitrary regulated function g is a uniform limit of

simple functions (hn) and the integral can be extended to regulated functions
and we are able to use the Lebesgue dominated convergence theorem for the
measure ‖m‖, so we get∫

[0,1]
hn(t)dm(t) =

∫
[0,1]

< hn(t),mh(t) > d‖m‖(t)

→
∫
[0,1]

< g(t),mh(t) > d‖m‖(t) =

∫
[0,1]

g(t) dm(t).

By the above consideration (with g replaced by fn) we obtain

lim
n→∞

∫
[0,1]

fn(t) dm(t) = lim
n→∞

∫
[0,1]

< fn(t),mh(t) > d‖m‖(t)

=

∫
[0,1]

< f(t),mh(t) > d‖m‖(t) =

∫
[0,1]

f(t) dm(t).

The weak convergence is then proved. �

It should be noted, that we do not assume, thatX∗ has the Radon-Nikodym
property (RNP) because we do not prove the existence of the integrable den-
sity mh (and we are unable to use the classical Radon-Nikodym theorem for
vector-valued functions). In particular, it means that the proof of the above
theorem in the form suggested by Dobrakov ([13, Theorem 9]) still requires
the RNP for X∗. However, his result is correct being a special case of
Theorem 4. Thus we are able to characterize the wbo-convergence studied
by Brokate and Krejč́ı ([6, Definition 2.4]) of bounded sequences of func-
tions from G([0, 1], X). They considered an additional assumption of weak
pointwise convergence of sequences in G([0, 1], X), so the wbo-convergence
is, in fact, weak convergence in G([0, 1], X) together with uniform bounded
oscillation of the sequence [6, Theorem 2.5]. Moreover, as a consequence of
the Eberlein-Šmulian Theorem we have

Theorem 5. A subset A of G([0, 1], X) is weakly relatively compact if
and only if it is sequentially compact in the weak topology

σ(G([0, 1], X), (G([0, 1], X)∗)) = σ(G([0, 1], X), rcabv(Bo(K), X∗)).

Example 1. Let us present a simple example of a weakly compact set
in G([0, 1]). Put xt = χ{t} for any t ∈ [0, 1] and A = {xt : t ∈ [0, 1]} ∪ {θ}.
Clearly, this set is uniformly equi-regulated (the number δ in Definition 1
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can be arbitrarily chosen). Moreover, κ(xs) is a function gs from K to R
such that gs(t, r) = 0 for r = 0, r = 2 and r = 1, s 6= t. Finally gs(t, 1) = 1
for s = t.

Thus, as the set κ(A) is weakly compact in C(K,R), as a consequence
of the above theorem we get that A is weakly compact in G([0, 1]). Any
sequence from A is convergent to the zero function θ(t) ≡ 0 (see Theorem
4).

Note that it implies, that weakly compact subsets of the space of regu-
lated functions need not be separable.

5. Subspaces of the space of regulated functions

There are several subspaces of the space of regulated functions that have
been studied in the literature. Here, we will focus only on some spaces
which can be treated in the same manner as G([0, 1], X), namely on the
space D([0, 1], X) consisting in the right-continuous regulated functions and
on the space PC([0, 1], X) of piecewise continuous functions.

Some other interesting subspaces of G([0, 1], X) with their inclusions and
properties can be found in [6, Lemma 1.2].

5.1. The space D([0, 1], X)

The space of X-valued functions right-continuous admit finite left-limits
at every point will be denoted by D([0, 1], X). Such functions are sometimes
called càdlàg functions (”continue à droit, limite à gauche”, in French) or
RCLL (right continuous with left limits). Similarly we can define a subspace
of G([0, 1], X) consisting of all left-continuous regulated functions (see [21],
for instance).

In such a case we are able to simplify the space K in the construction
of an isometrically isomorphic copy of D([0, 1], X). Since the values of a
function in this space is strictly related to right limits, the “middle” level in
a model of the arrow space is superfluous. Instead of the Alexandroff arrow
space, we consider the set

L = {(t, 0) : 0 < t ≤ 1} ∪ {(t, 1) : 0 ≤ t < 1}

(it is a modification of the two arrow space) again equipped with the order
topology given by the lexicographical order. We have (see [25, Proposition
2.1] for real-valued functions):

Theorem 6. The Banach spaces D([0, 1], X) and C(L, X) are isometri-
cally isomorphic in the following way: given functions f ∈ D([0, 1], X), and
κ(f) = g ∈ C(L, X), as corresponding to each other if g(t, r) = lims→t− f(s)
if r = 0 and t ∈ (0, 1], g(t, r) = f(t) if r = 1 and t ∈ [0, 1).
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As in Theorem 1 the map κ allows to identify the values of a function
κ(f) at level r = 0 with left-limits of f and at the level r = 1 with values of
f (and the right-side limits simultaneously). It is based on the observation
of the fact that the neighborhoods of the point (t, r) are of the form

Vb(t, 0) = {(s, r) : b < s < t, r = 0, 1, 2} ∪ {(t, 0)}
Vc(t, 1) = {(s, r) : t < s < c, r = 0, 1, 2} ∪ {(t, 1)}.

Thus all our main results can be expressed in terms of C(L, X), allowing to
put K instead of L and G([0, 1], X) instead of D([0, 1], X) without essential
changes in the proofs, so we will omit the details.

5.2. The space of piecewise continuous functions

Another subspace of G([0, 1], X) occurs when studying impulsive differ-
ential equations. Fix a finite number of points tk ∈ [0, 1] (k = 1, 2, ..., n). A
function f : [0, 1] → X is called piecewise continuous if it is continuous on
the intervals (0, t1), ..., (ti−1, ti) (for i = 2, ..., n) and on (tn, 1) and moreover
has finite one-side limits at each ti (for i = 1, ..., n) (and right limit at 0 and
left limit at 1).

The space of all such functions PC([0, 1], X) is a Banach space when
endowed with the norm ‖f‖∞. Sometimes it is assumed additionally, that
the functions are right- or left-continuous. Note that the set of disconti-
nuity points is fixed. If we assume that the piecewise continuous functions
have a finite, but not fixed, number of discontinuity points we obtain the
space PCfin([0, 1], X) which is dense in G([0, 1], X). All compactness re-
sults stated in earlier papers are consequences of our theorems for the space
G([0, 1], X).

6. Operators on G([0, 1], X)

Let f : [0, 1]×R→ R, the Nemytskii superposition operator Sf : R[0,1] →
R[0,1] is defined by the formula

Sf (x)(t) = f(t, x(t)).

It is one of the most important nonlinear operators, which is investigated in
different function spaces (with its acting conditions, boundedness or conti-
nuity, for instance). Let us recall some properties of the Nemytskii operator
acting on G([0, 1]). The following useful theorem is proved by Michalak [25].

Theorem 7 ([26], Proposition 2.2). The operator Sf maps G([0, 1]) into
itself if and only if the function f has the following properties:

(1) the limit lim[0,s)×R3(u,y)→(s,x) f(u, y) exists for every (s, x) ∈ (0, 1]×R,
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(2) the limit lim(t,1]×R3(u,y)→(s,x) f(u, y) exists for every (t, x) ∈ [0, 1)×R.

In particular, it implies that if f(t, x(t)) = f(x(t)) then the composition
operator (i.e. autonomous superposition operator) Sf maps G([0, 1]) into
itself if and only if f is continuous (see [25, Corollary 3.7]).

Corollary 3 ([2], Theorem 2.3). Suppose that the function h(·, u) is
regulated on [0, 1] for all u ∈ R, and the function h(t, ·) is continuous on R,
uniformly with respect to t ∈ I. Then the operator Sh maps G([0, 1]) into
itself and is (norm) bounded.

Theorem 8 ([25], Corollary 3.6). The operator Sf : G([0, 1])→ G([0, 1])
is continuous if and only if a function f̃ : R→ G([0, 1]) given by the formula
f̃(x)(t) = f(t, x) is continuous.

The Nemytskii operator is, in general, neither compact nor weakly com-
pact when acting on infinite dimensional spaces. Since compactness is very
important in the theory of linear operators, now we will investigate this
class of operators. Let us begin by presenting an acting condition for linear
operators on G([0, 1]), i.e. for real-valued functions.

Theorem 9 ([33], Theorem 1). Assume, that K : [0, 1] × [0, 1] → R
satisfies

1. K(t, ·) is a function of bounded variation for every t ∈ [0, 1] with
‖K(t, ·)‖BV ≤M , for some M > 0,

2. K(·, s) ∈ G([0, 1]).
Then the linear operator

H(x)(t) =

∫ 1

0
x(s) dsK(t, s)

maps G([0, 1]) into itself and is bounded with ‖H‖ ≤ 2 supt∈[0,1] ‖K(t, ·)‖BV .
This integral is taken in the Kurzweil-Stieltjes sense.

We will show, that our results are useful when studying compact and
weakly compact operators on G([0, 1], X) being counterparts of classical re-
sults for C([0, 1], X) (see [3, 14]).

6.1. General form of linear opeartors on G([0, 1], X)

First of all, let us indicate an immediate consequence of Theorem 1. Let
Y be a Banach space and let an operator T : G([0, 1], X)→ Y be linear. By
applying [3, p.217] (cf. [11, p.182], [30, Lemma 2] or [14, Theorem VI.7.2],
for real-valued functions), our earlier results (Theorem 1, in particular) can
be used for the superposition T ◦ κ : C(K, X) → Y . Now, by applying
the characterization of the dual space G([0, 1], X) (Proposition 2) we are
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able to prove a more general result about representing measures for lin-
ear continuous operators acting on a space of regulated functions and then
to obtain the general form of linear integral operators on G(0, 1], X). By
SemiV ar(µ) we will denote the semivariation of a measure µ, which is given
by SemiV ar(µ)(E) = sup{µ(E)y∗ : ‖y∗‖ ≤ 1}. Recall that κ denotes the
isomorphical isometry between G([0, 1], X) and C(K, X). Consequently, we
get

Theorem 10. Let X,Y be arbitrary Banach spaces and let T be a
bounded linear operator acting on G([0, 1], X) with values in Y . Then there
exists a unique vector measure µ : Bo(K)→ L(X,Y ∗∗) such that

(a) µ is finitely additive, SemiV ar(µ)(K) < ∞ and µ is weakly regular,
i.e. for each y∗ ∈ Y ∗ and µ is X∗-regular (so countably additive),

(b) the mapping y∗ → µ(·)y∗ of Y ∗ into rcabv(Bo(K), X∗) [= (G([0, 1], X))∗

by Proposition 2] is continuous with respect to σ(Y ∗, Y ) topology of Y ∗

and the weak-∗ C(K, X) topology of G([0, 1], X)∗,
(c) Tf =

∫
K κ(f)(s) µ(ds), f ∈ G([0, 1], X),

(d) ‖T‖ = SemiV ar(µ)(K),
(e) T ∗y∗ = µ(·)y∗ in the isometric sense of rcabv(Bo(K), X∗) and
(G([0, 1], X))∗.

Conversely, any vector measure µ on Bo(K) → L(X,Y ∗∗) which satisfies
(a) and (b), then the equation (c) defines a linear mapping from G([0, 1], X)
into Y with its norm given by (d), and such that (e) follow.

Note that the above theorem allows us to investigate regulated func-
tions seen as continuous ones. The formula (d) can be also rewritten as
the Kurzweil-Stieltjes integral of a regulated function

∫
[0,1] f(s) µ̃(ds) with

respect to the measure dg generated by a function of bounded variation g or
with a measure µ̃ : Bo([0, 1]) → L(X,Y ∗∗) (cf. Proposition 2). This direct
approach was also considered in earlier papers cf. [6, 28, 36].

Let us now concentrate on a special case of linear bounded operators
T : G([0, 1], X) → G([0, 1], X). If we consider some particular measures,
then we can obtain classical integral operators. Let us stress the role of
the Kurzweil-Stieltjes (Henstock-Stieltjes) (see [21, 35, 36]) integral in the
formulae below. It is necessary to note that in the vector-valued context the
above theorem is strictly related to the Kurzweil-Stieltjes integrals investi-
gated in [28] (cf. also [32, 33, 35, 36], for instance). This kind of integral
is very useful in applications (as in linear integral equations) and the above
theorem gives us a full characterization of operators acting on the space of
regulated functions, possibly with this integral (if the representing measure
for the operator is in the general form) - cf. [34, Proposition 2.1], for the
direct proof of linearity and continuity.
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We should present some classical Stieltjes-type operators, which are use-
ful in the study of discontinuous solutions for some integral equations:

A): Let H1 : G([0, 1])→ G([0, 1]) be given by

H1(x)(t) =

∫
[0,t)

x(s) dg(s),

where g is a function of bounded variation and the integral is the Henstock-
Stieltjes one. Clearly, by Theorem 9 it is bounded linear operator from
G([0, 1]) into itself.

B): Now, let H2 : G([0, 1])→ G([0, 1])

H2(x)(t) =

∫
[0,1]

K(t, s)x(s) dg(s),

where g ∈ BV ([0, 1]) and the kernel satisfies the following assumptions
(1) K(t, ·) is a function of bounded variation for every t ∈ [0, 1] with
‖K(t, ·)‖BV ≤M , for some M > 0,

(2) K(·, s) ∈ G([0, 1]).
Clearly, the above Theorem implies that H2 is a continuous linear oper-
ator.

C): Let us also recall the vector-valued case (cf. [28, 34], for instance). Let
F : [0, 1]→ L(X) and g : [0, 1]→ X. Assume, that F has bounded semi-
variation (see [28]). Then the operator T : G([0, 1], X) → G([0, 1], X)
given by

T (x)(t) =

∫
[0,t)

x(s) dF (s)

is linear and continuous.

6.2. Weakly compact operators

Since G([0, 1], X) is isometrically isomorphic to a space C(K, X) and K
is compact Hausdorff space, by using the result from [3] and our Theorem
1 we get one more direct consequence for weakly compact linear operators
acting on G([0, 1], X):

Corollary 4 (cf. [3], Theorem 9). Let X be a reflexive Banach space and
assume, that the space Y does not contain isomorphic copy of c0. Then any
bounded linear operator from the space G([0, 1], X) into a weakly complete
Banach space Y is automatically weakly compact.

If we are interested in operators with values in the space of regulated
functions, then the above Corollary cannot be applied. In many applica-
tions (such as solving of integral equations) we consider operators dominated
by weakly compact ones. The following proposition will be useful (cf. [7,
Theorem 5.3]):
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Proposition 4. Let X,Y be arbitrary Banach spaces and let L, T be
bounded linear operators acting on G([0, 1], X) with values in Y . If X∗

and X∗∗ have the Radon-Nikodym property, L is weakly compact, and the
representing measure for T is strongly absolutely continuous with respect to
representing measure for L, then T is also a weakly compact operator.

In particular, if the space X is reflexive, the space Y does not contain
isomorphic copy of c0 and the representing measure for the operator T is
strongly bounded (s-bounded), then T is weakly compact (cf. [3]).

Many interesting results of this type can be found in [5]. The current
status of the research for weakly compact (and compact) linear operators
acting on the space of continuous functions (so potentially generalizable to
the space of regulated functions) can be found in a recent paper [29] (see
also references therein).

6.3. Compact operators

In the case of (strongly) compact operators we have a lot of interesting
characterizations (parallel to those for weakly compact ones), so let us re-
strict ourselves to some special cases. First, we study the case when the
operator is dominated (cf. again [7, Theorem 5.3]):

Proposition 5. Let X,Y be an arbitrary Banach spaces and let L, T
be bounded linear operators acting on G([0, 1], X) with values in Y . If L is
compact and the representing measure for T is strongly absolutely continuous
with respect to the representing measure for L, then T is also compact.

Since we have a compactness criterion for G([0, 1], X) (Corollary 1), the
following corollary seems to be useful:

Corollary 5. Let X,Y be arbitrary Banach spaces. A bounded linear
operator T : G([0, 1], X) → G([0, 1], X) is compact if and only if the repre-
senting vector measure µ takes its values in a compact subset of G([0, 1], X).

Let us present a simple example:

Corollary 6. Let H : G([0, 1]) → G([0, 1]) be a linear continuous oper-
ator

H(x)(t) =

∫
[0,1]

x(s) dK(t, s),

where K : [0, 1]× [0, 1]→ R satisfies:
(1) K(t, ·) is a function of bounded variation for every t ∈ [0, 1] with
‖K(t, ·)‖BV ≤M , for some M > 0,

(2) K(·, s) ∈ G([0, 1]).
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(3) the kernel K satisfies the following conditions

lim
ε→0+

(
sup

{
V ar10[K(t−, ·)−K(τ, ·)] : t ∈ (0, 1], τ ∈ (t− ε, t)

})
= 0

lim
ε→0+

(
sup

{
V ar10[K(t+, ·)−K(τ, ·)] : t ∈ [0, 1), τ ∈ (t, t+ ε)

})
= 0.

Then the operator H is compact.

Proof. Indeed, as a consequence of Proposition 5 we need only to prove,
that the range of H is relatively compact as a subset of G([0, 1]). By The-
orem 3 it is sufficient to prove, that it is uniformly equi-regulated subset of
G([0, 1]).

In what follows, let us take a nonempty bounded set A ⊂ Br in G([0, 1]).
Further, fix arbitrarily a number ε > 0 and choose an arbitrary x ∈ A,
t ∈ (0, 1] and τ ∈ (t − ε, t). Since x is regulated and H : G([0, 1]) →
G([0, 1]), one-side limits H(x)(t−) and H(x)(t+) exist at every point t. Let
us estimate:

|H(x)(t−)−H(x)(τ)| ≤
∣∣∣∣∫ 1

0
x(s) dsK(t−, s)−

∫ 1

0
x(s) dsK(τ, s)

∣∣∣∣
≤
∣∣∣∣∫ 1

0
x(s) ds[K(t−, s)−K(τ, s)]

∣∣∣∣
≤ ‖x‖∞ · V ar10[K(t−, ·)−K(τ, ·)]
≤ ‖x‖∞ · sup

τ∈(t−ε,t)
{V ar10[K(t−, ·)−K(τ, ·)]}

≤ ‖x‖∞ · γ−r (ε),

where
γ−r (ε) = sup

t∈(0,1],ρ∈(t−ε,t)

{
V ar10[K(t−, ·)−K(ρ, ·)]

}
.

Similar estimation holds true for the right limit:

|H(x)(t−)−H(x)(τ)| ≤ ‖x‖∞ · γ+r (ε),

γ+r (ε) = sup
t∈(0,1],ρ∈(t,t+ε)

{
V ar10[K(t+, ·)−K(ρ, ·)]

}
.

SinceA is bounded, the assumption (3) implies thatH(A) is equi-regulated
uniformly with respect to x ∈ A and then H(A) is uniformly equi-regulated
subset of G([0, 1]), so by Proposition 1 it is relatively compact subset of this
space. The operator H is compact. �
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7. An application

Let us complete the paper by presenting a simple example of application
of the obtained results for the Hammerstein integral equation in the space of
regulated functions. It is important to note that if discontinuous solutions
were investigated, then the solutions should have an additional property,
i.e. should be of bounded variation. It was the case when solutions were
expected in BV ([0, 1]). But in such a case it is necessary to assume, an extra
condition, that the considered operators transform this space into itself. In
our approach such a condition is superfluous. Consider the equation:

(1) x(t) = g(t) + λ

∫ 1

0
f(s, x(s)) dsK(t, s),

where f : [0, 1]× R→ R is a Carathéodory mapping. Put the following set
of assumptions:
(H1) Assume, that g ∈ G([0, 1]).
(H2) Suppose that the function f(·, x) is regulated on [0, 1] for all x ∈

R, and the function f(t, ·) satisfies with the constant L the Lipschitz
condition with respect to the second argument,

(H3) Assume, that K : [0, 1] × [0, 1] → R satisfies K(t, ·) is a function of
bounded variation for every t ∈ [0, 1] with ‖K(t, ·)‖BV ([0,1]) ≤ M , for
some M > 0, K(·, s) ∈ G([0, 1]) and

lim
ε→0+

(
sup

{
V ar10[K(t−, ·)−K(τ, ·)] : t ∈ (0, 1], τ ∈ (t− ε, t)

})
= 0

lim
ε→0+

(
sup

{
V ar10[K(t+, ·)−K(τ, ·)] : t ∈ [0, 1), τ ∈ (t, t+ ε)

})
= 0,

(H4) Let a(t) = f(t, 0). Assume, that λ is sufficiently small, i.e. 1 −
λML > 0 and for some positive constant r we have

‖g‖∞ + λ ·M · (‖a‖∞ + L · r) ≤ r

Theorem 11. Let assumptions (H1)–(H4) be satisfied. Then there exists
a solution x ∈ G([0, 1]) for the equation (1), i.e its regulated solution.

Proof. First observe, that the equation (1) can be rewritten in an operator
form:

x = g + λ · (H ◦ Sf )(x),

where H is a linear operator as in Corollary 6 and Sf is a Nemytskii super-
position operator described in Theorem 7. It we denote the right-hand side
of this equation by T , then it suffices to show, that T : G([0, 1])→ G([0, 1])
has a fixed point.
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Note that the assumption (H2) implies, that Sf maps G([0, 1]) into itself
(Theorem 7) and since the Lipschitz condition with respect to the second
argument implies, that f̃(x)(t) = f(t, x(t)) is continuous (Theorem 8), we
get the continuity of Sf too. At the same time, our assumptions on K are
sufficient to apply Corollary 6 and we get, that the operator H is compact.
Recall that the composition of two operators is compact whenever at least
one of them is compact, so T is compact too.

We will apply the Schauder fixed point theorem. In order to do it one
must find an invariant closed convex bounded set.

Fix an arbitrary x ∈ G([0, 1]) and t ∈ [0, 1]. Since by (H2) f(t, x) satisfies
the Lipschitz condition with constant L, then ‖f(t, x)‖ ≤ ‖f(t, x)−f(t, 0)‖+
‖f(t, 0)‖ ≤ L · ‖x‖+ ‖f(t, 0)‖. Thus

‖f(t, x)‖ ≤ a(t) + L · ‖x‖

for the regulated real-valued and non-negative function a(t) = ‖f(t, 0)‖.
In view of the assumptions (H1)-(H3) and by using the properties of the
Henstock-Stieltjes integral, we have

|(T (x))(t)| ≤ |g(t)|+ λ

∫ 1

0
|f(s, x(s))| dsK(t, s)

≤ |g(t)|+ λ‖K(t, ·)‖BV ([0,1])‖F (x)‖∞
≤ ‖g‖∞ + λ ·M · (‖a‖∞ + L · ‖x‖∞).

Then ‖(T (x))‖∞ ≤ ‖g‖∞ + λ ·M · (‖a‖∞ + L · ‖x‖∞). If we take a ball
Br ⊂ G([0, 1]) as a domain for T with r > 0 given in the assumption (H4),
then we get that T : Br → Br. Obviously, the set Br is nonempty bounded
closed and convex.

Now, the proof runs as in the case of continuous functions (see [1] for a
survey about the methods how to solve Hammerstein integral equations in
function spaces) and by the Schauder fixed point theorem we find a fixed
point for T , so we have a regulated solution for the considered equation. �
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